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Overview

o Today: first examples of unsupervised learning algorithms.

@ Two canonical kinds of unsupervised learning:

e Dimensionality reduction: map high-dimensional inputs to a
lower-dimensional space that summarizes the important factors of
variation.

@ Principal Component Analysis (PCA): mapping is a linear projection
@ Deep autoencoders: mapping is nonlinear
o Clustering: group the data points into discrete clusters

o K-means (today): choose a set of cluster centers that minimize the
Euclidean distance to the data points

e Mixture of Gaussians (in 2 weeks): learn a more flexible set of clusters
that fit the data distribution well

o We'll end by introducing maximum likelihood, a foundational idea in
probabilistic modeling.
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Dimensionality Reduction

@ Images are intrinsically low-dimensional. Consider MNIST.
@ Input space: 28 x 28 = 784 pixel values

@ A lower dimensional representation: describe the strokes using 20 or
so control points, plus a few more parameters for thickness, etc.

Image credit: Nair and Hinton (2006)

@ Can we learn low-dimensional representations directly from the data?

CSC2515 Lec7 3/54




Dimensionality Reduction

3 encoder decoder 3
—_— —_—
input image . reconstruction
P 9 code / representation

@ In dimensionality reduction, we try to learn a mapping to a lower
dimensional space that preserves as much information as possible

about the input.

e Motivations
e Save computation/memory
o Reduce overfitting
e Visualize in 2 dimensions
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Dimensionality Reduction

Can be linear or nonlinear:

. .
. .
.
.
linear nonlinear
original data dimensionality dimensionality
reduction reduction

@ Linear dimensionality reduction

methods (e.g. PCA) are much simpler,
. value of
and easier to get to work. one pixel

@ But many kinds of transformations ; ;
b h | | o horizontal translation
enhave nonlinearly In Image space
y I fnage 5 l;l

(e.g. translation of an image).
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Projection onto a Subspace

“,\ . )"c:Uz-'E,u,:zlu1+22uQ+u

z=UT(x— p)

@ Here, the columns of U form an orthonormal basis for a subspace S.

@ The projection of a point x onto § is the point X € S closest to x. In
machine learning, X is also called the reconstruction of x.

@ z is its representation, or code.
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Projection onto a Subspace

@ If we have a K-dimensional subspace in a
D-dimensional input space, then x € RP and

z ¢ RX.

@ If the data points x all lie close to the k\' o
subspace, then we can approximate distances, \
dot products, etc. in terms of these same uz\/. o
operations on the code vectors z. pr //’j

e

o If K < D, then it's much cheaper to work v
with z than x.
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Learning a Subspace

@ Which of the following subspaces is a better representation of the
dataset?

@ On average, the data points are closer to S, than to Sj.

@ The projections onto &> are more spread out than the projections
onto Si.
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Learning a Subspace

@ How to choose a good subspace S§7
o Need to choose a vector 1 and a D x K matrix U with orthonormal
columns.
@ Set p to the mean of the data, p = 4; SN x0)
@ Two criteria:
e Minimize the reconstruction error

L
min D Ix — %02
i=1
o Maximize the variance of the code vectors
1 i _
maxy_Var(z) = 3 >3 (2" — 2)°
J J i
_ 1 0 _ 512
=5 2z
= % Z 129 Exercise: show z =10

o Note: here, Z denotes the mean, not a derivative.
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Learning a Subspace

@ These two criteria are equivalent! l.e., we'll show
1M . 1 .
7 2 XD = D)2 = const — = 3 [0
i=1 i

@ Observation: by unitarity,
I1X0 — | = Uz = 1|27

@ By the Pythagorean Theorem,

1 1
~(i 2 i ()12
¥ 1K = a3 IO - &)
i=1 i=1
projected variance reconstruction error
1 N
. i 2
<@ ST Ll
i=1

constant
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Principal Component Analysis

Choosing a subspace to maximize the projected variance, or minimize the
reconstruction error, is called principal component analysis (PCA).

Recall:

@ Spectral Decomposition: a symmetric matrix A has a full set of
eigenvectors, which can be chosen to be orthogonal. This gives a
decomposition

A=QAQ',

where Q is orthogonal and A is diagonal. The columns of Q are
eigenvectors, and the diagonal entries \; of A are the corresponding
eigenvalues.

@ |l.e., symmetric matrices are diagonal in some basis.

@ A symmetric matrix A is positive semidefinite iff each A\; > 0.

CSC2515 Lec7 11/54



Principal Component Analysis

@ Consider the empirical covariance matrix:

@ Recall: Covariance matrices are symmetric and positive semidefinite.
@ The optimal PCA subspace is spanned

by the top K eigenvectors of X. -
o More precisely, choose the first K of w < xS
any orthonormal eigenbasis for X. LSk
o The general case is tricky, but we'll o XX

X;
X
X

show this for K = 1. S

@ These eigenvectors are called principal
components, analogous to the principal
axes of an ellipse.

Xy
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Deriving PCA

@ For K =1, we are fitting a unit vector u, and the code is a scalar

z=u'(x—p).

¥ R = 5 YT - )

=u'Xu
=u'QAQ u Spectral Decomposition
—a'Aa fora=Q'u
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Deriving PCA

o Maximize a'Aa =37, \;ja? fora=Q'u.
e This is a change-of-basis to the eigenbasis of X.

@ Assume the )A; are in sorted order. For simplicity, assume they are all

distinct.
@ Observation: since u is a unit vector, then by unitarity, a is also a unit
vector. l.e., J-af =1.

@ By inspection, set a; = &1 and a; = 0 for j # 1.
@ Hence, u = Qa = £q; (the top eigenvector).

@ A similar argument shows that the kth principal component is the kth
eigenvector of X. If you're interested, look up the Courant-Fischer
Theorem.
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Decorrelation

@ Interesting fact: the dimensions of z are decorrelated. For now, let
Cov denote the empirical covariance.

Cov(z) = Cov(UT(x — u))
=U" Cov(x)U
=U'xU
=U'QAQ'U
= (I 0) A <(I)) by orthogonality
= top left K x K block of A

@ If the covariance matrix is diagonal, this means the features are
uncorrelated.

e This is why PCA was originally invented (in 1901!).
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Recap:
@ Dimensionality reduction aims to find a low-dimensional
representation of the data.
o PCA projects the data onto a subspace which maximizes the
projected variance, or equivalently, minimizes the reconstruction error.
@ The optimal subspace is given by the top eigenvectors of the
empirical covariance matrix.

o PCA gives a set of decorrelated features.

CSC2515 Lec7 16 /54



Applying PCA to faces: Learned basis

Principal components of face images ( “eigenfaces”)
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Applying PCA to digits

reconstructed with 2 bases reconstructed with 10 bases
reconstructed with 100 bases reconstructed with 506 bases

HEEEHB
2,
BEEBEa
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Autoencoders and Nonlinear Dimensionality Reduction
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Autoencoders

@ An autoencoder is a feed-forward neural net whose job it is to take an
input x and predict x.

@ To make this non-trivial, we need to add a bottleneck layer whose
dimension is much smaller than the input.

784 units

reconstruction

decoder

100 units

code vector 20 units

100 units
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Linear Autoencoders

Why autoencoders?
@ Map high-dimensional data to two dimensions for visualization

@ Learn abstract features in an unsupervised way so you can apply them
to a supervised task

e Unlabled data can be much more plentiful than labeled data
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Linear Autoencoders

@ The simplest kind of autoencoder has one
hidden layer, linear activations, and squared

error loss. X ‘ D units ‘
A
W decoder
~ ~112 2
L(x,%) = [[x —X||
VA K units
@ This network com x = WoWx, which i [}
.s etwo .co putes >Wix, ch is W, encoder
a linear function.
X ‘ D units ‘

e If K> D, we can choose W> and W such
that W,W; is the identity matrix. This isn't
very interesting.

@ But suppose K < D:

e W; maps x to a K-dimensional space, so it's doing dimensionality
reduction.
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Linear Autoencoders

@ Observe that the output of the autoencoder must lie in a
K-dimensional subspace spanned by the columns of W5.

@ We saw that the best possible K-dimensional subspace in terms of
reconstruction error is the PCA subspace.

@ The autoencoder can achieve this by setting W; = UT and W, = U.

@ Therefore, the optimal weights for a linear autoencoder are just the
principal components!

X ‘ D units ‘
A
u decoder
Z | Kunits
A
UT encoder
X ‘ D units ‘
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Nonlinear Autoencoders

@ Deep nonlinear autoencoders learn to project the data, not onto a
subspace, but onto a nonlinear manifold

@ This manifold is the image of the decoder.

@ This is a kind of nonlinear dimensionality reduction.

~F
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Nonlinear Autoencoders

@ Nonlinear autoencoders can learn more powerful codes for a given
dimensionality, compared with linear autoencoders (PCA)

real

D /&3 45 &7 8 Qe

30-D
PCA
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Nonlinear Autoencoders

Here's a 2-dimensional autoencoder representation of newsgroup articles.
They're color-coded by topic, but the algorithm wasn’t given the labels.

Interbank Markets Monetary/Economic
- Y - -
i L

Disasters and
Accidents

Leading Ecnomic
Indicators ;

Government

Accounts/ . Borrowings

Earnings
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Clustering and K-Means
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Clustering

@ Sometimes the data form clusters, where examples within a cluster are
similar to each other, and examples in different clusters are dissimilar:

@ Such a distribution is multimodal, since it has multiple modes, or
regions of high probability mass.
@ Grouping data points into clusters, with no labels, is called clustering

e E.g. clustering machine learning papers based on topic (deep learning,
Bayesian models, etc.)

o This is an overly simplistic model — more on that later
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Clustering

@ Assume the data {x),... x(M} lives in a Euclidean space, x(") € R
@ Assume the data belongs to K classes (patterns)

@ Assume the data points from same class are similar, i.e. close in Euclidean
distance.

@ How can we identify those classes (data points that belong to each class)?
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K-means intuition

@ K-means assumes there are k clusters, and each point is close to its cluster
center (the mean of points in the cluster).

@ If we knew the cluster assignment we could easily compute means.
@ If we knew the means we could easily compute cluster assignment.
@ Chicken and egg problem!

@ Can show it is NP hard.

@ Very simple (and useful) heuristic - start randomly and alternate between
the twol!

CSC2515 Lec7 30/54



K-means

@ Initialization: randomly initialize cluster centers

@ The algorithm iteratively alternates between two steps:

o Assignment step: Assign each data point to the closest cluster
o Refitting step: Move each cluster center to the center of gravity of the
data assigned to it

o Assignments ° Refitted
. o . * means
/- >
./o °
o/o . °
N . == o. *0
\ . .
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Figure from Bishop
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Simple demo: http://syskall.com/kmeans. js/

=2 0 2



http://syskall.com/kmeans.js/

K-means Objective

What is actually being optimized?

(" K-means Objective: )
Find cluster centers m and assignments r to minimize the sum of squared
distances of data points {x(")} to their assigned cluster centers

min  J({m min re”|jm —x(M2
{}{}({}{} {}{};; )|y |l
sty " =1,Yn, where " €{0,1},Vk,n

k
(n)

\where r,” = 1 means that x(") is assigned to cluster k (with center my) )

@ Optimization method is a form of coordinate descent ("block coordinate
descent”)

o Fix centers, optimize assignments (choose cluster whose mean is
closest)
o Fix assignments, optimize means (average of assigned datapoints)
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The K-means Algorithm

@ Initialization: Set K cluster means my, ..., myk to random values
@ Repeat until convergence (until assignments do not change):

o Assignment: Each data point x(") assigned to nearest mean
k" = arg mkin d(my, x(M)

(with, for example, L2 norm: k" = arg min ||m, — x("||?)

and Responsibilities (1-hot encoding)
i =1 k) =k

o Refitting: Model parameters, means are adjusted to match sample
means of data points they are responsible for:

>on rk x(")
Zn rkn
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K-means for Vector Quantization

Original image

Figure from Bishop
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K-means for Image Segmentation

een,

] e
T
5

A CEC

-

g

@ How would you modify k-means to get superpixels?
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Why K-means Converges

@ Whenever an assignment is changed, the sum squared distances J of data
points from their assigned cluster centers is reduced.

@ Whenever a cluster center is moved, J is reduced.

@ Test for convergence: If the assignments do not change in the assignment
step, we have converged (to at least a local minimum).

1000

500

1 2 3 4

@ K-means cost function after each E step (blue) and M step (red). The
algorithm has converged after the third M step
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Local Minima

@ The objective J is non-convex (so
coordinate descent on J is not guaranteed

to converge to the global minimum)
A bad local optimum

@ There is nothing to prevent k-means
getting stuck at local minima.

@ We could try many random starting points o *Oe
i eQe
@ We could try non-local split-and-merge o

moves:

e Simultaneously merge two nearby
clusters
e and split a big cluster into two
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@ Instead of making hard assignments of data points to clusters, we can make
soft assignments. One cluster may have a responsibility of .7 for a datapoint
and another may have a responsibility of .3.

o Allows a cluster to use more information about the data in the refitting

step.
o What happens to our convergence guarantee?
e How do we decide on the soft assignments?

CSC2515 Lec7 39/54



Soft K-means Algorithm

@ Initialization: Set K means {my} to random values
® Repeat until convergence (until assignments do not change):

e Assignment: Each data point n given soft " degree of assignment” to
each cluster mean k, based on responsibilities

) _ exp[—Fd(my, x(”))]
Tk > exp[—pBd(m;, x(M)]

o Refitting: Model parameters, means, are adjusted to match sample
means of datapoints they are responsible for:

don rk x(")
Zn rkn

my =
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Probabilistic Models and Maximum Likelihood
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Maximum Likelihood

@ PCA and K-Means are procedures that capture particular types of
structure.

@ Recall: unifying picture of supervised learning in terms of models, loss
functions, and optimization algorithms
@ Probabilistic models play an analogous role for unsupervised learning
(and sometimes supervised learning as well).
e Treat the quantities of interest as random variables, and specify the
form of their probabilistic dependencies.
o Infer unknown quantities from the observations by performing
probabilistic inference.
@ Today: maximum likelihood, which is one tool we need for fitting
probabilistic models.
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Maximum Likelihood

@ Motivating example: estimating the parameter of a biased coin

e You flip a coin 100 times. It lands heads Ny = 55 times and tails
N+ = 45 times.
o What is the probability it will come up heads if we flip again?

@ Model: flips are independent Bernoulli random variables with
parameter 6.

e Assume the observations are independent and identically distributed

(i.i.d.)
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Maximum Likelihood

@ The likelihood function is the probability of the observed data, as a
function of 6.

In our case, it's the probability of a particular sequence of H's and T's.

Under the Bernoulli model with i.i.d. observations,

L(6) = p(D) = 6™(1 - )

This takes very small values (in this case,
L(0.5) = 0.5'90 ~ 7.9 x 1031)

@ Therefore, we usually work with log-likelihoods:
0(0) = log L(#) = Ny log 6 + Nt log(1 —0)

Here, £(0.5) = log 0.5% = 100log 0.5 = —69.31
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Maximum Likelihood

Ny =55, Ny =45

1.4 le=30 Likelihood Log-likelihood
—-60

1.2
-80

1.0
-100

08 -120

0.6 -140

0.4 _160

0.2 -180

°%3 0.2 0.4 0.6 0.8 1.0 29939 0.2 0.4 0.6 0.8 1.0

CSC

5 Lec7



Maximum Likelihood

@ Good values of 6 should assign high probability to the observed data.
This motivates the maximum likelihood criterion.

@ Remember how we found the optimal solution to linear regression by
setting derivatives to zero? We can do that again for the coin

example.
ds d
0= (Nylog 0 + Nt log(1 — 0))
_ Nu _ Nt
0 1-90

@ Setting this to zero gives the maximum likelihood estimate:

b, = 1M
ML = NH+NT7

CSC2515 Lec7 46 /54



Maximum Likelihood

@ This is equivalent to minimizing cross-entropy. Let t; = 1 for heads
and t; = 0 for tails.

Leg=—) tilogh— (1 —t;)log(1—0)

= —Nylog — Nt log(1l —0)
= —(6)
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Maximum Likelihood

@ Recall the Gaussian, or normal,

distribution:
. _ 1 C(x=p)?
N(X' Ky U) - \/%O' exp ( 20_2 o5

@ The Central Limit Theorem says
that sums of lots of independent
random variables are approximately
Gaussian. o1

@ In machine learning, we use =
Gaussians a lot because they make
the calculations easy.

T op---
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Maximum Likelihood

@ Suppose we want to model the distribution of temperatures in
Toronto in March, and we've recorded the following observations:

-25 -99 -121 -89 -60 -48 24

@ Assume they're drawn from a Gaussian distribution with known
standard deviation ¢ = 5, and we want to find the mean p.

(x(D — p)?
oo (5)

)
- (—( 202“)2)]

N .
() — p)?
= Z—f log 2w — Ioga—T

o Log-likelihood function:

M)Zlogﬁ[
S|

i=1 ~
constant!
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Maximum Likelihood

@ Maximize the log-likelihood by setting the derivative to zero:
N
ds 1 d,
= = (D )2
0 du 202 ; du (x 2
1 &
= ZX(I) —u
i=1

@ Solving we get [imr, = % Z,N:l x(7)
@ This is just the mean of the observed values, or the empirical mean.
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Maximum Likelihood

@ In general, we don't know the true standard deviation o, but we can
solve for it as well.
@ Set the partial derivatives to zero, just like in linear regression.

ou 0% =
ot 9 zN: ! log 2 lo ! (xt) )2
s _ 2 _z r—logo — —— —
do 0o |= 2 € € 202 K 1L
= AmvL = — ZX(')
N N 4
10 () 9 i=1
:Z—f—log%r——loga———(x )
—~ 200 o 1N '
GML =\ > (x) — fia)?
i=1
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Maximum Likelihood

@ Sometimes there is no closed-form solution. E.g., consider the gamma
distribution, whose PDF is

b® x@ 1 g—bx
(X) m leb7

where I is the gamma function, a generalization of the factorial
function to continuous values.

@ There is no closed-form solution, but we can still optimize the
log-likelihood using gradient ascent.

CSC2515 Lec7 52 /54



Maximum Likelihood

@ So far, maximum likelihood has told us to use empirical counts or

statistics:
Ny
Np+Nt

o Gaussian: fnr, = 5 > x\, 6% = & S (x() — fipg)?
@ This doesn't always happen; the class of probability distributions that
have this property is exponential families.

e Bernoulli: 6y, =
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Maximum Likelihood

We've been doing maximum likelihood estimation all along!

@ Squared error loss (e.g. linear regression)
p(tly) = N(tiy,o%)
1
—log p(t|y) = ﬁ(y — )2 + const
e Cross-entropy loss (e.g. logistic regression)
p(t=1ly) =y
—log p(tly) = —tlogy — (1 — t)log(1 — y)
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