
CSC 411 F 2017 Midterm Test
Duration — 60 minutes

Aids allowed: none

Student Number:

Last Name: First Name:

Do not turn this page until you have received the signal to start.
(Please fill out the identification section above and read the

instructions below. )
Good Luck!

This midterm consists of 5 questions on 8 pages (including this one). When you receive the
signal to start, please make sure that your copy is complete.

1. Do not turn the page until told to do so.

2. If a question asks you to do some calcula-
tions, you must show your work to receive
full credit.

3. You can use either pen or pencil for the
exam. But please be aware that you are
not allowed to dispute any credit after
the exam is returned if you use a pencil.

4. Use the back of the page if you need more
space on a question. If you require addi-
tional paper you may request some from
an invigilator.

5. If you use any space for rough work,
indicate clearly what you do not want
marked.

6. Lastly, enjoy the problems!

# 1: / 15

# 2: / 5

# 3: / 30

# 4: / 30

# 5: / 20

TOTAL: /100

Total Pages = 8 Page 1



Question 1. [15 MARKS]

Mark whether the following statements are true or false by placing a tick in the corresponding
column for each row.

Statement True False
Assume that you have training data with continuous features and targets.
Linear regression must be linear in both parameters and features.
Assume that you have training data with continuous features and binary
class labels and that you are not using any feature parameterization. Logis-
tic regression has a linear decision boundary.
Consider a discrete random variable X . Higher entropy, H(X), implies
lower uncertainty about samples drawn from the distribution of X .
Consider a dataset where each data point has d-dimensional continuous fea-
tures and discrete class labels. For the dataset’s points to be linearly separa-
ble, each of its classes have to be separated exactly by hyperplane decision
boundaries.
Assume that you have training data with binary features and discrete class
labels. Logistic regression will always have better classification accuracy on
test data than Bernoulli Naive Bayes.

Question 2. [5 MARKS]

Fill in the blanks below.

• Given discrete random variables X and Y. The Information Gain in Y due to X is

IG(Y,X) = H(......)−H(.........)

where H is the entropy.

• Given model parameters θ and some data observations X . Then the
posterior probability ∝ ...............× ............... (You may write this in words)
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Question 3. [30 MARKS]

This question asks you to show your general understanding of underfitting and overfitting as
they relate to model complexity and training set size. A simple example of model complexity
might be the number of parameters in a linear regression model. Given the provided axes, where
both vertical and horizontal are scaled between 0 and 1, draw your graphs with increasing error
upwards and increasing complexity/training set size rightwards.

For this question you will compare to the Bayes error rate. The Bayes error rate is the optimal
error rate possible given perfect knowledge and no computational limitations. For example, if
the targets are deterministic given the features then the Bayes error rate will be zero.

Part (a) [15 MARKS]

For a fixed training set size, sketch a graph of the typical behaviour of training error rate versus model
complexity in a learning system. Add to this graph a curve showing the typical behaviour of test error
rate (for an infinite test set drawn independently from the same input distribution as the training set)
versus model complexity, on the same axes. Mark a horizontal line showing the Bayes error rate, which
one of the lines should cross.
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Part (b) [15 MARKS]

For a fixed model complexity, sketch a graph of the typical behaviour of training error rate versus training
set size in a learning system. Add to this graph a curve showing the typical behaviour of test error rate
(again on an iid finite test set) versus training set size, on the same axes. Mark a horizontal line showing
the Bayes error rate.
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Question 4. [30 MARKS]

Given the following dataset, for each classifier draw the decision boundary

Part (a) [10 MARKS]

Decision tree:
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Part (b) [10 MARKS]

1-nearest neighbor:

Page 6 of 8



Part (c) [10 MARKS]

Multi-class logistic regression:
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Question 5. [20 MARKS]

We define the Bayes-optimal predictor h∗(x) = argminŷ Ey[`(y, ŷ)|x]. We now assume y only takes a finite
number of values y1, ..., yk. For the L2 loss this means that

h∗(x) = argmin
ŷ

Ey[`(y, ŷ)|x] = argmin
ŷ

k∑
j=1

(yj − ŷ)2p(yj |x)

Show that for the L2 loss h∗(x) = Ey[y|x] =
∑k

j=1 yjp(yj |x)

Print your name in this box.
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