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Eigen-values & Eigen-vectors

Vectors v and scalars lambda that s.t. A’U — )\’U

Col space, A’U — )\’U Row space, ’LLTA — )\’U,T

What are the e-values and e-vectors of A, B:

1 0 —1 0
A__o 2| B = 0 0




Singular Value Decomposition (SVD)

Any real matrix A4 € R™*™ can be decomposed as
A=USV'
where U € R™"*™ and V < R™*™ are orthonormal

and § ¢ R™*™ is diagonal.



A=USV'

U c R*"*"™ e-vectorsof AA' =US*U'
=UsSvV'(usv")'=usv'vsu'

V e R™™ a.vectorsof A' A=VS*V'

S e R™™™  Singular-values (non-negative)

*Eigen-value decomposition and SVD are not the same.
*Even if eigen-value decomposition is defined, eigen-values and singular-values are not generally the
same.



A=USV"'

What is the SVD of A, B?
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Positive Semi-Definite (PSD) Av = \

Definition: Ve e R, zAxz' >0
Also means, all e-values are non-negative: A > (

E.g. in the normal distribution, the probability is non-negative:
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Are these PSD?
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Matrix Inverse AA =T ..,

If AcR"™™isfullrank, A~' e R™"
If not full rank, inverse doesn’t exist (pseudoinverse)

If not square, inverse is not defined:

A A = T or AA =g ?



Matrix inverse using SVD  a4a-'-=1,., A-=USV"

f AcR™™isfullrank A 1 =USU!
Ifnotfullrank, AT = VSTU'
If A cR™ ™ then AT e R

Moore-Penrose inverse is the most common pseudoinverse.

Common in practice: AT = V(S +A)"'U" (not MP-inv)


https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse

What is the inverse?
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Information theory

You will see it in
e Entropy and Information gain in Decision Trees,
e KL divergence to measure distances between probability distributions,

e cross-entropy loss that is widespread in training classifiers.
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Coding

What is the minimum length of code for communicating the messages of a dog lover?

1/2 udogu
plx)

1/4 ucatn

1/8 uﬁshu

l"',:'x llbird n

https://colah.github.io/posts/2015-09-Visual-Information/
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The space of codewords

2 codes of length 1 (0, 1)
4 codes of length 2 (00, 01, 10, 01)

8 codes of length 3 (000, 001, ...)
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Cost of 01 is the cost of all codes that cannot be used (black)

Cost of length 0 is 1

O | V= | O

Greedy decoding: 1

0110111
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bit 1 bit 2

Using both codes at the same time is ambiguous:

01 (dog) and 011 (cat)
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Optimal Cost

The optimal cost for an event that happens with probability p(:r)

is p(T) of our total budget.

Pay more for frequently events and less for rare events.
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Entropy
1

Cost of a message of length [, : 2_L
1
Invert to get the length of a message that costs (' : log, ( E)

Since we spend 1) on the codeword for x, it has length log,
p

Entropy of a distribution: the average length of the best possible code

H(p) = > p(a) 10g2(]%x))

Entropy is measured in bits (log base-2) or nats (log base-e)

(

1
p()

)
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Entropy

What is the entropy of each distribution?
e Bernoulli(0)
e Bernoulli(1)

e Bernoulli(0.5)

H(p) =) p(x)log,(

1
p(-r))
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Information Gain (used in Decision Trees)

Conditional Entropy: X|Y ZP L1 log ( (1‘ )>
LY

How much information | gain by observing X after | had observed Y:

Information Gain: [G(X, Y) — H(X) — H(XlY)
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Cross-entropy (used in Classification)

The average length of communicating an event from one distribution with the

optimal code for another distribution p(z) q(z) .
Cross-Entropy: H (q)
- s Average Length
. of message from q(x)
1 :L.: x3 using code for p(x).
Entropy: H(p) - p(:):) log ( ) 71| [@a
; p()
Cross-Entropy: H (() Z () log ( 1 )
} : 1) = g\T —_
’ p(x)

X
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Classification o) = S ateton ()

p(x)

T

Input data, ground-truth target, (@;,t;) (asingle datapointi)— @  Cross-Entropy: H,(q)
- Average Length

of message from q(x)

using code for p(x).

Prediction, y; € {1,--- ,C} (categorical random variable)

Probabilistic classifier, p(y;|x;;0)

Iy =1

Ground-truth distribution, q(y;|x;) = {O yi £ t;

Cross-entropy: average length of the ground truth ground-truth using the optimal

code for p: Hp(q) = — log (p(tz-|w,,;; 9))
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Kullback—Leibler (KL) divergence

Distance between two probability distributions

Dy(p) = Hq(p) — H(p)

= Y ote s (555
()
How much longer our messages are (from p) because we used a code optimized

for a different distribution (q). If the distributions are the same, this difference will

be zero.
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KL Divergence in Classification

Probabilistic classifier, P(Yi|xi; 0)

Ground-truth distribution, ¢(v:|Ti) = 1 yi=1%
’ ( (2 O yz # tz
Cross-entropy, H,(q) =) q(z)log (p(@)

T

KL Divergence, Dq(p) = H,(p) — H(p)

What is the Entropy of q?
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