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1. [1pts] A common preprocessing step of many learning algorithms is to normalize each
feature to be zero mean and unit variance. Give the formula for the normalized feature
x̃j as a function of the original feature xj and the mean µj and standard deviation σj
of that feature. You don’t need to justify your answer.

2. [1pt] We showed that each step of K-means reduces a particular cost function. What
is that cost function? You can give a formula or explain it in words. You don’t need
to justify your answer.

3. [2pts] Suppose your classifier achieves poor accuracy on both the training and test
sets. Which would be a better choice to try to improve the performance: bagging or
boosting? Justify your answer.
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4. [2pts] Bayesian linear regression and Gaussian processes are two different approaches
to Bayesian regression.

(a) [1pt] Give one situation in which Gaussian process regression would be more
computationally efficient than Bayesian linear regression.

(b) [1pt] Give one other advantage of Gaussian process regression over Bayesian linear
regression.

5. [2pts] We showed that AdaBoost can be viewed as minimizing the exponential loss.

(a) [1pt] Give the definition of exponential loss. (You don’t need to provide any
justification.)

LE(y, t) =

(b) [1pt] TRUE or FALSE: there is some value ε such that if the sum of the exponen-
tial loss on all the training examples is less than ε, then all the training examples
are classified correctly. Justify your answer.
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6. [2pts] Suppose you are running AdaBoost with 4 training examples. At the start of
the current iteration, the four examples have the weights shown in the following table.
Another column says if the weak classifier got them correct or incorrect. Determine
the new weights for these four examples, and fill in the corresponding entries in the
table.

You do not need to justify your answer or explain your reasoning, although doing so
may help you obtain partial credit.

Old Weight Correcct? New Weight

Example 1 0.16 Correct
Example 2 0.64 Correct
Example 3 0.08 Incorrect
Example 4 0.12 Incorrect

Hint: this question doesn’t require much calculation. Observe that:

• the weights for certain pairs of examples will be updated by the same multiplicative
factor

• you know something about the sum of weights for certain sets of examples.
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7. [1pt] Recall two linear classification methods we considered:

Model 1:

y = w>x + b

LSE(y, t) = 1
2
(y − t)2

Model 2:

z = w>x + b

y = σ(z)

LSE(y, t) = 1
2
(y − t)2

Here, σ denotes the logistic function, and the targets t take values in {0, 1}. Briefly
explain our reason for preferring Model 2 to Model 1.

8. [2pts] Consider a discounted Markov decision process (MDP) with discount parameter
γ. It has a transition distribution P(· | s, a) and deterministic reward function r(s, a).
The agent’s policy is a deterministic function π : S → A.

(a) [1pt] Give the definition of the state-action value function Qπ for a policy π.
It should be given in terms of γ and the immediate rewards Rt = r(St, At) for
t = 0, . . . ,∞. You don’t need to justify your answer.

Qπ(s, a) =

(b) [1pt] Give the Bellman recurrence for Qπ, i.e. the formula expressing Qπ(s, a)
in terms of an expectation over successor states. You don’t need to justify your
answer.

Qπ(s, a) =
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9. [2pts] Consider the following NumPy code for computing cross-entropy loss.

def cross_entropy_loss(z, t):

y = 1 / (1 + np.exp(-z))

return -t * np.log(y) - (1-t) * np.log(1-y)

The formulas for y and L are correct, but there’s something wrong with this code.

(a) [1pt] What is wrong with the code? Hint: what happens when z is large?

(b) [1pt] Provide NumPy code implementing cross_entropy_loss which doesn’t
have this problem. You may want to use the function np.logaddexp, which takes
two arguments a and b and returns log(ea + eb).
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10. [3pts] We showed that the Support Vector Machine (SVM) can be viewed as minimiz-
ing hinge loss:

min
w,b

N∑
i=1

LH(y, t) +
1

2γ
‖w‖22

where hinge loss is defined as:

LH(y, t) = max(0, 1− ty)

(a) [1pt] TRUE or FALSE: if the total hinge loss is zero, then every training example
must be classified correctly. Justify your answer.

(b) [1pt] TRUE or FALSE: if the dataset is linearly separable, then the optimal
soft-margin SVM weights (according to the above objective) must classify every
training example correctly. Justify your answer.

(c) [1pt] Suppose we replace the hinge loss with the following:

L(y, t) = max(0,−ty)

and otherwise keep the soft-margin SVM objective the same. What would go
wrong?
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11. [3pts] The Laplace distribution, parameterized by µ and β, is defined as follows:

Laplace(w;µ, β) =
1

2β
exp

(
−|w − µ|

β

)
.

Consider a variant of Bayesian linear regression where we assume the prior over the
weights w consists of an independent zero-centered Laplace distribution for each di-
mension, with shared parameter β:

wj ∼ Laplace(0, β)

t |w ∼ N (t; w>ψ(x), σ)

For reference, the Gaussian PDF is:

N (x;µ, σ) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
.

(a) [2pts] Suppose you have a labeled training set {(x(i), t(i))}Ni=1. Give the cost
function you would minimize to find the MAP estimate of w. (It should be
expressed in terms of mathematical operations.) You don’t need to justify your
answer, but doing so may help you earn partial credit.

(b) [1pt] Based on your answer to part (a), how might the MAP solution for a Laplace
prior differ from the MAP solution if you use a Gaussian prior?
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12. [2pts] Consider one layer of a multilayer perceptron (MLP), whose computations are
defined as follows:

zi =
∑
j

wijhj + bi

yi = φ(zi),

where φ is a nonlinear activation function, hj denotes the input to this layer (i.e. the
previous layer’s hidden units), and yi denotes the output of this layer.

Give the backprop rules for zi, hj and wij in terms of the error signal yi. You can use
φ′ to denote the derivative of φ. You don’t need to show your work.

zi =

hj =

wij =

13. [1pt] Recall that the beta distribution is defined by

Beta(θ; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1,

where Γ is the gamma function. Give values of a and b such that the distribution is
highly concentrated around θ = 0.75. You don’t need to justify your answer.

Hint: If you’ve forgotten the shape of the distribution, you can find the mode as a
function of a and b by differentiating the log density.

a =

b =
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14. [3pts] Recall that the optimal PCA subspace can be determined from the eigende-
composition of the empirical covariance matrix Σ = Cov(x). Also recall that the
eigendecomposition can be expressed in terms of the following spectral decomposition
of Σ:

Σ = QΛQ>,

where Q is an orthogonal matrix and Λ is a digonal matrix. Assume the eigenalues
are sorted from largest to smallest. You may assume all of the eigenvalues are distinct.

(a) [1pt] If you’ve already computed the eigendecomposition (i.e. Q and Λ), how do
you obtain the orthogonal basis U for the optimal PCA subspace? (You do not
need to justify your answer.)

(b) [2pts] The PCA code vector for a data point x is given by z = U>(x−µ). Show
that the dimensions of z are uncorrelated. (Hint: start by finding a formula for
Cov(z).)
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15. [2pts] Recall that Gaussian discriminant analysis (GDA) can have very different deci-
sion boundary shapes depending on the precise model assumptions. Consider a GDA
model with two classes, and where the covariance is shared between both classes and
is spherical. Show mathematically that the decision boundary is linear.

For reference, the multivariate Gaussian PDF is given by:

N (x;µ,Σ) =
1

(2π)D/2|Σ|1/2
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
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16. [6pts] In this question, you will derive the E-M update rules for a univariate Gaussian
mixture model (GMM) with two mixture components. Unlike the GMMs we covered
in the course, the mean µ will be shared between the two mixture components, but
each component will have its own standard deviation σk. The mixture component is
indicated by a latent variable z ∈ {0, 1}. The model is defined as follows:

z ∼ Bernoulli(θ)

x | z = k ∼ N (µ, σk) for k ∈ {0, 1}

The parameters of the model are θ, µ, σ0, and σ1.

For reference, the PDF of the Gaussian distribution is as follows:

N (x;µ, σ) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
(a) [1pt] Write the density defined by this model (i.e. the probability of x, with z

marginalized out):

p(x) =

(b) [1pt] In the E-step, for each data point x(i), we need to compute the posterior
probability r(i) = Pr(z(i) = 1 |x(i)). Give the formula for r(i). In your formula,
you may use N (x(i);µ, σ) to denote the Gaussian PDF, rather than writing it out
explicitly. You do not need to justify your answer, but doing so may help you
earn partial credit.

r(i) =

Question 16 continued on next page −→
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(Question 16, cont’d)

(c) [1pt] Write out the objective function that is to be maximized in the M-step. It
should be expressed in terms of the r(i) and the Gaussian PDF N (x(i);µ, σ). You
do not need to jutsify your answer.

(d) [2pts] Derive the M-step update rule for µ by maximizing this objective with
respect to µ. (In this step, the σk are fixed to their previous values.)

Question 16 continued on next page −→
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(Question 16, cont’d)

(e) [1pt] Derive the M-step update rule for σ1 by maximizing the objective with
respect to σ1. (In this step, assume µ is fixed to its previous value.)

Note: Even though this part has several steps, it’s only worth one point. So you
may want to come back to it once you’re done with the rest of the exam.
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(Scratch work or continued answers)
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(Scratch work or continued answers)
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