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This course

e Broad introduction to machine learning
» First half: algorithms and principles for supervised learning
> nearest neighbors, decision trees, ensembles, linear regression,
logistic regression, SVMs
> neural nets!
» Unsupervised learning: PCA, K-means, mixture models
» Basics of reinforcement learning
o This course is taught as a stand-alone grad course for the first
time.
» But the structure and difficulty will be similar to past years, when
it was cross-listed as an undergrad course.
» The majority of students are from outside Computer Science.
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Course Information

Course Website:
https://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/

Slides will be posted to web page in advance of lecture, but I'll
continue to make edits up to Thursday night. So please re-download!

We will use Piazza for discussions.
e URL to be sent out
e Your grade does not depend on your participation on

Piazza. It’s just a good way for asking questions, discussing with
your instructor, TAs and your peers
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Course Information

Recommended readings will be given for each lecture. But the
following will be useful throughout the course:

Hastie, Tibshirani, and Friedman: “The Elements of Statistical
Learning”

Christopher Bishop: “Pattern Recognition and Machine
Learning”, 2006.

Kevin Murphy: “Machine Learning: a Probabilistic Perspective”,
2012.

David Mackay: “Information Theory, Inference, and Learning
Algorithms”, 2003.

Shai Shalev-Shwartz & Shai Ben-David: “Understanding Machine
Learning: From Theory to Algorithms”, 2014.

There are lots of freely available, high-quality ML resources.
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Course Information

See Metacademy (https://metacademy.org) for additional
background, and to help review prerequisites.
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https://metacademy.org

Requirements and Marking

e 5 written homeworks, due roughly every other week.
» Combination of pencil & paper derivations and short programming
exercises
» Each counts for 10%, except that the lowest mark counts for 5%.
» Worth 45% in total.
Read some classic papers.
» Worth 5%, honor system.
o Midterm
» Oct. 30, 4-6pm
» Worth 15% of course mark
Final Exam
» Dec. 17, 3-6pm
» Worth 35% of course mark
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More on Assignments

Collaboration on the assignments is not allowed. Each student is responsible for his/her
own work. Discussion of assignments should be limited to clarification of the handout itself,
and should not involve any sharing of pseudocode or code or simulation results. Violation of
this policy is grounds for a semester grade of F, in accordance with university regulations.

The schedule of assignments will be posted on the course web page.

Assignments should be handed in by 11:59pm; a late penalty of 10% per day will be
assessed thereafter (up to 3 days, then submission is blocked).

Extensions will be granted only in special situations, and you will need a Student Medical
Certificate or a written request approved by the course coordinator at least one week before
the due date.




What is learning?

"The activity or process of gaining knowledge or skill by studying,
practicing, being taught, or experiencing something.”

Merriam Webster dictionary
“A computer program is said to learn from experience E with respect

to some class of tasks T and performance measure P, if its performance
at tasks in T, as measured by P, improves with experience E.”

Tom Mitchell
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What is machine learning

e For many problems, it’s difficult to program the correct behavior
by hand
» recognizing people and objects
» understanding human speech

o Machine learning approach: program an algorithm to
automatically learn from data, or from experience
@ Why might you want to use a learning algorithm?

» hard to code up a solution by hand (e.g. vision, speech)

» system needs to adapt to a changing environment (e.g. spam
detection)

» want the system to perform better than the human programmers

» privacy/fairness (e.g. ranking search results)
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What is machine learning?

o It’s similar to statistics...

» Both fields try to uncover patterns in data

» Both fields draw heavily on calculus, probability, and linear algebra,
and share many of the same core algorithms

e But it’s not statistics!

» Stats is more concerned with helping scientists and policymakers
draw good conclusions; ML is more concerned with building
autonomous agents

» Stats puts more emphasis on interpretability and mathematical
rigor; ML puts more emphasis on predictive performance,
scalability, and autonomy

(UofT) 2SC2515-Lec 10/ 52



What is machine learning?

e Types of machine learning
» Supervised learning: have labeled examples of the correct
behavior
» Reinforcement learning: learning system receives a reward
signal, tries to learn to maximize the reward signal
» Unsupervised learning: no labeled examples — instead, looking
for interesting patterns in the data

(UofT)



History of machine learning

@ 1957 — Perceptron algorithm (implemented as a circuit!)

@ 1959 — Arthur Samuel wrote a learning-based checkers program
that could defeat him

e 1969 — Minsky and Papert’s book Perceptrons (limitations of
linear models)
1980s — Some foundational ideas
» Connectionist psychologists explored neural models of cognition
» 1984 — Leslie Valiant formalized the problem of learning as PAC
learning
» 1988 — Backpropagation (re-)discovered by Geoffrey Hinton and
colleagues
» 1988 — Judea Pearl’s book Probabilistic Reasoning in Intelligent
Systems introduced Bayesian networks
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History of machine learning

1990s — the “Al Winter”, a time of pessimism and low funding

e But looking back, the 90s were also sort of a golden age for ML
research
» Markov chain Monte Carlo
» variational inference
» kernels and support vector machines
» boosting
» convolutional networks

2000s — applied Al fields (vision, NLP, etc.) adopted ML

@ 2010s — deep learning

» 2010-2012 — neural nets smashed previous records in
speech-to-text and object recognition

» increasing adoption by the tech industry
» 2016 — AlphaGo defeated the human Go champion
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Computer vision: Object detection, semantic segmentation, pose

DAQUAR 1553 COCOQA 5078
What is there in front of the How many leftover donuts is

sofa? the red bicycle holding?
Ground truth: table Ground truth: three
IMG+BOW: 1able (0.74) IMG+BOW: two (0.51)
2-VIS+BLSTM: table (0.88) 2-VIS+BLSTM: three (0.27)

LSTM: chair (0.47) BOW: one (0.29)



https://drive.google.com/file/d/0Byy_mRDnLTHIYzVHN3lITzFhUkU/view

Speech: Speech to text, personal assistants, speaker identification...
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NLP: Machine translation, sentiment analysis, topic modeling, spam

filtering.
Real world example: Ehe New Hork Times
LDA analysis of 1.8M New York Times arucies:

music book art ame show
band life museum nicks film
SONgs novel % W television
roc stor exhibition points movie
album books artist team series
jazz man artists season says
pop stories paintings play life
SO love painting games man
singer children century night character
night family works coach know
theater clinton stock restaurant budget
play 1 market sauce

production campaign p?rcenl governor
show ore und food county
stage political inyestors dishes mayor
street republican funds_ street billion

broadway ole companies dining taxes
director presidential _stocks dinner plan
musical senator investment chicken Ieglllslamra

served iscal

directed house trading




Playing Games
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https://youtu.be/IbaHI38Ewws?t=36

E-commerce & Recommender Systems : Amazon,

netflix, ...

Inspired by your shopping trends
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Why this class?

2017 Kaggle survey of data science and ML practitioners: what data
science methods do you use at work?
0% 10% 20% 30% 40% 50% 60%
Logistic Regression
Decision Trees
Random Forests
Neural Networks
Bayesian Techniques
Ensemble Methods

svs
Gradient Boosted Machines
onNs
KNS
Other
Evolutionary Approaches - 5.5%
Hums [ 5.4%

Markov Logic Networks - 4.9%

Gans (i) 2.8%
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ML Workflow

ML workflow sketch:
1. Should I use ML on this problem?

» Is there a pattern to detect?
» Can I solve it analytically?
» Do I have data?

Gather and organize data.

Preprocessing, cleaning, visualizing.

Establishing a baseline.

Choosing a model, loss, regularization, ...
Optimization (could be simple, could be a Phd...).

Hyperparameter search.

@ N o W

Analyze performance and mistakes, and iterate back to step 5 (or
3).
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Implementing machine learning systems

e You will often need to derive an algorithm (with pencil and
paper), and then translate the math into code.
e Array processing (NumPy)
» vectorize computations (express them in terms of matrix/vector

operations) to exploit hardware efficiency
» This also makes your code cleaner and more readable!

z = np.zeros(m)
for 1 in range(m}:
Z = for j in range(n): z = np.dot(W, x) + b
TETD z[i] += W[i, 3] * x[5]
z[1] += b[i]

(UofT)



Implementing machine learning systems

@ Neural net frameworks: PyTorch, TensorFlow, etc.
» automatic differentiation
» compiling computation graphs
» libraries of algorithms and network primitives
» support for graphics processing units (GPUs)
e Why take this class if these frameworks do so much for you?
» So you know what to do if something goes wrong!
» Debugging learning algorithms requires sophisticated detective

work, which requires understanding what goes on beneath the hood.
» That’s why we derive things by hand in this class!
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Questions?
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Nearest Neighbours




Introduction

o Today (and for the next 6 weeks) we're focused on supervised learning.

@ This means we’re given a training set consisting of inputs and
corresponding labels, e.g.

Task Inputs Labels
object recognition image object category
image captioning image caption

document classification text document category
speech-to-text audio waveform text

(UofT)



Input Vectors

What an image looks like to the computer:

63 36 93 33 53 3

What the computer sees

82% cat
15% dog
2% hat

1% mug

image classification

[Image credit: Andrej Karpathy]




Input Vectors

@ Machine learning algorithms need to handle lots of types of data:
images, text, audio waveforms, credit card transactions, etc.

e Common strategy: represent the input as an input vector in R%

» Representation = mapping to another space that’s easy to
manipulate
» Vectors are a great representation since we can do linear algebral

7 VECTOR
INSTITUTE
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Input Vectors

Can use raw pixels:

Images 4= \ectors
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Input Vectors

@ Mathematically, our training set consists of a collection of pairs of an
input vector x € R? and its corresponding target, or label, ¢

» Regression: t is a real number (e.g. stock price)
» Classification: t is an element of a discrete set {1,...,C}
» These days, ¢ is often a highly structured object (e.g. image)

@ Denote the training set {(x(M, M), ... (x¥) ¢(N))}

» Note: these superscripts have nothing to do with exponentiation!

(UofT)



Nearest Neighbors

@ Suppose we're given a novel input vector x we’d like to classify.

@ The idea: find the nearest input vector to x in the training set and copy
its label.

@ Can formalize “nearest” in terms of Euclidean distance

@ = x®], =

4 Algorithm: )
1. Find example (x*,t*) (from the stored training set) closest to
x. That is:
x* = argmin distance(x¥, x)
x(¥) Etrain. set
\ 2. Output y =t )

@ Note: we don’t need to compute the square root. Why?

(UofT) 3SC2515-Lec 30 /52



Nearest Neighbors: Decision Boundaries

We can visualize the behavior in the classification setting using a Voronoi
diagram.
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Nearest Neighbors: Decision Boundaries

Decision boundary: the boundary between regions of input space assigned to
different categories.

(UofT)



Nearest Neighbors: Decision Boundaries

Example: 3D decision boundary
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k-Nearest Neighbors

[Pic by Olga Veksler]

every example in the blue
shaded area will be
misclassified as the blue class

every example in the blue every example in the blue
shaded area will be shaded area will be classified
misclassified as the blue class correctly as the red class

o Nearest neighbors sensitive to noise or mis-labeled data (“class noise”).
Solution?
@ Smooth by having k nearest neighbors vote

Algorithm (kNN):
1. Find k examples {x(),#"} closest to the test instance x

2. Classification output is majority class

k
v ar )4
Yy wglil(f.)de(t D))

r=




K-Nearest neighbors

k=1

[Image credit: ”The Elements of Statistical Learning”]
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K-Nearest neighbors

k=15

[Image credit: ”The Elements of Statistical Learning”]
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k-Nearest Neighbors

Tradeoffs in choosing k7
@ Small k

» Good at capturing fine-grained patterns
» May overfit, i.e. be sensitive to random idiosyncrasies in the
training data

o Large k

» Makes stable predictions by averaging over lots of examples
» May underfit, i.e. fail to capture important regularities

@ Rule of thumb: k < sqrt(n), where n is the number of training examples

(UofT)



K-Nearest neighbors

@ We would like our algorithm to generalize to data it hasn’t before.

@ We can measure the generalization error (error rate on new examples)
using a test set.

k - Number of Nearest Neighbors

151 101 69 45 31 21 1" 7 5 3 1
T T Y T | 1 1

.\ / '\ Linear
*
|

Test Ermror
0.20
|
o
\
—

~—— Train
Test
— Bayes

[Image credit: ”The Elements of Statistical Learning”]




Validation and Test Sets

@ k is an example of a hyperparameter, something we can’t fit as part of
the learning algorithm itself

@ We can tune hyperparameters using a validation set:

validation

I ’ test set

’ training set |

| train w/ k =1 }—v‘ err=7.3 | X
| train w/ k=3 }—»‘ err=1.1

v

| train w/ k =10 }—*‘ err=10.5|x

@ The test set is used only at the very end, to measure the generalization
performance of the final configuration.
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Consistency

o Is KNN consistent? I.e., given enough data, will it give the “right”
answer?

o To analyze this, suppose the inputs x and targets ¢ are random
variables drawn independently and identically distributed (i.i.d.)
from a data generating distribution with density p(x,t).

e The Bayes optimal classifier is the function f(x) which minimizes
the misclassification rate, i.e.

f(x) =y, = argmin Pr(y # ¢t |x) = argmax Pr(y = ¢ | x).
Y Y

Its error rate is called the Bayes error.

@ Question: how close does KNN get to the Bayes error in the limit
of infinite data?
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Consistency

e Assume p(x,t) is smooth as a function of x.
e Main idea: suppose N (the number of training examples) is very
large, and consider a query point x, which we’d like to classify.
» By smoothness, p(t|x) is approximately constant for nearby x.
» Hence, the labels of the neighbors can be seen as independent
random variables with PMF p(t]|x,).

(UofT) CSC2515-Lecl



Consistency

o First consider £k =1, N — oc.

» y (the nearest neighbour prediction) and ¢ (the true label at x,) are
(approximately) independent random variables with PMF p(t|x,).
» Apply the Union Bound:

Pr(t # y[xq) < Pr(t # y. [ xq) + Pr(y. # y|xq) = 2Pr(t # y. [xq).

» l.e., the asymptotic error of 1-NN is at most twice the Bayes error.
e Now consider k&, N — oo and k/N — 0.

» The counts of neighbors’ labels (approximately) follow a
multinomial distribution with & trials.

» For large k, the argmax will agree with the Bayes classifier with
high probability. (E.g., apply the Central Limit Theorem.)

» Hence, the KNN approaches the Bayes error, i.e. KNN is Bayes
consistent.

@ Bayes consistency is a very special property, and holds for hardly
any of the algorithms covered in this course.
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Pitfalls: The Curse of Dimensionality

@ Consistency is great, but it might take a very large amount of data to
get close to the Bayes error.

» Especially in high dimensions! KNN suffers from the Curse of
Dimensionality.

How large does N need to be to guarantee we have an e-neighbour?
@ The volume of a single ball of radius € is O(e)

The total volume of [0,1]% is 1.

Therefore O ((1)?) balls are needed to cover the volume.

Distance
00 02 04 06 08 10

Neighborhood

Fraction of Volume

[Image credit: ”The Elements of Statistical Learning”]
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Pitfalls: The Curse of Dimensionality

@ Another perspective on the Curse of Dimensionality: in high dimensions,
“most” points are approximately the same distance. (Homework
question coming up...)

@ This is just one example of how 2-D visualizations of high-dimensional
spaces can be extremely misleading!

(UofT)



Pitfalls: The Curse of Dimensionality

e Saving grace: some datasets may have low intrinsic dimension,
i.e. lie on or near a low-dimensional manifold.

e E.g., natural images have a lot fewer degrees of freedom than the
number of pixels in the image.

@ The distance to the neighbors depends on the intrinsic dimension,
not the dimension of the input space. Hence, KNN can still work
in high dimensions, as long as the data are intrinsically
low-dimensional.
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Pitfalls: Normalization

@ Nearest neighbors can be sensitive to the ranges of different features.

@ Often, the units are arbitrary:

inches
feet

minutes seconds

@ Simple fix: normalize each dimension to be zero mean and unit variance.
ILe., compute the mean y; and standard deviation o, and take

T Ty
1']—7
gj

@ Caution: depending on the problem, the scale might be important! (Can
you think of an example?)
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Pitfalls: Computational Cost

@ Number of computations at training time: 0
@ Number of computations at test time, per query (naive algorithm)

» Calculuate D-dimensional Euclidean distances with N data points:
O(ND)
» Sort the distances: O(N log N)

@ This must be done for each query, which is very expensive by the
standards of a learning algorithm!

@ Need to store the entire dataset in memory!

@ Tons of work has gone into algorithms and data structures for efficient
nearest neighbors with high dimensions and/or large datasets.
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Example: Digit Classification

@ Decent performance when lots of data

0\ dB3450727%

* Yann LeCunn — MNIST Digit
Recognition

Handwritten digits

28x28 pixel images: d = 784

60,000 training samples

10,000 test samples

* Nearest neighbour is competitive

Test Error Rate (%)
Linear classifier (1-layer NN) 12.0
K-nearest-neighbors, Euclidean 5.0
K-nearest-neighbors, Euclidean, deskewed 24
K-NN, Tangent Distance, 16x16 11
K-NN, shape context matching 0.67
1000 RBF + linear classifier 3.6
SVM deg 4 polynomial 1.1
2-layer NN, 300 hidden units 4.7
2-layer NN, 300 HU, [deskewing] 1.6
LeNet-5, [distortions] 0.8

Boosted LeNet-4, [distortions] 0.7



Example: Digit Classification

@ KNN can perform a lot better with a good similarity measure.

@ Example: shape contexts for object recognition. In order to achieve
invariance to image transformations, they tried to warp one image to
match the other image.

» Distance measure: average distance between corresponding points
on warped images

@ Achieved 0.63% error on MNIST, compared with 3% for Euclidean KNN.

@ Competitive with conv nets at the time, but required careful engineering.

[Belongie, Malik, and Puzicha, 2002. Shape matching and object recognition using shape
contexts.]
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80 Million Tiny Images was
the first extremely large
image dataset. It consisted of
color images scaled down to
32 x 32.

With a large dataset, you can
find much better semantic
matches, and KNN can do
some surprising things.

Note: this required a carefully
chosen similarity metric.

(UofT)
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Example: 80 Million Tiny Images

Gray scale
input

Gray level

32x32 siblings m

Avage
colorization

Proposed
colorizations

[Torralba, Fergus, and Freeman, 2007. 80 Million Tiny Images.]
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Questions?
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