
CSC 2515: Machine Learning
Lecture 1 - Introduction and Nearest Neighbours

Roger Grosse

University of Toronto

(UofT) CSC2515-Lec1 1 / 52

This course

Broad introduction to machine learning
I First half: algorithms and principles for supervised learning

I nearest neighbors, decision trees, ensembles, linear regression,
logistic regression, SVMs

I neural nets!

I Unsupervised learning: PCA, K-means, mixture models
I Basics of reinforcement learning

This course is taught as a stand-alone grad course for the first
time.

I But the structure and difficulty will be similar to past years, when
it was cross-listed as an undergrad course.

I The majority of students are from outside Computer Science.

(UofT) CSC2515-Lec1 2 / 52

Course Information

Course Website:
https://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/

Slides will be posted to web page in advance of lecture, but I’ll
continue to make edits up to Thursday night. So please re-download!

We will use Piazza for discussions.

URL to be sent out

Your grade does not depend on your participation on
Piazza. It’s just a good way for asking questions, discussing with
your instructor, TAs and your peers

(UofT) CSC2515-Lec1 3 / 52

https://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/

Course Information

Recommended readings will be given for each lecture. But the
following will be useful throughout the course:

Hastie, Tibshirani, and Friedman: “The Elements of Statistical
Learning”

Christopher Bishop: “Pattern Recognition and Machine
Learning”, 2006.

Kevin Murphy: “Machine Learning: a Probabilistic Perspective”,
2012.

David Mackay: “Information Theory, Inference, and Learning
Algorithms”, 2003.

Shai Shalev-Shwartz & Shai Ben-David: “Understanding Machine
Learning: From Theory to Algorithms”, 2014.

There are lots of freely available, high-quality ML resources.

(UofT) CSC2515-Lec1 4 / 52

Course Information

See Metacademy (https://metacademy.org) for additional
background, and to help review prerequisites.

(UofT) CSC2515-Lec1 5 / 52

https://metacademy.org

Requirements and Marking

5 written homeworks, due roughly every other week.
I Combination of pencil & paper derivations and short programming

exercises
I Each counts for 10%, except that the lowest mark counts for 5%.
I Worth 45% in total.

Read some classic papers.
I Worth 5%, honor system.

Midterm
I Oct. 30, 4-6pm
I Worth 15% of course mark

Final Exam
I Dec. 17, 3-6pm
I Worth 35% of course mark

(UofT) CSC2515-Lec1 6 / 52

More on Assignments

Collaboration on the assignments is not allowed. Each student is responsible for his/her
own work. Discussion of assignments should be limited to clarification of the handout itself,
and should not involve any sharing of pseudocode or code or simulation results. Violation of
this policy is grounds for a semester grade of F, in accordance with university regulations.

The schedule of assignments will be posted on the course web page.

Assignments should be handed in by 11:59pm; a late penalty of 10% per day will be
assessed thereafter (up to 3 days, then submission is blocked).

Extensions will be granted only in special situations, and you will need a Student Medical
Certificate or a written request approved by the course coordinator at least one week before
the due date.

(UofT) CSC2515-Lec1 7 / 52

What is learning?

”The activity or process of gaining knowledge or skill by studying,
practicing, being taught, or experiencing something.”

Merriam Webster dictionary

“A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its performance
at tasks in T, as measured by P, improves with experience E.”

Tom Mitchell

(UofT) CSC2515-Lec1 8 / 52

What is machine learning?

For many problems, it’s difficult to program the correct behavior
by hand

I recognizing people and objects
I understanding human speech

Machine learning approach: program an algorithm to
automatically learn from data, or from experience

Why might you want to use a learning algorithm?
I hard to code up a solution by hand (e.g. vision, speech)
I system needs to adapt to a changing environment (e.g. spam

detection)
I want the system to perform better than the human programmers
I privacy/fairness (e.g. ranking search results)

(UofT) CSC2515-Lec1 9 / 52

What is machine learning?

It’s similar to statistics...
I Both fields try to uncover patterns in data
I Both fields draw heavily on calculus, probability, and linear algebra,

and share many of the same core algorithms

But it’s not statistics!
I Stats is more concerned with helping scientists and policymakers

draw good conclusions; ML is more concerned with building
autonomous agents

I Stats puts more emphasis on interpretability and mathematical
rigor; ML puts more emphasis on predictive performance,
scalability, and autonomy

(UofT) CSC2515-Lec1 10 / 52

What is machine learning?

Types of machine learning
I Supervised learning: have labeled examples of the correct

behavior
I Reinforcement learning: learning system receives a reward

signal, tries to learn to maximize the reward signal
I Unsupervised learning: no labeled examples – instead, looking

for interesting patterns in the data

(UofT) CSC2515-Lec1 11 / 52

History of machine learning

1957 — Perceptron algorithm (implemented as a circuit!)

1959 — Arthur Samuel wrote a learning-based checkers program
that could defeat him

1969 — Minsky and Papert’s book Perceptrons (limitations of
linear models)

1980s — Some foundational ideas
I Connectionist psychologists explored neural models of cognition
I 1984 — Leslie Valiant formalized the problem of learning as PAC

learning
I 1988 — Backpropagation (re-)discovered by Geoffrey Hinton and

colleagues
I 1988 — Judea Pearl’s book Probabilistic Reasoning in Intelligent

Systems introduced Bayesian networks

(UofT) CSC2515-Lec1 12 / 52

History of machine learning

1990s — the “AI Winter”, a time of pessimism and low funding

But looking back, the ’90s were also sort of a golden age for ML
research

I Markov chain Monte Carlo
I variational inference
I kernels and support vector machines
I boosting
I convolutional networks

2000s — applied AI fields (vision, NLP, etc.) adopted ML

2010s — deep learning
I 2010–2012 — neural nets smashed previous records in

speech-to-text and object recognition
I increasing adoption by the tech industry
I 2016 — AlphaGo defeated the human Go champion

(UofT) CSC2515-Lec1 13 / 52

Computer vision: Object detection, semantic segmentation, pose
estimation, and almost every other task is done with ML.

Instance segmentation - Link

(UofT) CSC2515-Lec1 14 / 52

https://drive.google.com/file/d/0Byy_mRDnLTHIYzVHN3lITzFhUkU/view

Speech: Speech to text, personal assistants, speaker identification...

(UofT) CSC2515-Lec1 15 / 52

NLP: Machine translation, sentiment analysis, topic modeling, spam
filtering.

(UofT) CSC2515-Lec1 16 / 52

Playing Games

DOTA2 - Link

(UofT) CSC2515-Lec1 17 / 52

https://youtu.be/IbaHI38Ewws?t=36

E-commerce & Recommender Systems : Amazon,
netflix, ...

(UofT) CSC2515-Lec1 18 / 52

Why this class?

2017 Kaggle survey of data science and ML practitioners: what data
science methods do you use at work?

(UofT) CSC2515-Lec1 19 / 52

ML Workflow

ML workflow sketch:

1. Should I use ML on this problem?
I Is there a pattern to detect?
I Can I solve it analytically?
I Do I have data?

2. Gather and organize data.

3. Preprocessing, cleaning, visualizing.

4. Establishing a baseline.

5. Choosing a model, loss, regularization, ...

6. Optimization (could be simple, could be a Phd...).

7. Hyperparameter search.

8. Analyze performance and mistakes, and iterate back to step 5 (or
3).

(UofT) CSC2515-Lec1 20 / 52

Implementing machine learning systems

You will often need to derive an algorithm (with pencil and
paper), and then translate the math into code.

Array processing (NumPy)
I vectorize computations (express them in terms of matrix/vector

operations) to exploit hardware efficiency
I This also makes your code cleaner and more readable!

(UofT) CSC2515-Lec1 21 / 52

Implementing machine learning systems

Neural net frameworks: PyTorch, TensorFlow, etc.
I automatic differentiation
I compiling computation graphs
I libraries of algorithms and network primitives
I support for graphics processing units (GPUs)

Why take this class if these frameworks do so much for you?
I So you know what to do if something goes wrong!
I Debugging learning algorithms requires sophisticated detective

work, which requires understanding what goes on beneath the hood.
I That’s why we derive things by hand in this class!

(UofT) CSC2515-Lec1 22 / 52

Questions?

?

(UofT) CSC2515-Lec1 23 / 52

Nearest Neighbours

(UofT) CSC2515-Lec1 24 / 52

Introduction

Today (and for the next 6 weeks) we’re focused on supervised learning.

This means we’re given a training set consisting of inputs and
corresponding labels, e.g.

Task Inputs Labels
object recognition image object category
image captioning image caption

document classification text document category
speech-to-text audio waveform text

...
...

...

(UofT) CSC2515-Lec1 25 / 52

Input Vectors

What an image looks like to the computer:

[Image credit: Andrej Karpathy]

(UofT) CSC2515-Lec1 26 / 52

Input Vectors

Machine learning algorithms need to handle lots of types of data:
images, text, audio waveforms, credit card transactions, etc.

Common strategy: represent the input as an input vector in Rd

I Representation = mapping to another space that’s easy to
manipulate

I Vectors are a great representation since we can do linear algebra!

(UofT) CSC2515-Lec1 27 / 52

Input Vectors

Can use raw pixels:

Can do much better if you compute a vector of meaningful features.

(UofT) CSC2515-Lec1 28 / 52

Input Vectors

Mathematically, our training set consists of a collection of pairs of an
input vector x ∈ Rd and its corresponding target, or label, t

I Regression: t is a real number (e.g. stock price)
I Classification: t is an element of a discrete set {1, . . . , C}
I These days, t is often a highly structured object (e.g. image)

Denote the training set {(x(1), t(1)), . . . , (x(N), t(N))}
I Note: these superscripts have nothing to do with exponentiation!

(UofT) CSC2515-Lec1 29 / 52

Nearest Neighbors

Suppose we’re given a novel input vector x we’d like to classify.

The idea: find the nearest input vector to x in the training set and copy
its label.

Can formalize “nearest” in terms of Euclidean distance

||x(a) − x(b)||2 =

√√√√ d∑
j=1

(x
(a)
j − x

(b)
j)2

Algorithm:

1. Find example (x∗, t∗) (from the stored training set) closest to
x. That is:

x∗ = argmin
x(i)∈train. set

distance(x(i),x)

2. Output y = t∗

Note: we don’t need to compute the square root. Why?

(UofT) CSC2515-Lec1 30 / 52

Nearest Neighbors: Decision Boundaries

We can visualize the behavior in the classification setting using a Voronoi
diagram.

(UofT) CSC2515-Lec1 31 / 52

Nearest Neighbors: Decision Boundaries

Decision boundary: the boundary between regions of input space assigned to
different categories.

(UofT) CSC2515-Lec1 32 / 52

Nearest Neighbors: Decision Boundaries

Example: 3D decision boundary

(UofT) CSC2515-Lec1 33 / 52

k-Nearest Neighbors
[Pic by Olga Veksler]

Nearest neighbors sensitive to noise or mis-labeled data (“class noise”).
Solution?

Smooth by having k nearest neighbors vote

Algorithm (kNN):

1. Find k examples {x(i), t(i)} closest to the test instance x
2. Classification output is majority class

y = argmax
t(z)

k∑
r=1

δ(t(z), t(r))

(UofT) CSC2515-Lec1 34 / 52

K-Nearest neighbors

k=1

[Image credit: ”The Elements of Statistical Learning”]

(UofT) CSC2515-Lec1 35 / 52

K-Nearest neighbors

k=15

[Image credit: ”The Elements of Statistical Learning”]

(UofT) CSC2515-Lec1 36 / 52

k-Nearest Neighbors

Tradeoffs in choosing k?

Small k

I Good at capturing fine-grained patterns
I May overfit, i.e. be sensitive to random idiosyncrasies in the

training data

Large k

I Makes stable predictions by averaging over lots of examples
I May underfit, i.e. fail to capture important regularities

Rule of thumb: k < sqrt(n), where n is the number of training examples

(UofT) CSC2515-Lec1 37 / 52

K-Nearest neighbors

We would like our algorithm to generalize to data it hasn’t before.

We can measure the generalization error (error rate on new examples)
using a test set.

[Image credit: ”The Elements of Statistical Learning”]

(UofT) CSC2515-Lec1 38 / 52

Validation and Test Sets

k is an example of a hyperparameter, something we can’t fit as part of
the learning algorithm itself

We can tune hyperparameters using a validation set:

The test set is used only at the very end, to measure the generalization
performance of the final configuration.

(UofT) CSC2515-Lec1 39 / 52

Consistency

Is KNN consistent? I.e., given enough data, will it give the “right”
answer?

To analyze this, suppose the inputs x and targets t are random
variables drawn independently and identically distributed (i.i.d.)
from a data generating distribution with density p(x, t).

The Bayes optimal classifier is the function f(x) which minimizes
the misclassification rate, i.e.

f(x) = y∗ = arg min
y

Pr(y 6= t |x) = arg max
y

Pr(y = t |x).

Its error rate is called the Bayes error.

Question: how close does KNN get to the Bayes error in the limit
of infinite data?

(UofT) CSC2515-Lec1 40 / 52

Consistency

Assume p(x, t) is smooth as a function of x.

Main idea: suppose N (the number of training examples) is very
large, and consider a query point xq which we’d like to classify.

I By smoothness, p(t |x) is approximately constant for nearby x.
I Hence, the labels of the neighbors can be seen as independent

random variables with PMF p(t |xq).

(UofT) CSC2515-Lec1 41 / 52

Consistency

First consider k = 1, N →∞.
I y (the nearest neighbour prediction) and t (the true label at xq) are

(approximately) independent random variables with PMF p(t |xq).
I Apply the Union Bound:

Pr(t 6= y |xq) ≤ Pr(t 6= y∗ |xq) + Pr(y∗ 6= y |xq) = 2Pr(t 6= y∗ |xq).

I I.e., the asymptotic error of 1-NN is at most twice the Bayes error.

Now consider k,N →∞ and k/N → 0.
I The counts of neighbors’ labels (approximately) follow a

multinomial distribution with k trials.
I For large k, the argmax will agree with the Bayes classifier with

high probability. (E.g., apply the Central Limit Theorem.)
I Hence, the KNN approaches the Bayes error, i.e. KNN is Bayes

consistent.

Bayes consistency is a very special property, and holds for hardly
any of the algorithms covered in this course.

(UofT) CSC2515-Lec1 42 / 52

Pitfalls: The Curse of Dimensionality

Consistency is great, but it might take a very large amount of data to
get close to the Bayes error.

I Especially in high dimensions! KNN suffers from the Curse of
Dimensionality.

How large does N need to be to guarantee we have an ε-neighbour?

The volume of a single ball of radius ε is O(εd)

The total volume of [0, 1]d is 1.

Therefore O
(
(1
ε)d
)

balls are needed to cover the volume.

[Image credit: ”The Elements of Statistical Learning”]

(UofT) CSC2515-Lec1 43 / 52

Pitfalls: The Curse of Dimensionality

Another perspective on the Curse of Dimensionality: in high dimensions,
“most” points are approximately the same distance. (Homework
question coming up...)

This is just one example of how 2-D visualizations of high-dimensional
spaces can be extremely misleading!

(UofT) CSC2515-Lec1 44 / 52

Pitfalls: The Curse of Dimensionality

Saving grace: some datasets may have low intrinsic dimension,
i.e. lie on or near a low-dimensional manifold.

E.g., natural images have a lot fewer degrees of freedom than the
number of pixels in the image.

The distance to the neighbors depends on the intrinsic dimension,
not the dimension of the input space. Hence, KNN can still work
in high dimensions, as long as the data are intrinsically
low-dimensional.

(UofT) CSC2515-Lec1 45 / 52

Pitfalls: Normalization

Nearest neighbors can be sensitive to the ranges of different features.

Often, the units are arbitrary:

Simple fix: normalize each dimension to be zero mean and unit variance.
I.e., compute the mean µj and standard deviation σj , and take

x̃j =
xj − µj
σj

Caution: depending on the problem, the scale might be important! (Can
you think of an example?)

(UofT) CSC2515-Lec1 46 / 52

Pitfalls: Computational Cost

Number of computations at training time: 0

Number of computations at test time, per query (näıve algorithm)

I Calculuate D-dimensional Euclidean distances with N data points:
O(ND)

I Sort the distances: O(N logN)

This must be done for each query, which is very expensive by the
standards of a learning algorithm!

Need to store the entire dataset in memory!

Tons of work has gone into algorithms and data structures for efficient
nearest neighbors with high dimensions and/or large datasets.

(UofT) CSC2515-Lec1 47 / 52

Example: Digit Classification

Decent performance when lots of data

[Slide credit: D. Claus](UofT) CSC2515-Lec1 48 / 52

Example: Digit Classification

KNN can perform a lot better with a good similarity measure.

Example: shape contexts for object recognition. In order to achieve
invariance to image transformations, they tried to warp one image to
match the other image.

I Distance measure: average distance between corresponding points
on warped images

Achieved 0.63% error on MNIST, compared with 3% for Euclidean KNN.

Competitive with conv nets at the time, but required careful engineering.

[Belongie, Malik, and Puzicha, 2002. Shape matching and object recognition using shape
contexts.]

(UofT) CSC2515-Lec1 49 / 52

Example: 80 Million Tiny Images

80 Million Tiny Images was
the first extremely large
image dataset. It consisted of
color images scaled down to
32× 32.

With a large dataset, you can
find much better semantic
matches, and KNN can do
some surprising things.

Note: this required a carefully
chosen similarity metric.

[Torralba, Fergus, and Freeman, 2007. 80 Million Tiny Images.]

(UofT) CSC2515-Lec1 50 / 52

Example: 80 Million Tiny Images

[Torralba, Fergus, and Freeman, 2007. 80 Million Tiny Images.]

(UofT) CSC2515-Lec1 51 / 52

Questions?

?

(UofT) CSC2515-Lec1 52 / 52

	Intro
	Examples

