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cement Learning Problem

@ Recall: we categorized types of ML by how much information they provide
about the desired behavior.

o Supervised learning: labels of desired behavior

e Unsupervised learning: no labels

o Reinforcement learning: reward signal evaluating the outcome of past
actions

@ In RL, we typically focus on sequential decision making: an agent chooses a
sequence of actions which each affect future possibilities available to the

agent.
An agent observes the takes an action and ~ with the goal of
world its states changes achieving long-term
rewards.
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Playing Games: Atari

https://www.youtube.com/watch?v=V1eYniJORnk
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https://www.youtube.com/watch?v=V1eYniJ0Rnk

Playing Games: Super Mario

https://www.youtube.com/watch?v=wfL4L_14U9A
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https://www.youtube.com/watch?v=wfL4L_l4U9A

Making Pancakes!

—

https://www.youtube.com/watch?v=W_gxLKSsSIE
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https://www.youtube.com/watch?v=W_gxLKSsSIE

Reinforcement Learning

Most RL is done in a mathematical framework called a Markov Decision Process (MDP).

Environment

St+l ~ P(|StaAt)
Rt ~ R(lSt,Af)

action ~
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MDPs: States and Actions

@ First let's see how to describe the dynamics of the environment.
@ The state is a description of the environment in sufficient detail to
determine its evolution.
e Think of Newtonian physics.
o Markov assumption: the state at time t + 1 depends directly on the
state and action at time t, but not on past states and actions.
@ To describe the dynamics, we need to specify the transition
probabilities P(S¢+1 | St, At).

@ In this lecture, we assume the state is fully observable, a highly
nontrivial assumption.
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MDPs: States and Actions

@ Suppose you're controlling a robot hand. What should be the set of

states and actions?
e states = sensor measurements, actions = actuator voltages?
e states = joint positions and velocities, actions = trajectory keypoints?

@ In general, the right granularity of states and actions depends on
what you're trying to achieve.
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MDPs: Policies

@ The way the agent chooses the action in each step is called a policy.
@ We'll consider two types:
o Deterministic policy: Ay = 7(S;) for some function 7: S — A
o Stochastic policy: A; ~ m(-|S;) for some function 7 : S — P(A).
(Here, P(A) is the set of distributions over actions.)

@ With stochastic policies, the distribution over rollouts, or trajectories,
factorizes:

p(si,a1,...,st,ar) = p(si)w(a1|s1) P(s2|s1,a1) w(az | s2) - - - P(sr | s7—1,ar—1) w(ar | s7)

@ Note: the fact that policies need consider only the current state is a
powerful consequence of the Markov assumption and full
observability.

o If the environment is partially observable, then the policy needs to
depend on the history of observations.
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MDPs: Rewards

@ In each time step, the agent receives a reward from a distribution that
depends on the current state and action

Rt ~ R( ‘ St,At)

For simplicity, we'll assume rewards are deterministic, i.e.

Rt = r(Sh At)

What's an example where R; should depend on A;?
The return determines how good was the outcome of an episode.

o Undiscounted: G =Ry + R + Ro + -+
o Discounted: G = Ry +vR1 + +?R»

The goal is to maximize the expected return, E[G].

~ is a hyperparameter called the discount factor which determines
how much we care about rewards now vs. rewards later.

o What is the effect of large or small 4?7
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MDPs: Rewards

@ How might you define a reward function for an agent learning to play
a video game?
o Change in score (why not current score?)
o Some measure of novelty (this is sufficient for most Atari games!)
@ Consider two possible reward functions for the game of Go. How do
you think the agent's play will differ depending on the choice?
e Option 1: +1 for win, 0 for tie, -1 for loss
o Option 2: Agent's territory minus opponent's territory (at end)
@ Specifying a good reward function can be tricky.
https://www.youtube.com/watch?v=t10IHko8ySg
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https://www.youtube.com/watch?v=tlOIHko8ySg

Markov Decision Processes

@ Putting this together, a Markov Decision Process (MDP) is defined by a
tuple (S, A, P, R,7).

S: State space. Discrete or continuous

A: Action space. Here we consider finite action space, i.e.,
A= {31,...73|A‘}.

e P: Transition probability

o R: Immediate reward distribution

o 7: Discount factor (0 <y < 1)

@ Together these define the environment that the agent operates in, and the
objectives it is supposed to achieve.
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Finding a Policy

o Now that we've defined MDPs, let's see how to find a policy that
achieves a high return.
@ We can distinguish two situations:

e Planning: given a fully specified MDP.
o Learning: agent interacts with an environment with unknown
dynamics.
@ |.e., the environment is a black box that takes in actions and outputs
states and rewards.

@ Which framework would be most appropriate for chess? Super Mario?
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Value Functions
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Value Function

@ The value function V™ for a policy m measures the expected return if you
start in state s and follow policy .

Vﬂ-(s) é Eﬂ—[Gt | St - 5] - Eﬂ—

> VRepi | Se = s] :

k=0

@ This measures the desirability of state s.
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Value Function

Start
@ Rewards: —1 per time-step

@ Actions: N, E, S, W
@ States: Agent'’s location

Goal

[Slide credit: D. Silver]
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Value Function

Start

@ Arrows represent policy 7 (s)
for each state s

[Slide credit: D. Silver]
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Value Function

Start

@ Numbers represent value V™ (s)
of each state s

ﬂ n

[Slide credit: D. Silver]
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Bellman equations

@ The foundation of many RL algorithms is the fact that value functions
satisfy a recursive relationship, called the Bellman equation:

VTF(S) = ]E‘n‘[Gt ‘ St = S]
= Ew[Rt +7Gr11 ‘ St = S]

= Zﬂ-(a |s) [r(s7 a) + 'yZP(s’ |a,s)Ex[Ge1| St = s']]
:Zw(a|s [ r(s,a —i—fyZ?D |a,s) V7 (s')

@ Viewing V7 as a vector (where entries correspond to states), define the
Bellman backup operator T™.

(T”V)(s)éZﬂ'( |'s) l r(s,a +7273 "la,s) V(s)

a

@ The Bellman equation can be seen as a fixed point of the Bellman operator:

TV = VT
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Value Function

A value function for golf:

vputt

— Sutton and Barto, Reinforcement Learning: An Introduction
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State-Action Value Function

@ A closely related but usefully different function is the state-action
value function, or Q-function, Q™ for policy 7, defined as:

Q™(s5,a) £ Ex | Y YReru | Se=5A=a
k>0

o If you knew Q™, how would you obtain V77

VT(s) =) m(als)Q"(s,a).

a

o If you knew V™, how would you obtain Q™7
o Apply a Bellman-like equation:

Q7(s,a) = r(s,a) + 7Y _P(s'|a.s) VT(s)

e This requires knowing the dynamics, so in general it's not easy to
recover Q™ from V7.
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State-Action Value Function

e Q7 satisfies a Bellman equation very similar to V™ (proof is
analogous):

Q™(s,a) = r(s,a) +~ Z P(s' | a,s) Z m(a'|s)Q(s',a)

/

(T Qm)(s,a)
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Dynamic Programming and Value lteration
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Optimal State-Action Value Function

@ Suppose you're in state s. You get to pick one action a, and then
follow (fixed) policy 7 from then on. What do you pick?

argmax Q" (s, a)
a

@ If a deterministic policy 7 is optimal, then it must be the case that for

any state s:
7(s) = argmax Q" (s, a),
a

otherwise you could improve the policy by changing 7(s). (see Sutton
& Barto for a proper proof)
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Optimal State-Action Value Function

@ Bellman equation for optimal policy 7*:

(s a) = r(s,a) —I—’YZP(S |s,a)Q" (s (")

sa—l—'yZp |samaxQ (s a')

e Now Q* = Q™" is the optimal state-action value function, and we can
rewrite the optimal Bellman equation without mentioning 7*:

Q'(s.3) = r(5,3) +1 Y p(s'|5,2) max Q*(s', )

s/

2(TQ*)(s2)

@ Turns out this is sufficient to characterize the optimal policy. So we
simply need to solve the fixed point equation T*Q* = @, and then
we can choose 7*(s) = arg max, Q*(s, a).
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Bellman Fixed Points

@ So far: showed that some interesting problems could be reduced to
finding fixed points of Bellman backup operators:

e Evaluating a fixed policy 7
TTR™ = Q"
e Finding the optimal policy
T°Q* = Q*
o ldea: keep iterating the backup operator over and over again.

Q+—T7Q (policy evaluation)
Q+ T*Q (finding the optimal policy)

o We're treating Q™ or Q* as a vector with |S] - |.A| entries.
e This type of algorithm is an instance of dynamic programming.

CSC 2515: 10-Reinforcement Learning



Bellman Fixed Points

@ An operator f (mapping from vectors to vectors) is a contraction map
if
[f(x1) = F(x2)]| < allx1 — xa
for some scalar 0 < a < 1 and vector norm || - ||.

o Let f(K) denote f iterated k times. A simple induction shows
1F5(x1) = FO(x) | < @¥llxa —xe.
@ Let x* be a fixed point of f. Then for any x,
IR (x) — x| < ¥lx —x. .

@ Hence, iterated application of f, starting from any x, converges
exponentially to a unique fixed point.
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Finding the Optimal Value Function: Value Iteration

@ Let's use dynamic programming to find Q*.

@ Value lteration: Start from an initial function Q. For each k =1,2, ...,
apply
Qi1+ T Qk

@ Writing out the update in full,

Qus1(s,a) « r(s,a) + 75126‘:9 P(s']s,a) max Qk(s', ")

@ Observe: a fixed point of this update is exactly a solution of the optimal
Bellman equation, which we saw characterizes the Q-function of an optimal

policy.
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Value lteration

Q1
b4
T*
| T (T ng
:
Q2° T"Qo

@ Claim: The value iteration update is a contraction map:
[T — T" Qo[ <71Q1 — Q2

|-l denotes the L> norm, defined as:

I/, = max b

If this claim is correct, then value iteration converges exponentially to the
unique fixed point.

The exponential decay factor is v (the discount factor), which means longer
term planning is harder.
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Bellman Operator is a Contraction

I(T"Qi)(s,a) — (T"Q)(s,a)| = [f(% a)+7Y P(s'|s,a) max Qu(s', a')} -

|:r(s a)+fyz73 |s,a mang(s a):| ‘

s'|s,a {ma;;)x Qu(s',a') — max Q:(s', a')} ‘

<'yz73 |samax‘Q1(s a') — Qz(s/,a/)|
gvn)aﬂle,a — Qs a)|ZP s'|s,a)

=ymax|Qu(s',a) — Qu(s',4))]

=71@ — @l

@ This is true for any (s, a), so
IT°Q =T Qo <7[1@: — Qo

which is what we wanted to show.
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Value Iteration Recap

@ So far, we've focused on planning, where the dynamics are known.

@ The optimal Q-function is characterized in terms of a Bellman fixed
point update.

@ Since the Bellman operator is a contraction map, we can just keep
applying it repeatedly, and we'll converge to a unique fixed point.
@ What are the limitations of value iteration?

e assumes known dynamics
e requires explicitly representing Q* as a vector

@ |S| can be extremely large, or infinite
@ |A| can be infinite (e.g. continuous voltages in robotics)
@ But value iteration is still a foundation for a lot of more practical RL
algorithms.

CSC 2515: 10-Reinforcement Learning



Towards Learning

@ Now let's focus on reinforcement learning, where the environment is
unknown. How can we apply learning?

@ Learn a model of the environment, and do planning in the model
(i.e. model-based reinforcement learning)

@ You already know how to do this in principle, but it's very hard to get
to work. Not covered in this course.

@ Learn a value function (e.g. Q-learning, covered in this lecture)
© Learn a policy directly (e.g. policy gradient, covered in tutorial)

@ How can we deal with extremely large state spaces?

e Function approximation: choose a parametric form for the policy
and/or value function (e.g. linear in features, neural net, etc.)
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Q-Learning

einforcement Learning



Monte Carlo Estimation

@ Recall the optimal Bellman equation:
Q"(5.2) = (5.3) +Ep(e sy e (5. )

@ Problem: we need to know the dynamics to evaluate the expectation
@ Monte Carlo estimation of an expectation = E[X]: repeatedly
sample X and update

4= p+ (X — p)

o Idea: Apply Monte Carlo estimation to the Bellman equation by
sampling S’ ~ P(-| s, a) and updating:

Q(s,a) « Q(s,a) + « [ r(s,a) + 7 max Q(S,4d) — Q(s,a)

= Bellman error
@ This is an example of temporal difference learning, i.e. updating our
predictions to match our later predictions (once we have more
information).
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Monte Carlo Estimation

@ Problem: Every iteration of value iteration requires updating @ for
every state.

o There could be lots of states
o We only observe transitions for states that are visited
o ldea: Have the agent interact with the environment, and only update
Q for the states that are actually visited.

@ Problem: We might never visit certain states if they don't look
promising, so we'll never learn about them.

o ldea: Have the agent sometimes take random actions so that it
eventually visits every state.
e c-greedy policy: a policy which picks arg max, Q(s, a) with probability
1—¢ and a random action with probability . (Typical value: € = 0.05)

@ Combining all three ideas gives an algorithm called Q-learning.
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Q-Learning with e-Greedy Policy

@ Parameters:

o Learning rate a
o Exploration parameter ¢

@ Initialize Q(s, a) for all (s,a) € S x A
@ The agent starts at state Sp.
@ For timestep t =0,1, ...,
e Choose A; according to the e-greedy policy, i.e.,

A, o argmax,c 4 Q(S¢, a) with probability 1 — ¢
Uniformly random action in A with probability €

Take action A; in the environment.

The state changes from S; to S;11 ~ P(+|St, A:)

Observe S¢11 and R; (could be r(St, At), or could be stochastic)
Update the action-value function at state-action (S;, A;):

Q(St, Ar) < Q(St,Ar) +a R + 7 max Q(St11,a") — Q(S¢, Ar)
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Exploration vs. Exploitation

@ The e-greedy is a simple mechanism for maintaining exploration-exploitation
tradeoff.

argmax,c 4 Q(S, a) with probability 1 — ¢

7Ts(s; Q) = {

Uniformly random action in A  with probability &

@ The e-greedy policy ensures that most of the time (probability 1 — ¢) the
agent exploits its incomplete knowledge of the world by chooses the best
action (i.e., corresponding to the highest action-value), but occasionally
(probability ¢) it explores other actions.

@ Without exploration, the agent may never find some good actions.

@ The e-greedy is one of the simplest, but widely used, methods for trading-off
exploration and exploitation. Exploration-exploitation tradeoff is an
important topic of research.
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Examples of Exploration-Exploitation in the Real World

@ Restaurant Selection

o Exploitation: Go to your favourite restaurant
e Exploration: Try a new restaurant

@ Online Banner Advertisements

e Exploitation: Show the most successful advert
e Exploration: Show a different advert

@ Oil Drilling

o Exploitation: Drill at the best known location
o Exploration: Drill at a new location

@ Game Playing

o Exploitation: Play the move you believe is best
o Exploration: Play an experimental move

[Slide credit: D. Silver]
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An Intuition on Why Q-Learning Works? (Optional)

@ Consider a tuple (S, A, R, S’). The Q-learning update is
Q(S.A) ¢ Q(S.A) +a |[R+ 7 max Q(S'#) - 0[5, )]

@ To understand this better, let us focus on its stochastic equilibrium, i.e.,
where the expected change in Q(S, A) is zero. We have

B [R 1 max Q(S', ) - Q(s,A)|5,A] 0
=(T"Q)(S.A) = Q(S,A)
@ So at the stochastic equilibrium, we have (T*Q)(S,A) = Q(S,A). Because

the fixed-point of the Bellman optimality operator is unique (and is Q*), @
is the same as the optimal action-value function Q*.
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Off-Policy Learning

@ Q-learning update again:
Q(S.4)  Q(S. )+ [ R+ max Q') - Q(5.4)]

@ Notice: this update doesn't mention the policy anywhere. The only
thing the policy is used for is to determine which states are visited.

@ This means we can follow whatever policy we want (e.g. e-greedy),
and it still coverges to the optimal Q-function. Algorithms like this
are known as off-policy algorithms, and this is an extremely useful
property.

@ Policy gradient (covered in tutorial) is an on-policy algorithm.
Encouraging exploration is much harder in that case.
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Function Approximation
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Function Approximation

@ So far, we've been assuming a tabular representation of Q: one entry
for every state/action pair.

@ This is impractical to store for all but the simplest problems, and
doesn’t share structure between related states.
@ Solution: approximate @ using a parameterized function, e.g.
o linear function approximation: Q(s,a) =w (s, a)
e compute @ with a neural net

@ Update @ using backprop:

t < r(s¢,ae) +y max Q(st41,a)

0 < 0+ a(t — Q(s,a))VgQ(st, ar).
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Function Approximation (optional)

@ It's tempting to think of Q-learning with function approximation as
minimizing the squared norm of the Bellman errors:

2
J(0) =Es A [(r(S,A) + 7 max Qo(S',d) — Qa(S, A)>

@ Why isn't this interpretation correct?
e The expectation depends on 8, so the gradient V. 7(0) would need to
account for that.
o In addition to updating Qg(S, A) to better match r(s, a) +vQe(S’, a'),
gradient descent would update Qp(S’,a’) to better match
77 1(Qe(S,A) — r(S, A)). This makes no sense, since
r(S,A) + Qo(S’, a') is a better estimate of the return.
@ Q-learning with function approximation is chasing a “moving target”,
and one can show it isn't gradient descent on any cost function. The
dynamics are hard to analyze.

@ Still, we use it since we don't have any good alternatives.
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Function Approximation

@ Approximating @ with a neural net is a decades-old idea, but
DeepMind got it to work really well on Atari games in 2013 (“deep
Q-learning™)

@ They used a very small network by today's standards

. take some action a; and observe (s;,a;, s}, r;), add it to B

. sample mini-batch {s;,a;,s’,r;} from B uniformly

dQ !
SO d—a)y; Tt (s,a5)(Qq(syra5) — y5)
. update ¢': copy ¢ every N steps

1
2
3. compute y; = r; + 7y maxg/ Qd)/(s/j,aﬁ) using target network Qg
4

ot

@ Main technical innovation: store experience into a replay buffer, and
perform Q-learning using stored experience
o Gains sample efficiency by separating environment interaction from
optimization — don’t need new experience for every SGD update!
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Mnih et al., Nature 2015. Human-level control through deep
reinforcement learning

Network was given raw pixels as observations

Same architecture shared between all games

Assume fully observable environment, even though that's not the case

After about a day of training on a particular game, often beat
“human-level” performance (number of points within 5 minutes of

play)
o Did very well on reactive games, poorly on ones that require planning
(e.g. Montezuma's Revenge)

https://www.youtube.com/watch?v=V1eYniJORnk
https://www.youtube.com/watch?v=4M1Zncshy1Q
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https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=4MlZncshy1Q

Recap and Other Approaches

All discussed approaches estimate the value function first. They are called
value-based methods.

There are methods that directly optimize the policy, i.e., policy search
methods.

Model-based RL methods estimate the true, but unknown, model of
environment P by an estimate P, and use the estimate P in order to plan.

There are hybrid methods.

Environment
(Real World)

Policy

‘@ Model

CSC 2515: 10-Reinforcement Learning



Reinforcement Learning Resources

@ Books:

e Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An
Introduction, 2nd edition, 2018.

o Csaba Szepesvari, Algorithms for Reinforcement Learning, 2010.

o Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien Ernst,
Reinforcement Learning and Dynamic Programming Using Function
Approximators, 2010.

o Dimitri P. Bertsekas and John N. Tsitsiklis, Neuro-Dynamic
Programming, 1996.

@ Courses:

e Video lectures by David Silver

o CIFAR and Vector Institute’s Reinforcement Learning Summer School,
2018.

o Deep Reinforcement Learning, CS 294-112 at UC Berkeley
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https://www.youtube.com/watch?v=2pWv7GOvuf0
https://dlrlsummerschool.ca/
https://dlrlsummerschool.ca/
http://rail.eecs.berkeley.edu/deeprlcourse/

