Model-Based RL

Xuchan (Jenny) Bao CSC2515 Tutorial 10, Nov 20/21, 2019

So far, we've seen model-free RL algorithms

- Learn policy directly by interacting with the environment
- Agent does NOT attempt to model the transition P(s' | s, a)

Model-Based RL

• Learn a representation (model) of the world, and use the model for policy learning / planning

Images from:

Scott McCloud Understanding Comics https://en.wikipedia.org/wiki/Understanding Comics https://memeengine.tumblr.com/post/28333277260/more-thoughts-from-understanding-comics-by-scott CSC2515 Fall 2019 slides http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf

"The image of the world around us, which we carry in our head, is just a model. Nobody in his head imagines all the world, government or country. He has only selected concepts, and relationships between them, and uses those to represent the real system."

- Jay Wright Forrester (Technology Review. 1971)

Model-Based vs. Model-Free RL

Model-Based RL	Model-Free RL
Learns to represent the world, and uses it to decide actions	Learns how to act directly via interaction with the real world
 Sample-efficient Model can be used for transfer learning 	 Needs large amount of samples from the real world (expensive) Knowledge not easily transferable
 Often quite fragile, tricky to get to work Difficult to model high-dimensional environments with complex dynamics Policy can overfit to model Can be stuck at bad local minima → lower asymptotic performance 	 More consistent & robust performance Higher asymptotic performance

Example: World Models (Ha et al, 2018)

• Model-based RL from pixel input

World Model Architecture

Sequential observations

Training World Models

All components are trained separately

- Vision model (V): a simple variational autoencoder, trained to reconstruct each observation
- **Memory model (M):** an RNN with mixture of Gaussian output, trained to model the transition in the encoded space
- **Controller (C):** a linear model, trained using Covariance-Matrix Adaptation Evolution Strategy (CMA-ES)

Design Decisions of World Model

- Use a very simple controller (just a linear model), so that most of the model's complexity resides in the "world model" part (i.e. V and M models).
 - Can efficiently train the V and M models (backpropagation)
 - C is in general harder to train (e.g. RL), but C model is very simple by design
- Train all models separately
 - Easier to implement, and requires less hyperparameter tuning
 - Achieves satisfactory results
 - Limitation: the VAE model can encode irrelevant information (such as brick tile patterns on the walls)
 - Training V and M together to predict reward can help learn task-relevant information only, but might hurt generalization to other tasks

World Models: Demo

https://worldmodels.github.io/