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Final Exam

I Time: Tuesday, Dec. 17, from 3:00pm to 6:00pm
I Location: Banting Institute, Room 131
I Office hours will be posted on the course website.



Agenda

1. A brief overview
2. Some sample questions



Basic ML Terminology

The final exam will cover everything up through Lecture 11;
However, it will be more heavily weighted towards post-midterm
material. For pre-midterm material, refer to the midterm review
slides on the course website.
I Dimensionality reduction
I Clustering
I Bayes Rule
I Prior/posterior distributions
I Conjugacy

I Likelihood function
I Mahalanobis distance
I Isotropic covariance
I Conditional independence
I I.I.D.



Basic ML Terminology

The final exam will cover everything up through Lecture 11;
However, it will be more heavily weighted towards post-midterm
material. For pre-midterm material, refer to the midterm review
slides on the course website.
I K-Means (hard and soft)
I Latent variable models
I Gaussian Mixture Model

(GMM)
I Expectation-Maximization

(EM) algorithm
I Jensen’s Inequality

I Reinforcement Learning
I States/actions/rewards
I Exploration/exploitation
I Laplace Mechanism
I Sensitivity of a function
I Exponential Mechanism



Some Questions

Question 1

True of False:
1. PCA always uses an invertible linear map.
2. K-Means will always find the global minimum.
3. Naive Bayes assumes that all features are independent.

4. PCA always uses an invertible linear map. False
5. K-Means will always find the global minimum. False
6. Naive Bayes assumes that all features are independent. False

Question2

1. How can a generative model p(x |y) be used as a classifier?
2. Why is dimensionality reduction useful?
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Some Questions

Question 1

True of False:
1. PCA always uses an invertible linear map. False
2. K-Means will always find the global minimum. False
3. Naive Bayes assumes that all features are independent. False

Question2

1. How can a generative model p(x |y) be used as a classifier?
2. Why is dimensionality reduction useful?



Subject Areas (post midterm)

1. Principal Component Analysis
2. Probabilistic Models
3. K-Means
4. Mixture Models + EM algorithm
5. Reinforcement Learning
6. Differential Privacy



Principal Component Analysis (PCA)

1. What does PCA reconstruction minimize?
2. What is the optimal PCA subspace given empirical ΣΣΣ?
3. Linear and non-Linear Autoencoders



Probabilistic Models

Bayes’ Rule:

p(θ | D) =
p(θ)p(D | θ)

p(D)

Parameter Estimation

I Maximum Likelihood Estimation (MLE): arg maxθ p(D | θ)

I Maximum A Posteriori Esitmation (MAP):arg maxθ p(θ | D)

Classification

1. Generative vs Discriminative classification
2. Naive Bayes: Assumes features independent given the class
3. Gaussian Discriminant Analysis



Clustering: K -Means

1. Initialization, assignment, refitting
2. Convergence
3. Soft vs hard K-means



Mixture Models

1. Gaussian Mixture Model (GMM)
2. Expectation–Maximization (EM) Algorithm

I E-Step, M-Step
I K-means vs EM



Reinforcement Learning

1. Choosing actions to maximize long-term reward
2. States, actions, rewards, policies, transition probability
3. Value function, Bellman Equation, value iteration
4. Q-learning
5. Exploration vs. Exploitation



Differential Privacy

1. Definition: ε-differential privacy
2. Laplace Mechanism: Add noise
3. Exponential Mechanism
4. Composition Rules



Sample Question 1

Recall that Gaussian discriminant analysis (GDA) can have very
different decision boundary shapes depending on the precise model
assumptions. Consider a GDA model with two classes, and where
the covariance is shared between both classes and is spherical.
Show mathematically that the decision boundary is linear. For
reference, the multivariate Gaussian PDF is given by:

N (x;µµµ,ΣΣΣ) =
1

(2π)D/2|ΣΣΣ|1/2
exp

(
−1
2

(x−µµµ)TΣΣΣ−1(x−µµµ)

)



Q1 Solution

Decision boundary is when log p(t = 0|x) = log p(t = 1|x). That is

(x−µµµ0)TΣΣΣ−1(x−µµµ0) = (x−µµµ1)TΣΣΣ−1(x−µµµ1) + const

Expanding:

xTΣΣΣ−1x− 2µT0 ΣΣΣ−1x = xTΣΣΣ−1x− 2µT1 ΣΣΣ−1x + const

2(µ1 − µ0)TΣΣΣ−1x = const

Hence the decision boundary is linear.



Sample Question 2

We will derive the E-M update rules for a univariate Gaussian
mixture model (GMM) with two mixture components. Unlike the
GMMs we covered in the course, the mean µ will be shared between
the two mixture components, but each component will have its own
standard deviation σk . The model is defined as follows:

z ∼ Bernoulli(θ)

x |z = k ∼ N (µ, σk)

(A) Write the density defined by this model (i.e. the probability of
x , with z marginalized out)

(B) E-Step: Compute the posterior probability
r (i) = Pr(z(i) = 1|x (i)).

(C) M-Step: Update rule for µ (keeping σk fixed)
(D) M-Step: Update rule for σ1 (keeping µ fixed)



Q2 Solution

(A) p(x) = θN (x ;µ, σ1) + (1− θ)N (x ;µ, σ0)

(B) r (i) = θN (x(i);µ,σ1)

θN (x(i);µ,σ1)+(1−θ)N (x(i);µ,σ0)

(C)+(D) At each M-Step we optimize the following:

L(µ, σ0, σ1, θ) =

=
N∑
i=1

r (i) log(N (x (i)|µ, σ1) + r (i) log θ

+ (1− r (i)) logN (x (i)|µ, σ0)) + (1− r (i)) log(1− θ)

∂L
∂µ

= 0 =⇒
N∑
i

r (i)
(x (i) − µ)

σ2
1

+ (1− r (i))
(x (i) − µ)

σ2
0

= 0

=⇒
N∑
i

(x (i) − µ)

(
r (i)

σ2
1

+
(1− r (i))

σ2
0

)
= 0



Q2 Solution contd.

=⇒
N∑
i

(x (i) − µ)
(
σ2

0r
(i) + σ2

1(1− r (i))
)

= 0

Thus you get: µ←
∑N

i=1 x
(i)(r (i)σ2

0+(1−r (i))σ2
1)∑N

i=1(r (i)σ2
0+(1−r (i))σ2

1)

∂L
∂σ2

1
= 0 =⇒ σ2

1 ←
∑N

i=1 r
(i)(x (i) − µ)2∑N
i=1 r

(i)


