SVD & Information Theory

Fartash Faghri University of Toronto CSC2515, Fall 2019

Eigen-values & Eigen-vectors

Vectors v and scalars lambda that s.t. $m{A}m{v}=\lambdam{v}$ Col space, $m{A}m{v}=\lambdam{v}$ Row space, $m{u}^ op m{A}=\lambdam{u}^ op$

What are the e-values and e-vectors of A, B:

$$\boldsymbol{A} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \qquad \qquad \boldsymbol{B} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix}$$

Singular Value Decomposition (SVD)

Any real matrix $A \in \mathbb{R}^{n imes m}$ can be decomposed as $A = USV^ op$ where $U \in \mathbb{R}^{n imes n}$ and $V \in \mathbb{R}^{m imes m}$ are orthonormal

and $\boldsymbol{S} \in \mathbb{R}^{n \times m}$ is diagonal.

$\boldsymbol{A} = \boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{ op}$

 $oldsymbol{U} \in \mathbb{R}^{n imes n}$ e-vectors of $oldsymbol{A} A^ op = oldsymbol{U} S^2 oldsymbol{U}^ op$ $= oldsymbol{U} S V^ op (oldsymbol{U} S V^ op)^ op = oldsymbol{U} S V^ op V S U^ op$ $oldsymbol{V} \in \mathbb{R}^{m imes m}$ e-vectors of $oldsymbol{A}^ op oldsymbol{A} = oldsymbol{V} S^2 oldsymbol{V}^ op$

$\boldsymbol{S} \in \mathbb{R}^{n imes m}$ Singular-values (non-negative)

*Eigen-value decomposition and SVD are not the same.

*Even if eigen-value decomposition is defined, eigen-values and singular-values are not generally the same.

 $A = USV^{ op}$

What is the SVD of A, B?

 $oldsymbol{A} = egin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

 $\boldsymbol{B} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix}$

Positive Semi-Definite (PSD)

 $Av = \lambda v$

Definition: $\forall x \in \mathbb{R}^n, xAx^\top \ge 0$

Also means, all e-values are non-negative: $\lambda \geq 0$

E.g. in the normal distribution, the probability is non-negative:

(1D) (nD)

$$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(\boldsymbol{x}-\boldsymbol{\mu})^2}{2\sigma^2}} \qquad \frac{1}{(2\pi)^{\frac{k}{2}}|\boldsymbol{\Sigma}|^{\frac{1}{2}}}e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}$$

 $A = USV^{ op}$

Are these PSD?

$oldsymbol{A} = egin{bmatrix} 1 & 0 \ 0 & 2 \end{bmatrix}$

 $\boldsymbol{B} = \begin{bmatrix} -1 & 0\\ 0 & 0 \end{bmatrix}$

Matrix Inverse

$$AA^{-1} = \mathbb{I}_{n \times n}$$

If $A \in \mathbb{R}^{n \times n}$ is full rank, $A^{-1} \in \mathbb{R}^{n \times n}$

If not full rank, inverse doesn't exist (pseudoinverse)

If not square, inverse is not defined:

$$A^{-1}A = \mathbb{I}_{m imes m}$$
 or $AA^{-1} = \mathbb{I}_{n imes n}$?

Matrix inverse using SVD $AA^{-1} = I_{n \times n}$ $A = USV^{\top}$

- If $A \in \mathbb{R}^{n imes n}$ is full rank $A^{-1} = US^{-1}U^{-1}$
- If not full rank, $A^+ = V S^+ U^ op$
- If $oldsymbol{A} \in \mathbb{R}^{n imes m}$ then $oldsymbol{A}^+ \in \mathbb{R}^{m imes n}$

<u>Moore-Penrose inverse</u> is the most common pseudoinverse.

Common in practice: $A^+ = V(S + \lambda \mathbb{I})^{-1}U^\top$ (not MP-inv)

 $A = USV^{ op}$

What is the inverse?

 $oldsymbol{A} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

 $\boldsymbol{B} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix}$

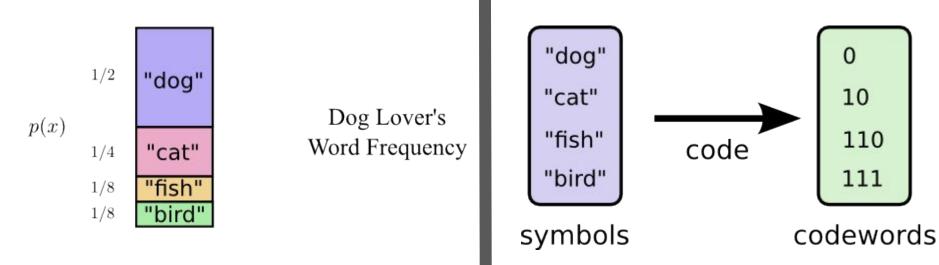
Information theory

You will see it in

- Entropy and Information gain in Decision Trees,
- KL divergence to measure distances between probability distributions,
- cross-entropy loss that is widespread in training classifiers.

Coding

What is the minimum length of code for communicating the messages of a dog lover?



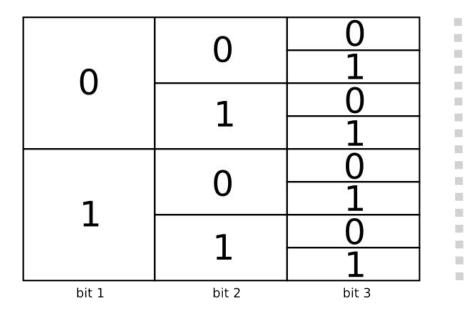
The space of codewords

```
2 codes of length 1 (0, 1)
```

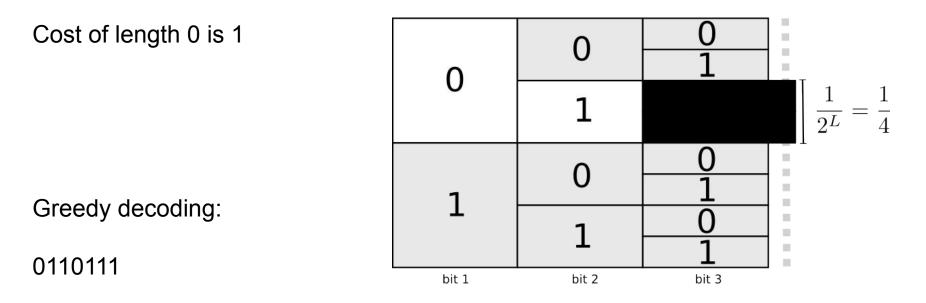
4 codes of length 2 (00, 01, 10, 01)

8 codes of length 3 (000, 001, ...)

• • • •



Cost of 01 is the cost of all codes that cannot be used (black)



Using both codes at the same time is ambiguous:

01 (dog) and 011 (cat)

Optimal Cost

The optimal cost for an event that happens with probability p(x)

is p(x) of our total budget.

Pay more for frequently events and less for rare events.

Entropy

Cost of a message of length $L: \frac{1}{2^L}$

Invert to get the length of a message that costs $C : \log_2(\frac{1}{C})$ Since we spend p(x) on the codeword for x, it has length $\log_2(\frac{1}{n(x)})$

Entropy of a distribution: the average length of the best possible code

$$H(p) = \sum_{x} p(x) \log_2(\frac{1}{p(x)})$$

Entropy is measured in bits (log base-2) or nats (log base-e)

Entropy

$$H(p) = \sum_{x} p(x) \log_2(\frac{1}{p(x)})$$

What is the entropy of each distribution?

- Bernoulli(0)
- Bernoulli(1)
- Bernoulli(0.5)

Information Gain (used in Decision Trees)

Conditional Entropy:
$$H(X|Y) = \sum_{x,y} p(x,y) \log\left(\frac{1}{p(x|y)}\right)$$

How much information I gain by observing X after I had observed Y:

Information Gain:
$$IG(X,Y) = H(X) - H(X|Y)$$

Cross-entropy (used in Classification)

The average length of communicating an event from one distribution with the

optimal code for another distribution

$$H(p) = \sum_{x} p(x) \log\left(\frac{1}{p(x)}\right)$$
$$H_{1}(q) = \sum_{x} q(x) \log\left(\frac{1}{p(x)}\right)$$

$$p(x) \quad q(x) \\ \hline x_1 \\ x_2 \\ \hline x_2 \\ \hline x_3 \\ \hline x_4 \\$$

Cross-Entropy:
$$H_p(q)$$

Average Length of message from q(x)using code for p(x).

Cross-Entropy:

$$H_p(\boldsymbol{q}) = \sum_x \boldsymbol{q}(\boldsymbol{x}) \log\left(rac{1}{p(x)}\right)$$

Classification

$$H_p(\boldsymbol{q}) = \sum_x \boldsymbol{q}(\boldsymbol{x}) \log\left(\frac{1}{p(x)}\right)$$

 $p(x) \quad q(x)$

 x_1

 $\begin{array}{c} x_2 \\ x_3 \end{array}$

Cross-Entropy: $H_p(q)$ Average Length

of message from q(x)using code for p(x).

Prediction, $y_i \in \{1, \cdots, C\}$ (categorical random variable)

Input data, ground-truth target, $(m{x}_i,t_i)$ (a single data point i)

Probabilistic classifier, $p(y_i | oldsymbol{x}_i; oldsymbol{ heta})$

Ground-truth distribution,
$$q(y_i | \boldsymbol{x}_i) = \begin{cases} 1 & y_i = t_i \\ 0 & y_i \neq t_i \end{cases}$$

Cross-entropy: average length of the ground truth ground-truth using the optimal

code for p:
$$H_p(q) = -\log\left(p(t_i | \boldsymbol{x}_i; \boldsymbol{\theta})\right)$$

Kullback–Leibler (KL) divergence

Distance between two probability distributions

$$D_q(p) = H_q(p) - H(p)$$

$$D_q(p) = \sum_x p(x) \log\left(\frac{p(x)}{q(x)}\right)$$

How much longer our messages are (from p) because we used a code optimized

for a different distribution (q). If the distributions are the same, this difference will

be zero.

KL Divergence in Classification

Probabilistic classifier, $p(y_i|oldsymbol{x}_i;oldsymbol{ heta})$

Ground-truth distribution, $q(y_i|\boldsymbol{x}_i) = \begin{cases} 1 & y_i = t_i \\ 0 & y_i \neq t_i \end{cases}$

Cross-entropy, $H_p(q) = \sum_x q(x) \log\left(\frac{1}{p(x)}\right)$ KL Divergence, $D_q(p) = H_q(p) - H(p)$

What is the Entropy of q?