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1 Data and code repository

Data and code for replication including a demonstration are deposited at https://github.com/
rdferrei/computational-theory-overextension.

2 Sensitivity parameter and model simulation

We offer an illustration of the proposed overextension framework in a simulation of child naming
behavior based on a range of values for the sensitivity parameter. We expect the modeling frame-
work to reproduce qualitative characteristics of the development of children’s productive speech,
from overly broad extension patterns to more precise ways of word usage that approximate the
conventional lexicon. In particular, we progressively shrink the kernel width or increase sensitivity
in the parameter 4, i.e., making the model more sensitive to the semantic appropriateness of word
choices specified in the likelihood term of Equation 1 in the main text, which trades off with the
cognitive effort specified in the frequency-based prior. Initially, we expect children to rely more on
frequency prior in their strategies toward overextension. Over the course of the parameter variation,
we expect children to rely more on the likelihood in overextension due to increasing sensitivity or
precision in their semantic representation. We obtained the top word productions predicted by the
model at different points in the simulated environment and recorded the rates of overextended vs
conventional word usage over the range of parameter values we considered.

Figure S1a shows the predicted rate of overextension over the range of parameter values, mea-
sured by the proportion of words in the vocabulary predicted to overextend by the model. We
observe a peak rate close to the parameter value estimated from empirical data, suggesting that our
model captures the period of overextension reported in the developmental literature. To the left of
the peak, there is a decrease in overextension rate, reflecting a more limited effective vocabulary as
the model favours a core set of high-frequency words due to the pressure of cognitive effort. To the
right of the peak, the opposite effect holds: as sensitivity increases in semantic space and becomes
more dominant over the role of cognitive effort, overextension gives way to novel words and be-
comes increasingly rare, until it ceases to exist while the model predicts production to converge
toward conventional lexical use.

Figure S1b shows concrete examples of top model productions in naming referents from three
different domains, animals, fruits, and vehicles, over the course of simulation. We observe that,
initially, words such as car and apple are broadly overextended and serve as central elements for
their respective domains, echoing observations by Rescorla [3]. As the parameter shrinks in value,
categories become progressively narrower even as some acquired words are overextended to sim-
ilar referents (e.g., orange to lemons). Eventually, the productions converge toward conventional
names, illustrating the ability of the model to capture precise ways of naming as well as overex-
tension.
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Figure S1: Results from model simulation over a range of values for the sensitivity parameter. a)
Predicted rate of overextended words in the child vocabulary (N = 317). Shaded region represents
bootstrap 95% confidence interval. b) Top model-produced child naming of sample concepts in
three domains over the course of simulation. The top row reflects the trend under the largest
parameter values, the middle row shows the intermediate range, and the bottom row shows the
trend under the smallest parameter values. Each stage shows the kernel width (k) parameter value
at which the model first produces that pattern.




3 Evidence for multimodality in overextension

To examine the amount of variability that the multimodal semantic space we constructed explains
in the overextension data, we performed a logistic regression analysis that evaluates whether the
model is able to discern overextended word-referent pairs with shuffled versions of these pairs. In
particular, we considered two sets of data: the atfested set of overextension word-referent pairs,
and a control set that shuffles the word-referent mappings from the attested set. We then per-
formed a binary classification task via logistic regression to assess whether the attested set could
be distinguished from the control set, given the same three relational features used for the other
analyses. For each word-referent pair, the logistic regression factors were the z-scores of categor-
ical, visual analogical, and predicate-based distances, normalized over the entire dataset, and the
response was a binary indicator for the attested/control set. We also labelled each word-referent
pair in the attested set according to the top-scoring feature in the logistic regression model as a way
to approximate which multimodal feature best explains each instance of overextension, and thus
assess the degree of multimodality in the overextension data.

Table S1 shows the BIC scores and cross-validated accuracies of the full multimodal model,
partial models consisting of feature pairs, and partial models consisting of single features. The full
multimodal model best distinguishes attested overextension from control word pairs in BIC score
and predictive accuracy. Furthermore, all three features of the full multimodal model reached
significance in the logistic regression (p < .001, N = 472). These results suggest that a combina-
tion of semantic relations provides significant predictability of concept pairs that might undergo
overextension.

Table S1: BIC scores and cross-validated accuracies of logistic regression (N = 472). Parenthe-
sized items indicate standard errors.

Model BIC score Accuracy
categorical (cat.) 495 0.778(19)
visual (vis.) 464 0.767(19)
predicate (pred.) 469 0.763(20)
vis. + pred. 408 0.807(18)
cat. + vis. 393 0.816(18)
cat. + pred. 422 0.805(18)
all features 374 0.839(17)

4 Comparison of single and multi-parameter models

Section 6.1 in the main text compares models for predicting word choices in overextension using
the full multimodal semantic space or under restrictions to single features or feature pairs, as
well as when placing a frequency-based prior on words versus a uniform prior. The experimental
results showed that both multimodal feature integration and frequency-based prior yielded superior
predictive performance, confirming the hypotheses we set out to test.



Table S2: Bayesian Information Criterion (BIC) scores for production models with respect to
overextension dataset (N = 236) under different choices of prior, semantic features, and model
formulation (i.e., single versus multiple kernel width parameters). A lower BIC score indicates a
better model.

BIC score
Model frequency prior uniform prior
single param. multiple param. single param. multiple param.

baseline 2471 2471 2717 2717
categorical (cat.) 1863 1863 2093 2093
visual (vis.) 1817 1817 2041 2041
predicate (pred.) 1853 1853 2072 2072
vis. + pred. 1732 1690 1947 1904
cat. + Vis. 1682 1648 1904 1869
cat. + pred. 1646 1650 1871 1874
all features 1592 1583 1812 1799

Given the parsimonious formulation of our models, a natural question is whether the same
conclusions still apply under less constrained models. In this section, we replicate the experimental
results for models that allow for multiple kernel width parameters—one per semantic feature—
rather than a single parameter as in the main text. Concretely, we adapted the formulation from
Section 3.2 by defining the concept similarity function as follows:

dC(C]7C2)2 dv(Cl,CZ>2 dp(C17C2)2) (1)

sim(cy,¢p) = exp <— . — - hp

Under this formulation, each psychological dimension is modulated by an independent param-
eter, and we jointly optimized the model to maximize the a posteriori probability of the word-
referent overextension pairs as in Section 5.4 of the main text.

Table S2 shows the BIC scores of all models under each choice of formulation, word prior,
and semantic features. The main conclusions from our analyses still hold: models incorporat-
ing semantic features performed better than the baseline (i.e., lower in BIC scores); models with
the frequency-based prior outperformed those with uniform priors; and models with featural in-
tegration performed better than those with isolated features (i.e., all features < feature pairs <
single features in BIC score). Furthermore, the BIC scores of multi-parametric models were only
slightly lower than the corresponding single-parameter models, compared to the larger differences
between models with different priors or combinations of semantic features (even across model for-
mulations). This result further validates our choice to use the more parsimonious model in the rest
of our analyses here and in the main text.



5 Detailed results for model prediction of word choices

5.1 Predictive performance of partial models

Section 6.1 in the main text shows the average performance curves of models containing single
features, feature pairs, and all three multimodal features. Figure S2 shows the performance curves
of all individual models, thus elucidating the relative performance of each combination.
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Figure S2: Performance curves for all production models showing cross-validated model accura-
cies in reconstructing overextended word choices (N = 236).

5.2 Sample predictions of the production model

Table S3 shows the top 5 words predicted by the production model for a random sample of the
overextension dataset. Recalling that the top-5 model accuracy is approximately 55%, we observe
that in the cases of incorrect model prediction, many of the predicted words are still closely related
to the target concept, suggesting that even predictions that do not match the recorded child pro-
duction are often sensible predictions. Since the overextension dataset is not an exhaustive record
of child speech, this performance measure should be seen as a lower bound on the ability of the
model to reconstruct children’s overextension strategies.



Table S3: Top 5 model-predicted word choices for a random sample of the overextension dataset,
stratified by correctness of model predictions. The upper panel shows examples for which the
model predicts the true child production, and the lower panel shows examples for which model
predictions do not include the child word. Each row displays the child production and intended
referent from the overextension dataset, and the top 5 words predicted by the model, all denoted

by their corresponding WordNet synsets.

Production Referent 1 2 3 4 5
apple.n.01 banana.n.02 apple.n.01 orange.n.01  fruit.n.01 pea.n.02 juice.n.01
horse.n.01 deer.n.01 elk.n.01 animal.n.01  sheep.n.01 cow.n.01 horse.n.01
truck.n.01 train.n.01 car.n.01 bus.n.01 truck.n.01 bicycle.n.01 toy.n.03
sock.n.0l1 stocking.n.01 shoe.n.01 sock.n.01 hat.n.01 shirt.n.01 chair.n.01
dad.n.01 man.n.01 son.n.01 girl.n.01 baby.n.01 dad.n.01 animal.n.01
bicycle.n.01 motorcycle.n.01 | car.n.01 bicycle.n.01 truck.n.0l wheel.n.01  train.n.01
catsup.n.0l  mayonnaise.n.01 | cheese.n.0l1 egg.n.02 peanut_butter.n.01 catsup.n.01 juice.n.01
ball.n.01 marble.n.02 ball.n.01 toy.n.03 chair.n.01 table.n.02 box.n.01
cheese.n.01  butter.n.01 cheese.n.01 milk.n.01 food.n.01 egg.n.02 toast.n.01
shoe.n.01 slipper.n.01 shoe.n.01 sock.n.01 blanket.n.01 hat.n.01 boot.n.01
kitten.n.01  horse.n.01 domestic_ass.n.01 pony.n.01 cow.n.01 animal.n.01  hog.n.03
cow.n.01 fish.n.01 tuna.n.03 animal.n.01  duck.n.01 child.n.01 baby.n.01
cat.n.0l lamb.n.01 sheep.n.01 animal.n.01  kitten.n.01 baby.n.01 dog.n.01
ball.n.01 peach.n.03 apple.n.01 orange.n.01  fruit.n.01 plum.n.02 grape.n.0l
horse.n.01  jaguar.n.Ol tiger.n.02 animal.n.01  lion.n.01 bear.n.01 cat.n.01
catsup.n.01  dressing.n.01 food.n.01 juice.n.01 cheese.n.01 pizza.n.01 pickle.n.01
bubble.n.01 marble.n.02 ball.n.01 toy.n.03 chair.n.01 table.n.02 box.n.01
horse.n.01 dog.n.01 puppy.n.0l animal.n.01  cat.n.0l kitten.n.01  kitty.n.04
cat.n.01 hog.n.03 cow.n.01 baby.n.01 animal.n.01 dog.n.01 bear.n.01
banana.n.02 tomato.n.01 apple.n.01 potato.n.01  juice.n.0l carrot.n.03  cheese.n.01

6 Production-comprehension results under an alternative com-
prehension model

Section 6.2 in the main text shows that our models replicate the observed patterns of overexten-
sion in production and comprehension, as well as the asymmetries between the two—namely, that
children often overextend words in production that they understand correctly in comprehension.
Since our production and comprehension models in Equations 1 and 4 share the same underlying
multimodal semantic space and differ in the choice of prior, one could ask whether the predicted
asymmetry is entirely due to the choice of a frequency prior for production and uniform prior for
comprehension.

Here, we show that while this is not the case and that our main results also hold under an alter-
native comprehension model that uses a frequency prior for referents, there is at least one aspect of
empirical data that our original formulation with different priors for production and comprehension
captures better than the alternative model we present here. In other words, both the construction



of multimodal semantic space and choice of priors for production and comprehension seem to
contribute to the best explanation of empirical data, supporting the hypotheses we proposed in the
main text.

Concretely, we specify the following model of overextension in comprehension:

p(wle)p(e)
Leep p(wld)p(c')

The likelihood term p(w|c) measures the appropriateness of word w to refer to concept ¢, and
is defined by the same multimodal semantic similarity function as the other models: p(w|c) =
fsim(cw|c), where ¢, is the concept corresponding to word w. Then, crucially, we define the prior
p(c) over referents to be proportional to their corresponding word frequencies in child-directed
speech:

2

Pcomp (C’W) =

_ F(we)

Zw’ ev F (W/)
where w, is the word corresponding to concept ¢, and F (w,) is the total frequency of word w, in a
representative corpus of children’s linguistic environment.

Figure S3 shows the empirical data and model predictions under the same experimental settings
as in Section 6.2. We observe that the model still captures the main empirical trends: performance
in production is inferior for late nouns than for early nouns, and performance in production is
overall inferior to performance in comprehension.

On the other hand, one aspect in which this model does not match empirical data as well as our
original model is in the difference in comprehension performance between early and late nouns,
which is predicted by the model but not shown in the empirical data; this discrepancy suggests that
the role of word frequency is not as large in comprehension as in production, as we proposed in
our original formulation. However, it is worth noting that while word frequency did not seem to
affect comprehension in this particular lab study, it could still play a role in comprehension under
different experimental settings; our framework opens the avenue for future empirical work to test
this hypothesis rigorously. Nevertheless, by showing that our main results are robust to the choice
of prior, we verified that our probabilistic formulation, together with the multimodal semantic
space, capture patterns of young children’s linguistic abilities in production and comprehension.

p(c) 3)

7 Validation of linguistic data from McDonough (2002)

The computational replication of McDonough [1] in Section 6.2 in the main text follows the orig-
inal experiment in dividing the stimuli into early and late items (in age of acquisition). Figure S4
shows that the relative frequency data collected from child-directed speech reflects this division,
i.e., on average, early nouns are more frequent than late nouns. This result verifies that our data is
in sufficient agreement with [1] for a meaningful computational reproduction.
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Figure S3: Results of comprehension and production experiments from empirical data of Mc-
Donough [1] and from reproduction under models of production and comprehension with
frequency-based priors. Each bar shows the proportion of correct responses (referent selection
in comprehension, and word utterance in production). Comprehension bars show performance
over 14 triplets of stimuli, and production bars show performance over 16 early nouns and 14 late
nouns. Error bars represent bootstrap 95% confidence intervals.

8 Vocabulary from early childhood

Table S4 shows the approximate vocabulary from early childhood extracted from Wordbank and
used in our analyses, with each word manually coded as a WordNet [2] synset to enable its repre-
sentation in the semantic space.

Table S4: Approximate vocabulary from early childhood. Each cell shows the WordNet synset
corresponding to one word in the vocabulary.

Synset
airplane.n.01 alligator.n.02 animal.n.01 ant.n.01
apple.n.01 applesauce.n.01 aunt.n.01 baby.n.01
baby buggy.n.01  bag.n.04 ball.n.01 balloon.n.01
banana.n.02 basement.n.01 basket.n.01 bat.n.01
bath.n.01 bathroom.n.01 bathtub.n.01 beach.n.01
bean.n.01 bear.n.01 bed.n.01 bedroom.n.01
bee.n.01 beer.n.01 belt.n.02 bench.n.01
beverage.n.01 bicycle.n.01 bird.n.01 bite.n.04
black.n.01 blanket.n.01 block.n.03 blue.n.01
boat.n.01 book.n.01 boot.n.01 bottle.n.01
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bowl.n.01
brush.n.02
bulge.n.01
butter.n.01
camera.n.01
car.n.01
chair.n.01
chicken.n.02
church.n.02
coat.n.01
comb.n.01
crayon.n.0l
dad.n.01
dinner.n.01
doll.n.01
drawer.n.01
dwelling.n.01
face.n.01
flag.n.01
foot.n.01
frog.n.01
garbage.n.03
girl.n.01
grandfather.n.01
green.n.01
hammer.n.02
helicopter.n.01
hose.n.03
ice_lolly.n.01
jello.n.01
kitten.n.01
lamb.n.01
lion.n.01
lunch.n.01
menagerie.n.02
mother.n.01
movie.n.01
necklace.n.01
onion.n.01
paint.n.01
patty.n.01
pen.n.01
person.n.01
pizza.n.01
plum.n.02

box.n.01
bubble.n.01
bunny.n.02
butterfly.n.01
camping.n.01
carrot.n.03
chamberpot.n.01
child.n.01
clock.n.01
coca_cola.n.01
corn.n.01
crib.n.01
dance.n.02
dish.n.01
domestic_ass.n.01
dress.n.01
egg.n.02
fire_engine.n.01
flower.n.01
fork.n.01
fruit.n.01
garden.n.01
glass.n.02
grandma.n.01
gym_shoe.n.01
hand.n.01
hen.n.01
house.n.01
jacket.n.01
juice.n.0l1
kitty.n.04
lamp.n.01
lip.n.02
ma.n.01
milk.n.01
motorcycle.n.01
muffin.n.01
nurse.n.01
orange.n.01
pancake.n.01
pea.n.02
pencil.n.01
pickle.n.01
plant.n.02
pony.n.01

breakfast.n.01
bucket.n.01
bus.n.01
button.n.01
can.n.01
cat.n.01
cheese.n.01
chip.n.04
cloud.n.02
cock.n.04
cow.n.01
cup.n.01
deer.n.01
doctor.n.01
door.n.01
dryer.n.01
elephant.n.01
fireman.n.04
fly.n.01
french_fries.n.01
game.n.09
gelatin.n.02
glove.n.02
grape.n.01
hair.n.06
hat.n.01
hog.n.03
ice.n.01
jar.n.01
key.n.01
knife.n.01

lawn_mower.n.01

living_room.n.01
man.n.01
mitten.n.01
mouse.n.01
nail.n.02
nut.n.01
oven.n.0l
paper.n.01
peach.n.03
penguin.n.01
picnic.n.03
plate.n.04
pop.n.02
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broom.n.01
bug.n.01
business_district.n.01
cake.n.03
candy.n.01
catsup.n.01
chewing_gum.n.01
chocolate.n.03
clown.n.02
coffee.n.01
cracker.n.01
cupboard.n.01
diaper.n.01
dog.n.01
doughnut.n.02
duck.n.01
elk.n.01
fish.n.01
food.n.01
friend.n.01
garage.n.0l
giraffe.n.01
goose.n.0l
grass.n.01
hamburger.n.01
head.n.01
horse.n.01
ice_cream.n.01
jean.n.01
kitchen.n.01
lady.n.01
light.n.02
lollipop.n.02
melon.n.01
monkey.n.01
mouth.n.01
napkin.n.01
octopus.n.02
owl.n.01
party.n.02
peanut_butter.n.01
people.n.01
pillow.n.01
playground.n.02
popcorn.n.01



porch.n.01
pumpkin.n.O1
raisin.n.01

rocking_chair.n.01

sandwich.n.01
scissors.n.01
shop.n.01
shower.n.01
skate.n.01

slide_fastener.n.01

sofa.n.01
spectacles.n.01
stairs.n.01
strawberry.n.01
sweater.n.01
tea.n.01
tiger.n.02
toothbrush.n.01
train.n.01
trouser.n.01
turtle.n.02
vitamin.n.01
watch.n.01
window.n.01
zebra.n.01

potato.n.01
puppy.n.01
rear.n.05
roof.n.01
sauce.n.01
sheep.n.01
short_pants.n.01
sidewalk.n.01
sky.n.01
slipper.n.01
son.n.01
spoon.n.01
star.n.03
street.n.01
swing.n.02
teacher.n.01
tights.n.01
towel.n.01
tray.n.01
truck.n.01
underpants.n.01
walker.n.04
water.n.06
wolf.n.01

pretzel.n.01
puzzle.n.02
refrigerator.n.01
room.n.01
scarf.n.01
shirt.n.01
shoulder.n.01
sink.n.01
sled.n.01
snow.n.01
soup.n.01
sprinkler.n.01
stick.n.01
sun.n.01
table.n.02
telephone.n.01
toast.n.01
toy.n.03
tree.n.01
tuna.n.03
vacuum.n.04
wash.n.01
wheel.n.01
yellow.n.01

pudding.n.01
radio.n.01
rock.n.01
salt.n.02
school.n.02
shoe.n.01
shovel.n.01
sister.n.01
slide.n.04
sock.n.01
spaghetti.n.01
squirrel.n.01
stove.n.01
swab.n.02
tape.n.04
television.n.01
tooth.n.02
tractor.n.01
tricycle.n.01
turkey.n.01
vanilla.n.01
washer.n.03
white.n.02
yogurt.n.01
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Figure S4: Relative frequencies of 16 early and 14 late nouns from McDonough [1] in child-
directed speech. Error bars represent bootstrap 95% confidence intervals.
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