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Overview

So far, we’ve talked about procedures for learning.

KNN, decision trees, bagging

For the remainder of this course, we’ll take a more modular approach:

choose a model describing the relationships between variables of
interest
define a loss function quantifying how bad is the fit to the data
choose a regularizer saying how much we prefer different candidate
explanations
fit the model, e.g. using an optimization algorithm

By mixing and matching these modular components, your ML skills
become combinatorially more powerful!
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Problem Setup

Want to predict a scalar t as a function of a scalar x

Given a dataset of pairs {(x(i), t(i))}Ni=1

The x(i) are called inputs, and the t(i) are called targets.
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Problem Setup

Model: y is a linear function of x :

y = wx + b

y is the prediction

w is the weight

b is the bias

w and b together are the parameters

Settings of the parameters are called hypotheses
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Problem Setup

Loss function: squared error (says how bad the fit is)

L(y , t) = 1
2(y − t)2

y − t is the residual, and we want to make this small in magnitude

The 1
2 factor is just to make the calculations convenient.

Cost function: loss function averaged over all training examples

J (w , b) =
1

2N

N∑
i=1

(
y (i) − t(i)

)2
=

1

2N

N∑
i=1

(
wx (i) + b − t(i)

)2
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Problem Setup
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Problem setup

Suppose we have multiple inputs x1, . . . , xD . This is referred to as
multivariable regression.

This is no different than the single input case, just harder to visualize.

Linear model:
y =

∑
j

wjxj + b
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Vectorization

Computing the prediction using a for loop:

For-loops in Python are slow, so we vectorize algorithms by expressing
them in terms of vectors and matrices.

w = (w1, . . . ,wD)> x = (x1, . . . , xD)

y = w>x + b

This is simpler and much faster:
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Vectorization

Why vectorize?

The equations, and the code, will be simpler and more readable. Gets
rid of dummy variables/indices!

Vectorized code is much faster

Cut down on Python interpreter overhead
Use highly optimized linear algebra libraries
Matrix multiplication is very fast on a Graphics Processing Unit (GPU)
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Vectorization

We can take this a step further. Organize all the training examples
into the design matrix X with one row per training example, and all
the targets into the target vector t.

Computing the predictions for the whole dataset:

Xw + b1 =

w>x(1) + b
...

w>x(N) + b

 =

y (1)

...

y (N)

 = y
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Vectorization

Computing the squared error cost across the whole dataset:

y = Xw + b1

J =
1

2N
‖y − t‖2

In Python:
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Solving the optimization problem

We defined a cost function. This is what we’d like to minimize.

Recall from calculus class: minimum of a smooth function (if it exists)
occurs at a critical point, i.e. point where the derivative is zero.

Multivariate generalization: partial derivatives must be zero.

Finding a minimum by analytically setting the partial derivatives to
zero is called direct solution.
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Direct solution

Partial derivatives: derivatives of a multivariate function with respect
to one of its arguments.

∂

∂x1
f (x1, x2) = lim

h→0

f (x1 + h, x2)− f (x1, x2)

h

To compute, take the single variable derivatives, pretending the other
arguments are constant.
Example: partial derivatives of the prediction y

∂y

∂wj
=

∂

∂wj

∑
j′

wj′xj′ + b


= xj

∂y

∂b
=

∂

∂b

∑
j′

wj′xj′ + b


= 1
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Direct solution

Chain rule for derivatives:

∂L
∂wj

=
dL
dy

∂y

∂wj

=
d

dy

[
1

2
(y − t)2

]
· xj

= (y − t)xj

∂L
∂b

= y − t

Cost derivatives (average over data points):

∂J
∂wj

=
1

N

N∑
i=1

(y (i) − t(i)) x
(i)
j

∂J
∂b

=
1

N

N∑
i=1

y (i) − t(i)
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Direct solution

The minimum must occur at a point where the partial derivatives are
zero.

∂J
∂wj

= 0
∂J
∂b

= 0.

If ∂J /∂wj 6= 0, you could reduce the cost by changing wj .

This turns out to give a system of linear equations, which we can
solve efficiently. Full derivation in the readings.

Optimal weights:
w = (X>X)−1X>t

Linear regression is one of only a handful of models in this course that
permit direct solution.
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Gradient Descent

Now let’s see a second way to minimize the cost function which is
more broadly applicable: gradient descent.

Gradient descent is an iterative algorithm, which means we apply an
update repeatedly until some criterion is met.

We initialize the weights to something reasonable (e.g. all zeros) and
repeatedly adjust them in the direction of steepest descent.
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Gradient descent

Observe:

if ∂J /∂wj > 0, then slightly increasing wj increases J .
if ∂J /∂wj < 0, then slightly increasing wj decreases J .

The following update decreases the cost function, assuming small
enough α:

wj ← wj − α
∂J
∂wj

= wj −
α

N

N∑
i=1

(y (i) − t(i)) x
(i)
j

α is a learning rate. The larger it is, the faster w changes.

We’ll see later how to tune the learning rate, but values are typically
small, e.g. 0.01 or 0.0001
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Gradient descent

This gets its name from the gradient:

∂J
∂w

=


∂J
∂w1

...
∂J
∂wD


This is the direction of fastest increase in J .

Update rule in vector form:

w← w − α∂J
∂w

= w − α

N

N∑
i=1

(y (i) − t(i)) x(i)

Hence, gradient descent updates the weights in the direction of
fastest decrease.
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Gradient descent

Visualization:
http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_

regression.pdf#page=21
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Gradient descent

Why gradient descent, if we can find the optimum directly?

GD can be applied to a much broader set of models
GD can be easier to implement than direct solutions, especially with
automatic differentiation software
For regression in high-dimensional spaces, GD is more efficient than
direct solution (matrix inversion is an O(D3) algorithm).
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Feature mappings

Suppose we want to model the following data

x

t

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.

One option: fit a low-degree polynomial; this is known as polynomial
regression

y = w3x
3 + w2x

2 + w1x + w0

Do we need to derive a whole new algorithm?
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Feature mappings

We get polynomial regression for free!

Define the feature map

ψ(x) =


1
x
x2

x3


Polynomial regression model:

y = w>ψ(x)

All of the derivations and algorithms so far in this lecture remain
exactly the same!
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Fitting polynomials

y = w0

x

t

M = 0

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.

UofT CSC 2515: 03-Linear Models 1 23 / 58



Fitting polynomials

y = w0 + w1x

x

t

M = 1

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Fitting polynomials

y = w0 + w1x + w2x
2 + w3x

3

x

t

M = 3

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Fitting polynomials

y = w0 + w1x + w2x
2 + w3x

3 + . . .+ w9x
9

x

t

M = 9

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Generalization

Underfitting : model is too simple — does not fit the data.

x

t

M = 0

0 1

−1

0

1

Overfitting : model is too complex — fits perfectly, does not generalize.

x

t

M = 9

0 1

−1

0

1
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Generalization

Training and test error as a function of # training examples and #
parameters:
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Regularization

The degree of the polynomial is a hyperparameter, just like k in KNN.
We can tune it using a validation set.

But restricting the size of the model is a crude solution, since you’ll
never be able to learn a more complex model, even if the data
support it.

Another approach: keep the model large, but regularize it

Regularizer: a function that quantifies how much we prefer one
hypothesis vs. another
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L2 Regularization

Observation: polynomials that overfit often have large coefficients.

y = 0.1x5 + 0.2x4 + 0.75x3 − x2 − 2x + 2

y = −7.2x5 + 10.4x4 + 24.5x3 − 37.9x2 − 3.6x + 12

So let’s try to keep the coefficients small.
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L2 Regularization

Another reason we want weights to be small:

Suppose inputs x1 and x2 are nearly identical for all training examples.
The following two hypotheses make nearly the same predictions:

w =

(
1
1

)
w =

(
−9
11

)
But the second network might make weird predictions if the test
distribution is slightly different (e.g. x1 and x2 match less closely).
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L2 Regularization

We can encourage the weights to be small by choosing as our
regularizer the L2 penalty.

R(w) = 1
2‖w‖

2 =
1

2

∑
j

w2
j .

Note: to be pedantic, the L2 norm is Euclidean distance, so we’re really
regularizing the squared L2 norm.

The regularized cost function makes a tradeoff between fit to the data
and the norm of the weights.

Jreg = J + λR = J +
λ

2

∑
j

w2
j

Here, λ is a hyperparameter that we can tune using a validation set.
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L2 Regularization

The geometric picture:
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L2 Regularization

Recall the gradient descent update:

w← w − α∂J
∂w

The gradient descent update of the regularized cost has an interesting
interpretation as weight decay:

w← w − α
(
∂J
∂w

+ λ
∂R
∂w

)
= w − α

(
∂J
∂w

+ λw

)
= (1− αλ)w − α∂J

∂w
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Conclusion

Linear regression exemplifies recurring themes of this course:

choose a model and a loss function

formulate an optimization problem

solve the optimization problem using one of two strategies

direct solution (set derivatives to zero)
gradient descent

vectorize the algorithm, i.e. represent in terms of linear algebra

make a linear model more powerful using features

improve the generalization by adding a regularizer
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Linear Classification
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Overview

Classification: predicting a discrete-valued target

Binary classification: predicting a binary-valued target

Examples

predict whether a patient has a disease, given the presence or absence
of various symptoms
classify e-mails as spam or non-spam
predict whether a financial transaction is fraudulent
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Overview

Binary linear classification

classification: predict a discrete-valued target

binary: predict a binary target t ∈ {0, 1}
Training examples with t = 1 are called positive examples, and training
examples with t = 0 are called negative examples. Sorry.

linear: model is a linear function of x, followed by a threshold:

z = wTx + b

y =

{
1 if z ≥ r
0 if z < r
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Some simplifications

Eliminating the threshold

We can assume WLOG that the threshold r = 0:

wTx + b ≥ r ⇐⇒ wTx + b − r︸ ︷︷ ︸
,b′

≥ 0.

Eliminating the bias

Add a dummy feature x0 which always takes the value 1. The weight
w0 is equivalent to a bias.

Simplified model

z = wTx

y =

{
1 if z ≥ 0
0 if z < 0
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Examples

NOT

x0 x1 t

1 0 1
1 1 0

b > 0

b + w < 0

b = 1, w = −2
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Examples

AND

x0 x1 x2 t

1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

b < 0

b + w2 < 0

b + w1 < 0

b + w1 + w2 > 0

b = −1.5, w1 = 1, w2 = 1
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The Geometric Picture

Input Space, or Data Space

Here we’re visualizing the NOT example

Training examples are points

Hypotheses are half-spaces whose boundaries pass through the origin

The boundary is the decision boundary

In 2-D, it’s a line, but think of it as a hyperplane

If the training examples can be separated by a linear decision rule,
they are linearly separable.
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The Geometric Picture

Weight Space

w0 > 0

w0 + w1 < 0

Hypotheses are points

Training examples are half-spaces whose boundaries pass through the
origin

The region satisfying all the constraints is the feasible region; if this
region is nonempty, the problem is feasible
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The Geometric Picture

The AND example requires three dimensions, including the dummy one.

To visualize data space and weight space for a 3-D example, we can look at
a 2-D slice:

The visualizations are similar, except that the decision boundaries and the
constraints need not pass through the origin.

UofT CSC 2515: 03-Linear Models 1 44 / 58



The Geometric Picture

Visualizations of the AND example

Data Space

Slice for x0 = 1

Weight Space

Slice for w0 = −1

What happened to the fourth constraint?
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The Geometric Picture

Some datasets are not linearly separable, e.g. XOR

Proof coming in a later lecture...
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Overview

Recall: binary linear classifiers. Targets t ∈ {0, 1}

z = wTx + b

y =

{
1 if z ≥ 0
0 if z < 0

What if we can’t classify all the training examples correctly?

Seemingly obvious loss function: 0-1 loss

L0−1(y , t) =

{
0 if y = t
1 if y 6= t

= 1y 6=t .
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Attempt 1: 0-1 loss

As always, the cost J is the average loss over training examples; for
0-1 loss, this is the error rate:

J =
1

N

N∑
i=1

1y (i) 6=t(i)
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Attempt 1: 0-1 loss

Problem: how to optimize?

Chain rule:
∂L0−1
∂wj

=
∂L0−1
∂z

∂z

∂wj

But ∂L0−1/∂z is zero everywhere it’s defined!

∂L0−1/∂wj = 0 means that changing the weights by a very small
amount probably has no effect on the loss.
The gradient descent update is a no-op.
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Attempt 2: Linear Regression

Sometimes we can replace the loss function we care about with one
which is easier to optimize. This is known as a surrogate loss function.

We already know how to fit a linear regression model. Can we use
this instead?

y = w>x + b

LSE(y , t) =
1

2
(y − t)2

Doesn’t matter that the targets are actually binary.

Threshold predictions at y = 1/2.
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Attempt 2: Linear Regression

The problem:

The loss function hates when you make correct predictions with high
confidence!

If t = 1, it’s more unhappy about y = 10 than y = 0.
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Attempt 3: Logistic Activation Function

There’s obviously no reason to predict values outside [0, 1]. Let’s
squash y into this interval.

The logistic function is a kind of sigmoidal, or
S-shaped, function:

σ(z) =
1

1 + e−z

A linear model with a logistic nonlinearity is known as log-linear:

z = w>x + b

y = σ(z)

LSE(y , t) =
1

2
(y − t)2.

Used in this way, σ is called an activation function, and z is called the
logit.
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Attempt 3: Logistic Activation Function

The problem:
(plot of LSE as a function of z)

∂L
∂wj

=
∂L
∂z

∂z

∂wj

wj ← wj − α
∂L
∂wj

In gradient descent, a small gradient (in magnitude) implies a small
step.

If the prediction is really wrong, shouldn’t you take a large step?

This happens because the loss function saturates.
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Logistic Regression

Because y ∈ [0, 1], we can interpret it as the estimated probability
that t = 1.

The pundits who were 99% confident Clinton would win were much
more wrong than the ones who were only 90% confident.

Cross-entropy loss captures this intuition:

LCE(y , t) =

{
− log y if t = 1
− log(1− y) if t = 0

= −t log y − (1− t) log(1− y)
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Logistic Regression

Logistic Regression:

z = w>x + b

y = σ(z)

=
1

1 + e−z

LCE = −t log y − (1− t) log(1− y)

[[gradient derivation in the notes]]
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Logistic Regression

Problem: what if t = 1 but you’re really confident it’s a negative
example (z � 0)?

If y is small enough, it may be numerically zero. This can cause very
subtle and hard-to-find bugs.

y = σ(z) ⇒ y ≈ 0

LCE = −t log y − (1− t) log(1− y) ⇒ computes log 0

Instead, we combine the activation function and the loss into a single
logistic-cross-entropy function.

LLCE(z , t) = LCE(σ(z), t) = t log(1 + e−z) + (1− t) log(1 + ez)

Numerically stable computation:

E = t * np.logaddexp(0, -z) + (1-t) * np.logaddexp(0, z)
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Logistic Regression

Comparison of loss functions:
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Logistic Regression

Comparison of gradient descent updates:

Linear regression:

w← w − α

N

N∑
i=1

(y (i) − t(i)) x(i)

Logistic regression:

w← w − α

N

N∑
i=1

(y (i) − t(i)) x(i)

Not a coincidence! These are both examples of generalized linear
models, but that’s beyond the scope of this course.
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