CSC2515 Lecture 6:

Convolutional Networks

Roger Grosse

University of Toronto
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Wednesday, Oct. 30, from 4:10-5:40pm
Health Sciences building, room 610

Covers all lectures up through Lecture 6 (i.e. this one)

You're only responsible for things covered in lecture, but we might
ask harder questions about things you got to practice in homeworks
and tutorials.

Practice tests will be posted on the course web site.
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Neural Nets for Visual Object Recognition

@ People are very good at recognizing shapes

» Intrinsically difficult, computers are bad at it

@ Why is it difficult?
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Why is it a Problem?

@ Difficult scene conditions

A

V. g
object pose

[From: Grauman & Leibe]
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Why is it a Problem?

@ Huge within-class variations. Recognition is mainly about modeling variation.

[Pic from: S. Lazebnik]
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Neural Nets for Object Recognition

@ People are very good at recognizing object
» Intrinsically difficult, computers are bad at it
@ Some reasons why it is difficult:

» Segmentation: Real scenes are cluttered

» Invariances: We are very good at ignoring all sorts of variations that do
not affect class

» Deformations: Natural object classes allow variations (faces, letters,
chairs)

» A huge amount of computation is required
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How to Deal with Large Input Spaces

@ How can we apply neural nets to images?

@ Images can have millions of pixels, i.e., x is very high dimensional
@ How many parameters do | have?

@ Prohibitive to have fully-connected layers

@ What can we do?

@ We can use a locally connected layer
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Locally Connected Layer

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g., “
face recognition). Ranzatoll3
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When Will this Work?

When Will this Work?

@ This is good when the input is (roughly) registered
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General Images

@ The object can be anywhere

[Slide: Y. Zhu]
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General Images

@ The object can be anywhere

[Slide: Y. Zhu]
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General Images

@ The object can be anywhere

[Slide: Y. Zhu]
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The Invariance Problem

@ Our perceptual systems are very good at dealing with invariances

» translation, rotation, scaling
» deformation, contrast, lighting

@ We are so good at this that it's hard to appreciate how difficult it is

> It's one of the main difficulties in making computers perceive
» We still don't have generally accepted solutions
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Locally Connected Layer

STATIONARITY? Statistics is similar at
different locations

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g., .
face recognition). Ranzatoll3
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The replicated feature approach

@ Adopt approach apparently used in
monkey visual systems
The red connections all

have the same weight. @ Use many different copies of the same

feature detector.

O O » Copies have slightly different

positions.
» Could also replicate across scale and

\ O orientation.
| t\

l — > Tricky and expensive

—_—

» Replication reduces the number of
free parameters to be learned.

@ Use several different feature types, each
5 with its own replicated pool of detectors.

» Allows each patch of image to be
represented in several ways.

CSC2515 Lec6 16 / 65



Convolutional Neural Net

@ lIdea: statistics are similar at different locations (Lecun 1998)

@ Connect each hidden unit to a small input patch and share the weight across
space

@ This is called a convolution layer and the network is a convolutional network

Share the same parameters across
different locations (assuming input is
stationary):

Convolutions with learned kernels

36
Hanzaton
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Convolution

@ Convolution layers are named after the convolution operation.

o If a and b are two arrays,

(a * b)t = Z aTbt_T.
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Convolution

Method 1: translate-and-scale
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Convolution

Convolution can also be viewed as matrix multiplication:

2
-1

1
1
2 1
1 1
2

(2,-1,1) % (1,1,2) =

N ==

Aside: This is how convolution is typically implemented. (More efficient
than the fast Fourier transform (FFT) for modern conv nets on GPUs!)
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Convolution

Some properties of convolution:

o Commutativity
axb=>bxa

o Linearity
ax(ANb+ Axc)=Xaxb+ laxc
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2-D Convolution

2-D convolution is defined analogously to 1-D convolution.

If A and B are two 2-D arrays, then:

(A * B),J = ZzAstBi—s,j—t-
s t
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2-D Convolution

Method 1: Translate-and-Scale
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2-D Convolution

Method 2: Flip-and-Filter
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2-D Convolution

The thing we convolve by is called a kernel, or filter.

What does this filter do?

0/1]0
>l< 4
0|10
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2-D Convolution

What does this filter do?

0|-1]0
 [-1]8]-1
0|-1]0
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2-D Convolution

What does this filter do?

CSC2515 Lecb



2-D Convolution

What does this filter do?
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Convolutional Layer

E.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters

54
Ranzaton
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Convolutional Layer

32

32

>E§OOO(
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Figure: Left: CNN, right: Each neuron computes a linear and activation function

Hyperparameters of a convolutional layer:

@ The number of filters (controls the depth of the output volume)

@ The stride: how many units apart do we apply a filter spatially (this
controls the spatial size of the output volume)

@ The size w x h of the filters

[http://cs231n.github.io/convolutional-networks /]
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Pooling Layer

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location
of features.

61
Ranzaton
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Pooling Options

@ Max Pooling: return the maximal argument
@ Average Pooling: return the average of the arguments

@ Other types of pooling exist.
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224x224x64
112x112x64 Single depth slice
pool
R W1 111]2)4
max pool with 2x2 filters
SeE6N 7 | 8 and stride 2 6|8
} T 3 | 2 [ 3|4
J—— 11213 ]| 4
224 downsampling 112
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224 y

Figure: Left: Pooling, right: max pooling example

Hyperparameters of a pooling layer:

@ The spatial extent F

@ The stride

[http://cs231n.github.io/convolutional-networks/]
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Backpropagation with Weight Constraints

@ The backprop procedure from last lecture can be applied directly to conv
nets.

@ This is covered in csc2516.

@ As a user, you don't need to worry about the details, since they're handled
by automatic differentiation packages.
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MNIST Dataset

@ MNIST dataset of handwritten digits
» Categories: 10 digit classes
» Source: Scans of handwritten zip codes from envelopes
» Size: 60,000 training images and 10,000 test images, grayscale, of size
28 x 28
» Normalization: centered within in the image, scaled to a consistent
size
> The assumption is that the digit recognizer would be part of a larger
pipeline that segments and normalizes images.
@ In 1998, Yann LeCun and colleagues built a conv net called LeNet
which was able to classify digits with 98.9% test accuracy.
> It was good enough to be used in a system for automatically reading
numbers on checks.
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LeNet

Here's the LeNet architecture, which was applied to handwritten digit
recognition on MNIST in 1998:

C3: f. maps 16@10x10

C1: feature maps S4: {. maps 16@5x5

INPUT 6@28x28

32x32

| 1 | Full conﬁection Gaussian
Convolutions Subsampling Convolutions ~ Subsampling Full connection
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Size of a Conv Net

@ Ways to measure the size of a network:

» Number of units. This is important because the activations need to
be stored in memory during training (i.e. backprop).

» Number of weights. This is important because the weights need to
be stored in memory, and because the number of parameters
determines the amount of overfitting.

» Number of connections. This is important because there are
approximately 3 add-multiply operations per connection (1 for the
forward pass, 2 for the backward pass).

@ We saw that a fully connected layer with M input units and N output
units has MN connections and MN weights.

@ The story for conv nets is more complicated.
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Size of a Conv Net

I output maps I ‘

kernel dimension K

height H

.....

Jinputmaps T |

fully connected layer convolution layer

# output units WHI WHI
# weights W2H21J K21J
# connections W2H?1J WHK?1J
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Size of a Conv Net

Sizes of layers in LeNet:

Layer Type # units | # connections | # weights
C1 convolution 4704 117,600 150
S2 pooling 1176 4704 0
C3 convolution 1600 240,000 2400
S4 pooling 400 1600 0
F5 fully connected 120 48,000 48,000
F6 fully connected 84 10,080 10,080

output | fully connected 10 840 840

Conclusions?
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Size of a Conv Net

@ Rules of thumb:
» Most of the units and connections are in the convolution layers.
» Most of the weights are in the fully connected layers.
@ If you try to make layers larger, you'll run up against various resource
limitations (i.e. computation time, memory)
@ You'll repeat this exercise for AlexNet for homework.
» Conv nets have gotten a LOT larger since 1998!
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ImageNet

ImageNet is the modern object recognition benchmark dataset. It was

introduced in 2009, and has led to amazing progress in object recognition
since then.

ILSVRC

A

Egyptiancat  Persian cat Siamese cat tabby
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@ Used for the ImageNet Large Scale Visual Recognition Challenge (ILSVRC),
an annual benchmark competition for object recognition algorithms

@ Design decisions

» Categories: Taken from a lexical database called WordNet

> WordNet consists of “synsets”, or sets of synonymous words

> They tried to use as many of these as possible; almost 22,000 as of
2010

> Of these, they chose the 1000 most common for the ILSVRC
> The categories are really specific, e.g. hundreds of kinds of dogs
» Size: 1.2 million full-sized images for the ILSVRC
» Source: Results from image search engines, hand-labeled by
Mechanical Turkers

> Labeling such specific categories was challenging; annotators had to be
given the WordNet hierarchy, Wikipedia, etc.

» Normalization: none, although the contestants are free to do
preprocessing
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ImageNet

Images and object categories vary on
a lot of dimensions

Russakovsky et al.
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Size on disk:

MNIST ImageNet
60 MB 50 GB
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@ AlexNet, 2012. 8 weight layers. 16.4% top-5 error (i.e. the network gets 5 tries to

guess the right category).

192

58 204 2048 \dense

dense dense|

1000

Max 128 Max
pooling pooling

128 Max

pooling 204 2048

(Krizhevsky et al., 2012)

@ The two processing pathways correspond to 2 GPUs. (At the time, the network

couldn’t fit on one GPU.)

@ AlexNet's stunning performance on the ILSVRC is what set off the deep learning

boom of the last 6 years.

CSC2515 Lec6
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Inception, 2014. (“We need to
go deeper!")

22 weight layers

Fully convolutional (no fully
connected layers)

Convolutions are broken down
into a bunch of smaller
convolutions

6.6% test error on ImageNet

(Szegedy et al., 2014)
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@ They were really aggressive about cutting the number of parameters.
» Motivation: train the network on a large cluster, run it on a cell phone
> Memory at test time is the big constraint.
> Having lots of units is OK, since the activations only need to be stored
at training time (for backpropagation).
> Parameters need to be stored both at training and test time, so these
are the memory bottleneck.
» How they did it
> No fully connected layers (remember, these have most of the weights)
> Break down convolutions into multiple smaller convolutions (since this
requires fewer parameters total)
> Inception has “only” 2 million parameters, compared with 60 million
for AlexNet
» This turned out to improve generalization as well. (Overfitting can still
be a problem, even with over a million images!)

CSC2515 Lec6 48 /65



150 Layers!

@ Networks are now at 150 layers

They use a skip connections with special form

In fact, they don’t fit on this screen

Amazing performance!

A lot of “mistakes” are due to wrong ground-truth

weight layer
F(x) identity

X

weight layer

HX)=F@x) +x @

[He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv:1512.03385, 2016]
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Results: Object Classification

Revolution of Depth

\ 152 layers

22 Iayers 19 Iayers
\ 6.7
3.57 I_ il I 8 layers 8 layers shallow

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]




Results: Object Detection

. 101 layers
Revolution of Depth a
/86
Engines of Al
visual recognition = o6 J
34 d
- 16 layers
8 layers
| shallow | — -
-
HOG, DPM AlexNet VGG ResNet
(RCNN) (RCNN) (Faster RCNN)*

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]
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Results: Object Detection

person : 0.998 §

N

- R pe“rson :0.987

o9 )

dining table : 0.879 ca_kﬁL

.:' Al.n~hﬂ
book : 0.830) !-‘

e

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.

arXiv:1512.03385, 2016]
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Results: Object Detection

person : 0.989 ‘
e refrigerator : 0.979

!b'; ol

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
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Object Detection

person :0.910 —‘j person : 0.998

person 0.998 umbrella : 0.910

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]

CSC2515 Lec6b 54 /65



What Do Networks Learn?

@ Recall: we can understand what first-layer features are doing by
visualizing the weight matrices.

(MNIST)

Fully connected

@ Higher-level weight matrices are hard to interpret.
@ The better the input matches these weights, the more the feature
activates.

» Obvious generalization: visualize higher-level features by seeing what
inputs activate them.
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What Do Networks Learn?

@ One way to formalize: pick the images in the training set which
activate a unit most strongly.

@ Here's the visualization for layer 1:
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What Do Networks Learn?

o Layer 3:
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What Do Networks Learn?

o Layer 5:
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What Do Networks Learn?

@ Higher layers seem to pick up more abstract, high-level information.
@ Problems?

» Can't tell what the unit is actually responding to in the image.
» We may read too much into the results, e.g. a unit may detect red, and
the images that maximize its activation will all be stop signs.

@ Can use input gradients to diagnose what the unit is responding to.
» Optimize an image from scratch to increase a unit's activation
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Optimizing the Image

@ Recall the computation graph:

w w2
b b3

e From this graph, you could compute 9L/0x, but we never made use
of this.
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Optimizing the Image

@ Can do gradient ascent on an image to maximize the activation of a
given neuron.

@ Requires a few tricks to make this work; see
https://distill.pub/2017/feature-visualization/

Starting from random
noise, we optimize an
image to activate a
particular neuron (layer
mixed4a, unit 11).

Step 0 Step 4 Step 48 Step 2048



https://distill.pub/2017/feature-visualization/

Optimizing the Image

Dataset Examples show
us what neurons respond
toin practice

Optimization isolates
the causes of behavior
from mere correlations. A
neuron may not be
detecting what you
initially thought.

Baseball—or stripes? Animal faces—or snouts? Clouds—or fluffiness? Buildings—or sky?
mixedda, Unit 6 mixedda, Unit 240 mixedda, Unit 453 mixedda, Unit 492
CSC Lec6




Optimizing the Image

@ Higher layers in the network often learn higher-level, more
interpretable representations

3

Edges (layer conv2d0) Textures (layer mixed3a) Patterns (layer mixed4a)

https://distill.pub/2017/feature-visualization/
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Optimizing the Image

o Higher layers in the network often learn higher-level, more
interpretable representations

=l

Parts (layers mixed4b & mixed4c)

Objects (layers mixeddd & mixed4e)

https://distill.pub/2017/feature-visualization/
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