
CSC 2515 Lecture 9:
Expectation-Maximization

Roger Grosse

University of Toronto

UofT CSC 2515: 09-EM 1 / 50

Motivating Examples

Some examples of situations where you’d use unupservised learning

You want to understand how a scientific field has changed over time.
You take a large database of papers and model how the distribution of
topics changes from year to year. But what are the topics?
You’re a biologist studying animal behavior, so you want to infer a
high-level description of their behavior from video. You don’t know the
set of behaviors ahead of time.
You want to reduce your energy consumption, so you take a time series
of your energy consumption over time, and try to break it down into
separate components (refrigerator, washing machine, etc.).

Common theme: you have some data, and you want to infer the
causal structure underlying the data.

This structure is latent, which means it’s never observed.

UofT CSC 2515: 09-EM 2 / 50

Overview

In last lecture, we looked at density modeling where all the random
variables were fully observed.

The more interesting case is when some of the variables are latent, or
never observed. These are called latent variable models.

Today, we’ll see how to cluster data by fitting a latent variable model.
This will require a new algorithm called Expectation-Maximization
(E-M).

UofT CSC 2515: 09-EM 3 / 50

Recall: K-means

Initialization: randomly initialize cluster centers

The algorithm iteratively alternates between two steps:

Assignment step: Assign each data point to the closest cluster
Refitting step: Move each cluster center to the center of gravity of the
data assigned to it

Assignments Refitted
means

UofT CSC 2515: 09-EM 4 / 50

Recall: K-Means

K-means Objective:
Find cluster centers m and assignments r to minimize the sum of squared
distances of data points {x(i)} to their assigned cluster centers

min
{m},{r}

J({m}, {r}) = min
{m},{r}

N∑
i=1

K∑
k=1

r
(i)
k ‖mk − x(i)‖2

s.t.
∑
k

r
(i)
k = 1,∀i , where r

(i)
k ∈ {0, 1},∀k, i

where r
(i)
k = 1 means that x(i) is assigned to cluster k (with center mk)

The assignment and refitting steps were each doing coordinate
descent on this objective.

This means the objective improves in each iteration, so the algorithm
can’t diverge, get stuck in a cycle, etc.

UofT CSC 2515: 09-EM 5 / 50

Recall: K-Means

Initialization: Set K means {mk} to random values

Repeat until convergence (until assignments do not change):

Assignment:

k̂ i = arg min
k

d(mk , x
(i))

r
(i)
k = 1←→ k̂(i) = k

(hard assignments)

r
(i)
k =

exp[−βd(mk , x(i))]∑
j exp[−βd(mj , x(i))]

(soft assignments)

Refitting:

mk =

∑
i r

(i)
k x(i)∑
i r

(i)
k

UofT CSC 2515: 09-EM 6 / 50

A Generative View of Clustering

What if the data don’t look like spherical blobs?

elongated clusters
discrete data

This lecture: formulating clustering as a probabilistic model

specify assumptions about how the observations relate to latent
variables
use an algorithm called E-M to (approximtely) maximize the likelihood
of the observations

This lets us generalize clustering to non-spherical ceters or to non-Gaussian
observation models (as you do in Homework 4).

UofT CSC 2515: 09-EM 7 / 50

Generative Models Recap

Recall generative classifiers:

p(x, t) = p(x | t) p(t)

We fit p(t) and p(x | t) using labeled data.

If t is never observed, we call it a latent variable, or hidden variable,
and generally denote it with z instead.

The things we can observe (i.e. x) are called observables.

By marginalizing out z , we get a density over the observables:

p(x) =
∑
z

p(x, z) =
∑
z

p(x | z) p(z)

This is called a latent variable model.

If p(z) is a categorial distribution, this is a mixture model, and
different values of z correspond to different components.

UofT CSC 2515: 09-EM 8 / 50

Gaussian Mixture Model (GMM)

Most common mixture model: Gaussian mixture model (GMM)

A GMM represents a distribution as

p(x) =
K∑

k=1

πk N (x |µk ,Σk)

with πk the mixing coefficients, where:

K∑
k=1

πk = 1 and πk ≥ 0 ∀k

This defines a density over x, so we can fit the parameters using maximum
likelihood. We’re try to match the data density of x as closely as possible.

This is a hard optimization problem (and the focus of this lecture).

GMMs are universal approximators of densities (if you have enough
components). Even diagonal GMMs are universal approximators.

UofT CSC 2515: 09-EM 9 / 50

Gaussian Mixture Model (GMM)

Can also write the model as a generative process:

For i = 1, . . . ,N:

z(i) ∼ Categorical(π)

x(i) | z(i) ∼ N (µz(i) ,Σz(i))

UofT CSC 2515: 09-EM 10 / 50

Visualizing a Mixture of Gaussians – 1D Gaussians

If you fit a Gaussian to data:

Now, we are trying to fit a GMM (with K = 2 in this example):

[Slide credit: K. Kutulakos]

UofT CSC 2515: 09-EM 11 / 50

Visualizing a Mixture of Gaussians – 2D Gaussians

UofT CSC 2515: 09-EM 12 / 50

Fitting GMMs: Maximum Likelihood

Some shorthand notation: let θ = {πk ,µk ,Σk} denote the full set of model
parameters. Let X = {x(i)} and Z = {z (i)}.

Maximum likelihood objective:

log p(X;θ) =
N∑
i=1

log

(
K∑

k=1

πk N (x(i);µk ,Σk)

)

In general, no closed-form solution

Not identifiable: solution is invariant to permutations

Challenges in optimizing this using gradient descent?

Non-convex (due to permutation symmetry, just like neural nets)
Need to enforce non-negativity constraint on πk and PSD constraint on
Σk

Derivatives w.r.t. Σk are expensive/complicated.

We need a different approach!

UofT CSC 2515: 09-EM 13 / 50

Fitting GMMs: Maximum Likelihood

Warning: you don’t want the global maximum. You can achieve
arbitrarily high training likelihood by placing a small-variance
Gaussian component on a training example.

This is known as a singularity.

UofT CSC 2515: 09-EM 14 / 50

Latent Variable Models: Inference

If we knew the parameters θ = {πk ,µk ,Σk}, we could infer which
component a data point x(i) probably belongs to by inferring its
latent variable z(i).

This is just posterior inference, which we do using Bayes’ Rule:

Pr(z(i) = k | x(i)) =
Pr(z = k) p(x | z = k)∑
` Pr(z = `) p(x | z = `)

Just like Näıve Bayes, GDA, etc. at test time.

UofT CSC 2515: 09-EM 15 / 50

Latent Variable Models: Learning

If we somehow knew the latent variables for every data point, we
could simply maximize the joint log-likelihood.

log p(X,Z;θ) =
N∑
i=1

log p(x(i), z (i);θ)

=
N∑
i=1

log p(z (i)) + log p(x(i) | z (i)).

This is just like GDA at training time. Our formulas from last week,
written in a suggestive notation:

πk =
1

N

N∑
i=1

r
(i)
k

µk =

∑N
i=1 r

(i)
k · x

(i)∑N
i=1 r

(i)
k

Σk =
1∑N

i=1 r
(i)
k

N∑
i=1

r
(i)
k (x(i) − µk)(x

(i) − µk)
>

r
(i)
k = 1[z (i) = k]

UofT CSC 2515: 09-EM 16 / 50

Back to GMM

But we don’t know the z (i), so we need to marginalize them out. Now the
log-likelihood is more awkward.

log p(X;θ) =
N∑
i=1

log p(x(i) |θ)

=
N∑
i=1

log
K∑

z(i)=1

p(x(i) | z (i); {µk}, {Σk}) p(z (i) |π)

Problem: the log is outside the sum, so things don’t simplify.

We have a chicken-and-egg problem, just like with K-Means!

Given θ, inferring the z (i) is easy.
Given the z (i), learning θ (with maximum likelihood) is easy.
Doing both simultaneously is hard.

UofT CSC 2515: 09-EM 17 / 50

GMM: Maximum Likelihood

Here are the maximum likelihood equations for (x, z) jointly again:

πk =
1

N

N∑
i=1

r
(i)
k

µk =

∑N
i=1 r

(i)
k · x

(i)∑N
i=1 r

(i)
k

Σk =
1∑N

i=1 r
(i)
k

N∑
i=1

r
(i)
k (x(i) − µk)(x(i) − µk)>

r
(i)
k = 1[z(i) = k]

Can you guess the algorithm?

UofT CSC 2515: 09-EM 18 / 50

Intuitively, How Can We Fit a Mixture of Gaussians?

Optimization uses the Expectation-Maximization algorithm, which alternates
between two steps:

1 Expectation step (E-step): Compute the posterior probability over z
given our current model - i.e. how much do we think each Gaussian
generates each datapoint.

2 Maximization step (M-step): Assuming that the data really was
generated this way, change the parameters of each Gaussian to
maximize the probability that it would generate the data it is currently
responsible for.

.95

.5

.5

.05

.5
.5

.95
.05

UofT CSC 2515: 09-EM 19 / 50

Expectation Maximization for GMM Overview

1 E-step:

Assign the responsibility r
(i)
k of component k for data point i using the

posterior probability:

r
(i)
k = Pr(z (i) = k | x(i);θ)

2 M-step:

Apply the maximum likelihood updates, where each component is fit
with a weighted dataset. The weights are proportional to the
responsibilities.

πk =
1

N

N∑
i=1

r
(i)
k

µk =

∑N
i=1 r

(i)
k · x

(i)∑N
i=1 r

(i)
k

Σk =
1∑N

i=1 r
(i)
k

N∑
i=1

r
(i)
k (x(i) − µk)(x

(i) − µk)
>

So why does this work?
UofT CSC 2515: 09-EM 20 / 50

Jensen’s Inequality

Recall: if a function f is convex, then

f

(∑
i

λixi

)
≤
∑
i

λi f (xi),

where {λi} are such that each λi ≥ 0 and∑
i λi = 1.

If we treat the λi as the parameters of a
categorical distribution, λi = Pr(X = xi),
this can be rewritten as:

f (E[X]) ≤ E[f (X)].

This is known as Jensen’s Inequality. It

holds for continuous distributions as well.

UofT CSC 2515: 09-EM 21 / 50

Jensen’s Inequality

A function f (x) is concave if −f (x) is convex. In this case, we flip
Jensen’s Inequality:

f (E[X]) ≥ E[f (X)].

When would you expect the inequality to be tight?

UofT CSC 2515: 09-EM 22 / 50

Where does EM come from?

Recall: the log-likelihood function is awkward because it has a summation
inside the log:

log p(X;θ) =
∑
i

log(p(x(i);θ)) =
∑
i

log

(∑
z(i)

p(x(i), z (i);θ)

)

Introduce a new distribution q(z (i)) (we’ll see what this is shortly):

log p(X;θ) =
∑
i

log

(∑
z(i)

q(z (i))
p(x(i), z (i);θ)

q(z (i))

)

=
∑
i

logEq(z(i))

[
p(x(i), z (i);θ)

q(z (i))

]
Notice that log is a concave function. So we can use Jensen’s Inequality to
push the log inwards, obtaining the variational lower bound:

log p(X;θ) ≥
∑
i

Eq(z(i))

[
log

p(x(i), z (i);θ)

q(z (i))

]
, L(q,θ)

UofT CSC 2515: 09-EM 23 / 50

Where does EM come from?

Just derived a lower bound on the log-likelihood:

log p(X;θ) ≥
∑
i

Eq(z(i))

[
log

p(x(i), z (i);θ)

q(z (i))

]
, L(q,θ)

Simplifying the right-hand-side:

L(q,θ) =
∑
i

Eq(z(i))[log p(x(i), z (i);θ)]− Eq(z(i))[log q(z (i))]︸ ︷︷ ︸
constant w.r.t. θ

The expected log-probability will turn out to be nice.

UofT CSC 2515: 09-EM 24 / 50

Where does EM come from?

Everything so far holds for any choice of q. But what should we
actually pick?

Jensen’s inequality gives a lower bound on the log-likelihood, so the
best we can achieve is to make the bound tight (i.e. equality).

Denote the current parameters as θold.

It turns out the posterior probability p(z(i) | x(i);θold) is a very good
choice for q. Plugging it in to the lower bound:∑

i

Eq(z(i))

[
log

p(x(i), z (i);θold)

q(z (i))

]
=
∑
i

Eq(z(i))

[
log

p(x(i), z (i);θold)

p(z (i) | x(i);θold)

]
=
∑
i

Eq(z(i))

[
log p(x(i);θold)

]
=
∑
i

log p(x(i);θold)

= log p(X;θold)

Equality achieved!

UofT CSC 2515: 09-EM 25 / 50

Where does EM come from?

An aside:

How could you pick
q(z(i)) = p(z(i) | x(i);θold) if you didn’t
already know the answer?

Observe: if f is strictly concave, then
Jensen’s inequality becomes an equality
exactly when the random variable X is
determinisic.

Hence, to solve

logEq(z(i))

[
p(x(i), z(i);θ)

q(z(i))

]
= Eq(z(i))

[
log

p(x(i), z(i);θ)

q(z(i))

]
,

we should set q(z(i)) ∝ p(x(i), z(i);θ).

UofT CSC 2515: 09-EM 26 / 50

Where does EM come from?

E-step: compute the responsibilities using Bayes’ Rule:

r
(i)
k , q(z(i) = k) = Pr(z(i) = k | x(i);θold)

Rewriting the variational lower bound in terms of the responsibilities:

L(q,θ) =
∑
i

∑
k

r
(i)
k logPr(z (i) = k;π)

+
∑
i

∑
k

r
(i)
k log p(x(i) | z (i) = k; {µk}, {Σk})

+ const

M-step: maximize L(q,θ) with respect to θ, giving θnew. This can
be done analytically, and gives the parameter updates we saw
previously.

The two steps are guaranteed to improve the log-likelihood:

log p(X;θnew) ≥ L(q,θnew) ≥ L(q,θold) = log p(X;θold).

UofT CSC 2515: 09-EM 27 / 50

EM: Recap

Recap of EM derivation:

We’re trying to maximize the log-likelihood log p(X;θ).

The exact log-likelihood is awkward, but we can use Jensen’s
Inequality to lower bound it with a nicer function L(q,θ), the
variatonal lower bound, which depends on a choice of q.

The E-step chooses q to make the bound tight at the current
parameters θold. Mechanistically, this means computing the

responsibilities r
(i)
k = Pr(z(i) = k | x(i);θold).

The M-step maximizes L(q,θ) with respect to θ, giving θnew. For
GMMs, this can be done analytically.

The combination of the E-step and M-step is guaranteed to improve
the true log-likelihood.

UofT CSC 2515: 09-EM 28 / 50

Visualization of the EM Algorithm

The EM algorithm involves alternately computing a lower bound on the log
likelihood for the current parameter values and then maximizing this bound
to obtain the new parameter values.

UofT CSC 2515: 09-EM 29 / 50

GMM E-Step: Responsibilities

Lets see how it works on GMM:

Conditional probability (using Bayes’ rule) of z given x

rk = Pr(z = k | x) =
Pr(z = k) p(x | z = k)

p(x)

=
p(z = k) p(x | z = k)∑K
j=1 p(z = j) p(x | z = j)

=
πk N (x |µk ,Σk)∑K
j=1 πj N (x |µj ,Σj)

UofT CSC 2515: 09-EM 30 / 50

GMM E-Step

Once we computed r
(i)
k = Pr(z (i) = k | x(i)) we can compute the expected

likelihood

Ep(z(i) | x(i))

[∑
i

log(p(x(i), z (i) |θ))

]
=

∑
i

∑
k

r
(i)
k

(
log(Pr(z (i) = k |θ)) + log(p(x(i) | z (i) = k,θ))

)
=

∑
i

∑
k

r
(i)
k

(
log(πk) + log(N (x(i);µk ,Σk))

)
=

∑
k

∑
i

r
(i)
k log(πk) +

∑
k

∑
i

r
(i)
k log(N (x(i);µk ,Σk))

We need to fit k Gaussians, just need to weight examples by rk

UofT CSC 2515: 09-EM 31 / 50

GMM M-Step

Need to optimize∑
k

∑
i

r
(i)
k log(πk) +

∑
k

∑
i

r
(i)
k log(N (x(i);µk ,Σk))

Solving for µk and Σk is like fitting k separate Gaussians but with weights

r
(i)
k .

Solution is similar to what we have already seen:

µk =
1

Nk

N∑
i=1

r
(i)
k x(i)

Σk =
1

Nk

N∑
i=1

r
(i)
k (x(i) − µk)(x(i) − µk)T

πk =
Nk

N
with Nk =

N∑
i=1

r
(N)
k

UofT CSC 2515: 09-EM 32 / 50

EM Algorithm for GMM
Initialize the means µk , covariances Σk and mixing coefficients πk

Iterate until convergence:

E-step: Evaluate the responsibilities given current parameters

r
(i)
k = p(z (i) | x(i)) =

πkN (x(i) |µk ,Σk)∑K
j=1 πjN (x(i) |µj ,Σj)

M-step: Re-estimate the parameters given current responsibilities

µk =
1

Nk

N∑
i=1

r
(i)
k x(i)

Σk =
1

Nk

N∑
i=1

r
(i)
k (x(i) − µk)(x

(i) − µk)
>

πk =
Nk

N
with Nk =

N∑
i=1

r
(i)
k

Evaluate log likelihood and check for convergence

log p(X |π,µ,Σ) =
N∑
i=1

log

(
K∑

k=1

πkN (x(i) |µk ,Σk)

)
UofT CSC 2515: 09-EM 33 / 50

UofT CSC 2515: 09-EM 34 / 50

Mixture of Gaussians vs. K-means

EM for mixtures of Gaussians is just like a soft version of K-means, with
fixed priors and covariance

Instead of hard assignments in the E-step, we do soft assignments based on
the softmax of the squared Mahalanobis distance from each point to each
cluster.

Each center moved by weighted means of the data, with weights given by
soft assignments

In K-means, weights are 0 or 1

UofT CSC 2515: 09-EM 35 / 50

EM alternative approach (optional)

Our goal is to maximize

p(X |θ) =
∑

z

p(X,Z |θ)

Typically optimizing p(X |θ) is difficult, but p(X,Z |θ) is easy

Let q(Z) be a distribution over the latent variables. For any distribution
q(Z) we have

log p(X |θ) = L(q,θ) + DKL(q ‖ p(Z |X,θ))

where

L(q,θ) =
∑

Z

q(Z) log

{
p(X,Z |θ)

q(Z)

}
DKL(q ‖ p(Z |X,θ)) = −

∑
Z

q(Z) log

{
p(Z |X,θ)

q(Z)

}

UofT CSC 2515: 09-EM 36 / 50

EM alternative approach (optional)

The KL-divergence is always nonnegative and has value 0 only if
q(Z) = p(Z |X,θ)

Thus L(q,θ) is a lower bound on the likelihood

L(q,θ) ≤ log p(X |θ)

UofT CSC 2515: 09-EM 37 / 50

Visualization of E-step (optional)

The q distribution equal to the posterior distribution for the current
parameter values θold , causing the lower bound to move up to the same
value as the log likelihood function, with the KL divergence vanishing.

UofT CSC 2515: 09-EM 38 / 50

Visualization of M-step (optional)

The distribution q(Z) is held fixed and the lower bound L(q,θ) is maximized
with respect to the parameter vector θ to give a revised value θnew . Because
the KL divergence is nonnegative, this causes the log likelihood log p(X |θ)
to increase by at least as much as the lower bound does.

Hence, EM is basically a coordinate ascent procedure on a particular
objective function, analogously to K-Means!

UofT CSC 2515: 09-EM 39 / 50

GMM Recap

A probabilistic view of clustering - Each cluster corresponds to a
different Gaussian.

Model using latent variables.

General approach, can replace Gaussian with other distributions
(continuous or discrete)

More generally, mixture model are very powerful models, universal
approximator

Optimization is done using the EM algorithm.

UofT CSC 2515: 09-EM 40 / 50

Hidden Markov Models (optional)

The general EM framework probably seems very overpowered if all
you want to do is clustering. But it’s much more general.

I’d like to very quickly give a more interesting example of the EM
algorithm, namely the Baum-Welch algorithm for learning hidden
Markov models.

We don’t have nearly enough time to cover this properly. So the rest
of this lecture is optional as far as exams are concerned. I just want
to give you a taste.

This is covered in detail in CSC2506.

UofT CSC 2515: 09-EM 41 / 50

Hidden Markov Models (optional)

Suppose we want a distribution over sequences of states
x1:T = (x1, . . . , xT). By the Chain Rule of Probability, this
distribution factorizes as:

p(x1:T) = p(x1) p(x2 | x1) p(x3 | x1, x2) · · · p(xT | x1, . . . , xT−1).

The Markov property is the assumption that the sequence is
memoryless, in the sense that each state depends only on the previous
state.

More formally, for each time t, xt is conditionally independent of
xt , . . . , xt−2 given xt−1.
This corresponds to a factorization of the joint distribution as:

p(x1:T) = p(x1) p(x2 | x1) p(x3 | x2) · · · p(xT | xT−1).

Markov assumptions are very common, and we’ll use one next week
for reinforcement learning (stay tuned...)

UofT CSC 2515: 09-EM 42 / 50

Hidden Markov Models (optional)

Now suppose we don’t get to observe the states directly. Instead, we
get observations that tell us information about the states.

Now the states are latent (or hidden) variables, so we’ll denote them
z1, . . . , zT , and denote the observations x1, . . . , xT .
A hidden Markov model (HMM) makes the following assumptions:

The latent states are discrete
The latent states are Markov, i.e.

p(z1:T) = p(z1) p(z2 | z1) p(z3 | z2) · · · p(zT | zT−1).

Each observation xt depends only on the current state zt . More
precisely, each xt is conditionally independent of all the other variables
in the network given zt .

This corresponds to a factorization of the joint distribution:

p(z1:T , x1:T) = p(z1)
T∏
t=2

p(zt | zt−1)
T∏
t=1

p(xt | zt).

UofT CSC 2515: 09-EM 43 / 50

Hidden Markov Models (optional)

Representation of an HMM as a probabilistic graphical model:

Some examples of HMMs:

In speech recognition, the state zt can correspond to the phoneme
being spoken, and the state xt to a set of acoustic features. This is
how speech recognition was done before deep learning took over in
2010 or so.
In part-of-speech tagging, zt corresponds to the part of speech, and xt
to the English word that’s generated.

If we don’t have any labels for the states (or even know what the
categories should be), how can we learn this automatically from data?

UofT CSC 2515: 09-EM 44 / 50

Hidden Markov Models (optional)

The HMM is another example of a latent variable model, and we can
(approximately) maximize the likelihood as a special case of the more
general EM framework we’ve developed.

The difference is that the latent variables are more structured, and
therefore the E- and M-steps are also more structured.

Recall that we need to derive:

E-step: Compute the posterior distribution q(z1:T) = p(z1:T | x1:T).
(But what does it mean to “compute” it?)
M-step: Maximize the expected log-likelihood∑

i Eq(z
(i)
1:T)

[log p(z
(i)
1:T , x

(i)
1:T)].

Applying the EM algorithm to HMMs is the Baum-Welch Algorithm
(and actually predated the general EM framework!).

UofT CSC 2515: 09-EM 45 / 50

HMM: M-step (optional)

For simplicity, assume all the xt and zt are binary, so we’re trying to
learn the parameters of Bernoulli distributions:

Pr(z1 = 1) = φinit

Pr(zt = 1 | zt−1 = a) = φa

Pr(xt = 1 | zt = a) = θa.

Joint log-probability of x1:T and z1:T :

log p(z1:T , x1:T) = log p(z1)︸ ︷︷ ︸
only φinit

+
T∑
t=2

log p(zt | zt−1)︸ ︷︷ ︸
only φa

+
T∑
t=1

log p(xt | zt)︸ ︷︷ ︸
only θa

All three groups of parameters can be treated similarly, so let’s focus
on just the transition probabilities {φa}.

UofT CSC 2515: 09-EM 46 / 50

HMM: M-step (optional)

For estimating the {φa},

log p(X,Z) =
N∑
i=1

log p(z
(i)
1:T , x

(i)
1:T)

=
N∑
i=1

T∑
t=2

log p(z
(i)
t | z

(i)
t−1) + const

=
N∑
i=1

T∑
t=2

z
(i)
t z

(i)
t−1 log φ1 +

N∑
i=1

T∑
t=2

(1− z
(i)
t)z

(i)
t−1 log(1− φ1)

+
N∑
i=1

T∑
t=2

z
(i)
t (1− z

(i)
t−1) log φ0 +

N∑
i=1

T∑
t=2

(1− z
(i)
t)(1− z

(i)
t−1) log(1− φ0)

Hence, the expected log-likelihood is given by:

Eq(Z)[log p(X,Z)] =
N∑
i=1

T∑
t=2

E[z(i)t z
(i)
t−1] log φ1 +

N∑
i=1

T∑
t=2

E[(1− z
(i)
t)z

(i)
t−1] log(1− φ1)

+
N∑
i=1

T∑
t=2

E[z(i)t (1− z
(i)
t−1)] log φ0 +

N∑
i=1

T∑
t=2

E[(1− z
(i)
t)(1− z

(i)
t−1)] log(1− φ0)

+ const
UofT CSC 2515: 09-EM 47 / 50

HMM: M-step (optional)

Just showed:

Eq(Z)[log p(X,Z)] =
N∑
i=1

T∑
t=2

E[z(i)t z
(i)
t−1] log φ1 +

N∑
i=1

T∑
t=2

E[(1− z
(i)
t)z

(i)
t−1] log(1− φ1)

+
N∑
i=1

T∑
t=2

E[z(i)t (1− z
(i)
t−1)] log φ0 +

N∑
i=1

T∑
t=2

E[(1− z
(i)
t)(1− z

(i)
t−1)] log(1− φ0)

+ const

Setting the partial derivatives to zero, we get the M-step update:

φ1 =

∑
i

∑
t Eq[z

(i)
t z

(i)
t−1]∑

i

∑
t Eq[z

(i)
t−1]

φ0 =

∑
i

∑
t Eq[z

(i)
t (1− z

(i)
t−1)]∑

i

∑
t Eq[1− z

(i)
t−1]

The M-step updates for the other parameters are analogous.

UofT CSC 2515: 09-EM 48 / 50

HMM: E-step (optional)

That was the M-step. How about the E-step?

In principle, we need to “find” a distribution q(z1:T). But representing
this distribution explicitly requires a table with 2T entries!

But notice: in the M-step, the only thing we needed from q was the
expectations Eq[ztzt−1], etc. Hence, we only need to determine the
marginal distributions q(zt−1, zt) over pairs of states.

There is a clever dynamic programming algorithm called the
forward-backward algorithm which computes all these marginals in
linear time. You can read about it in Bishop, and you’ll learn about it
(and a much broader class of related algorithms) in CSC2506.

This is a good example where deriving the M-step tells us exactly
what work we need to do in the E-step. Often, we can compute the
necessary statistics using algorithms that exploit lots of problem
structure.

UofT CSC 2515: 09-EM 49 / 50

EM Recap

A general algorithm for optimizing many latent variable models.

Iteratively computes a lower bound then optimizes it.

Converges but maybe to a local minima.

Can use multiple restarts.

Can initialize from k-means

Limitation - need to be able to compute p(z | x;θ), not possible for
more complicated models.

Solution: Variational inference (see CSC2506)

UofT CSC 2515: 09-EM 50 / 50

