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Vectors v and scalars lambda that s.t. 

Col space,                                                       Row space,

What are the e-values and e-vectors of A, B:

Eigen-values & Eigen-vectors
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Singular Value Decomposition (SVD)

Any real matrix                           can be decomposed as

where                          and                          are orthonormal

and                        is diagonal.
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                         e-vectors of 

                          e-vectors of

                        Singular-values (non-negative)

*Eigen-value decomposition and SVD are not the same.
*Even if eigen-value decomposition is defined, eigen-values and singular-values are not generally the 
same.
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What is the SVD of A, B?
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Positive Semi-Definite (PSD)

Definition:

Also means, all e-values are non-negative:

E.g. in the normal distribution, the probability is non-negative:

           (1D)                                              (nD)
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Are these PSD?
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Matrix Inverse

If                    is full rank, 

If not full rank, inverse doesn’t exist (pseudoinverse)

If not square, inverse is not defined:

                                          or                                           ?
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Matrix inverse using SVD

If                      is full rank

If not full rank,                                

If                           then  

Moore-Penrose inverse is the most common pseudoinverse.

Common in practice: (not MP-inv)
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https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse


What is the inverse?

10



You will see it in

● Entropy and Information gain in Decision Trees,

● KL divergence to measure distances between probability distributions,

● cross-entropy loss that is widespread in training classifiers.

Information theory
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What is the minimum length of code for communicating the messages of a dog lover?

Coding

https://colah.github.io/posts/2015-09-Visual-Information/
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2 codes of length 1 (0, 1)

4 codes of length 2 (00, 01, 10, 01)

8 codes of length 3 (000, 001, ...)

….

The space of codewords
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Cost of length 0 is 1

Greedy decoding:

0110111

Using both codes at the same time is ambiguous:

01 (dog) and 011 (cat)

Cost of 01 is the cost of all codes that cannot be used (black)
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The optimal cost for an event that happens with probability

is                 of our total budget.

Pay more for frequently events and less for rare events.

Optimal Cost
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Cost of a message of length 

Invert to get the length of a message that costs 

Since we spend                 on the codeword for x, it has length

Entropy of a distribution: the average length of the best possible code

Entropy is measured in bits (log base-2) or nats (log base-e)

Entropy
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What is the entropy of each distribution?

● Bernoulli(0)

● Bernoulli(1)

● Bernoulli(0.5)

Entropy
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How much information I gain by observing X after I had observed Y:

Information Gain (used in Decision Trees)

Conditional Entropy:

Information Gain:
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The average length of communicating an event from one distribution with the 

optimal code for another distribution

Cross-entropy (used in Classification)

Entropy:

Cross-Entropy:
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Input data, ground-truth target,                   (a single data point i)

Prediction,                                 (categorical random variable)

Probabilistic classifier,

Ground-truth distribution, 

Cross-entropy: average length of the ground truth ground-truth using the optimal 

code for p:

Classification
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Distance between two probability distributions

How much longer our messages are (from p) because we used a code optimized 

for a different distribution (q). If the distributions are the same, this difference will 

be zero.

Kullback–Leibler (KL) divergence
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Probabilistic classifier,

Ground-truth distribution, 

Cross-entropy,

KL Divergence,

What is the Entropy of q?

KL Divergence in Classification

22


