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Young children extend known words to refer to novel objects, a phenomenon com-

monly known as overextension. This ability evidences linguistic creativity in early child-

hood and depends on a critical process of complexive thinking (Vygotsky, 1962). Psy-

chological research has indicated that overextension relies on diverse semantic relations

that link existing and overextended referents of a word, drawing on taxonomic, ana-

logical, and predicate-based knowledge. Previous work has also observed asymmetrical

behaviour in overextension between production and comprehension. However, no exist-

ing research has provided a unified framework to account for the overextension strategies

across a comprehensive array of words and the asymmetries in overextension behaviour.

I propose a computational theory that explains children’s overextension under minimal

parameterization. My framework constructs overextension behaviour with a multimodal

fusion of knowledge derived from lexical semantics, deep neural networks, and psycho-

logical experiments. The framework captures the asymmetries between production and

comprehension with an effort-based prior and suggests how children’s word usage might

converge to conventional usage through development. I tested my approach against a

novel meta dataset curated from the developmental literature that includes 236 reported

cases of children’s overextension. My model reproduced overextended word-refrent pairs

with 84% accuracy, captured 55% of children’s word choices in the top-5 predictions, and

replicated the empirical patterns of production and comprehension in overextension. This
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work provides a formal approach to characterizing linguistic creativity of word meaning

extension in early childhood.
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Chapter 1

The problem of overextension

Young children creatively stretch known words to refer to novel objects, a phenomenon

known as overextension (Clark, 1978). For example, children might say dog to refer to

a squirrel, ball to refer to a balloon, or key to refer to a door. This intriguing phe-

nomenon, which mostly takes places between 1 and 2.5 years in development (Clark,

1973), showcases children’s early capacity for creative use of language under cognitive

and communicative pressures (Bloom, 1973), as illustrated in Figure 1.1. This creative

use of words toward novel meanings, or word sense extension, is not only attested in

child language acquisition, but it is also reflected in historical meaning change, e.g., we

extended the meaning of mouse from a rodent to a computer device. In this thesis, I ex-

plore the origin of sense extension by asking how the cognitive capacity for overextension

in childhood can be characterized formally.

Children’s overextended word choices rely on their nascent semantic representations

of concepts, and how those relate to adult word meanings (Clark, 1973). Critical to the

present work, Rescorla (1980) showed that children draw from diverse semantic relations

in their lexical innovations. In her diary study of six children, she identified three main

types of relations between core and overextended meanings of a word, summarized as 1)

categorical relation: overextension by linking objects within a taxonomy (e.g., dog refer-
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Chapter 1. The problem of overextension 2

ball

child caretaker
Figure 1.1: Illustration of overextension in child-caretaker communication.

ring to a squirrel); 2) analogical relation: overextension by linking objects with shared

perceptual properties (e.g., ball referring to an apple); and 3) predicate-based relation:

overextension by linking objects that co-occur frequently in the environment (e.g., key

referring to a door). An open question this work addresses is how to combine these

types of relations to predict overextension strategies in early childhood. The framework

I propose grounds word choices in the construction of a multimodal semantic space that

underlies a probabilistic model of overextension.

Another puzzling aspect of overextension is its asymmetric patterns in children’s lin-

guistic production and comprehension. In addition to the vast literature documenting

children’s overextensions in production (e.g., Barrett, 1978; Clark, 1973; Rescorla, 1980),

classic studies have shown that children’s comprehension of words can also similarly

overextend to other referents (Chapman & Thomson, 1980; Mervis & Canada, 1983;

Thomson & Chapman, 1977). Although the extent of overextension in comprehension

compared to production under different experimental or naturalistic conditions has been

the subject of extensive debate (Chapman & Thomson, 1980; Fremgen & Fay, 1980;

Mervis & Canada, 1983), two observations have been widely reproduced (Behrend, 1988;
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Naigles & Gelman, 1995) and serve to ground most of this debate: 1) some overexten-

sion does occur in comprehension; and 2) children often overextend words in production

even when they correctly comprehend the more appropriate adult word. This apparent

asymmetry follows the common trend of comprehension leading production in linguis-

tic development (Clark & Hecht, 1983), and psychologists have suggested that cognitive

effort in word retrieval might help explain this disparity (Fremgen & Fay, 1980; Gershkoff-

Stowe, 2001; Huttenlocher, 1974; Thomson & Chapman, 1977). My framework formally

addresses this proposal by incorporating a measure of effort based on word frequency

into a probabilistic model of overextension in production and comprehension.

A third question relates to what cognitive representations and processes support the

convergence of children’s language from early overextension patterns to conventional

adult word meanings. Clark (1973) suggested a semantic narrowing hypothesis, which

proposes that as children acquire semantic features restricting the meaning of a word,

overextended referents are progressively excluded from the extension of that word; for

example, dog could be overextended to a squirrel under the sole feature “has four legs”,

but the addition of feature “barks” would prevent this use of the word dog. However, an

open question is how to integrate semantic narrowing with the observations that children

rely on diverse semantic relations in their overextended word choices (Rescorla, 1980),

or that the range of children’s overextensions of a word in controlled experiments seems

to defy an explanation based on a stable conjunction of features of a word (Thomson &

Chapman, 1977). The model I propose encodes a developmental component that supports

semantic narrowing over a multimodal space of semantic relations, and I show how this

model can offer predictions ranging from early overextended speech to conventional adult

word meanings.

Hence, in this work I investigate a formal computational theory of children’s overex-

tension, and offer computational answers to two fundamental topics of investigation

in child development: what semantic representations and processes underlie children’s
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overextension, and how can a unified model explain not only the occurrence of overexten-

sion in both production and comprehension, but also the asymmetries between the two?

I show that this framework offers substantial predictability of children’s overextended

word choices from an extensive dataset collected from the developmental literature, and

replicates patterns of production and comprehension observed in empirical studies of

children’s overextension. Furthermore, I show that this framework accounts for some of

the developmental trends in the convergence from early overextended language to adult

speech.

Another contribution of this work is an extensive dataset of noun pairs in overex-

tension collected from a survey of developmental studies to evaluate my models. This

dataset is described in more detail in Section 5.1 and is publicly available1 for the research

community.

This thesis is organized as follows. Chapter 2 surveys the relevant literature in de-

velopmental psychology on the problem of overextension, summarizing the main theories

and open questions in the field. Chapter 3 reviews computational approaches to word

learning, identifying how the present work relates to classic works in the literature, and

it contrasts with previous research directions. Chapter 4 introduces the computational

formulation of the proposed theory, specifying the probabilistic framework for children’s

overextension and the construction of the multimodal semantic space underlying that

framework. Chapter 5 presents the data used in this study, including the novel dataset

of children’s overextension, as well as vocabulary and word frequency data. Chapter 6

presents the experimental results of model evaluations against the dataset of children’s

overextension and empirical data of production and comprehension from past experi-

ments, and shows predictions of developmental trends in children’s word choices. Chap-

ter 7 discusses the findings of this work, summarizing the implications for research in

developmental psychology and computational models of language acquisition, and sug-

1See Appendix D. I would especially like to thank Leslie Rescorla for providing a digitalized version
of her dissertation work, from which I sourced precious data for this study.

Renato Ferreira Pinto Junior
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gests directions for future research and extensions to historical language change and

cross-linguistic variation.



Chapter 2

Psychological literature on

overextension

Children’s overextensions are intimately related to the notion of complexive thinking,

which Vygotsky (1962) characterized as a crucial stage of early concept formation. In a

classic example, a child first uttered quah to refer to a duck in a pond, then to bodies of

water, to liquids in general, including milk in a bottle, as well as to a coin with an eagle

imprinted on it, and subsequently other round, coin-like objects. Vygotsky named this

kind of structure chain complex, defined as a sequence of overextensions in which no single

attribute characterizes the whole chain, but each link can be explained by some semantic

relation. Vygotsky’s account resonates with works in philosophy and cognitive linguistics

which suggest that the complex structure of word meanings (e.g., Wittgenstein, 1953)

emerge from a chaining process (Lakoff, 1987), where each referent is linked to the next

in a chain-like formation.

Bowerman (1980) and Rescorla (1980) provided further evidence of complexive think-

ing in children’s language with empirical data favouring the claim that most of children’s

overextensions form what Vygotsky called associative complexes, whereby a central pro-

totype can be identified (e.g., a ball), and different semantic relations connect the central

6
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element to referential targets (e.g., apples, balloons, and beads). My framework draws

from the notion of complexive thinking by relating a prototypical referent of a word to

its overextended referents via multimodal semantic relations.

Psychologists have also investigated what cognitive mechanisms might underlie chil-

dren’s overextension in production and comprehension. Proposed theories can be clas-

sified into three main hypotheses: incomplete semantic system, pragmatic choice under

limited vocabulary, and retrieval error.

The first hypothesis (Clark, 1973; Kay & Anglin, 1982; Mervis, 1987) posits that

overextensions are caused by incomplete or loose semantic representations of word mean-

ings. That is, children have incorrect definitions of words, and hence do not properly

distinguish between regular and overextended word uses. While this theory helps explain

the semantic leaps that children make in overextension, it is not sufficient to explain di-

vergences between production and comprehension, because it predicts that once a word

is correctly comprehended, it should be produced in conventional adult extension as well.

However, this is not always the case, since correct comprehension coupled with overex-

tended production of words has been widely documented in the literature (Fremgen &

Fay, 1980; Rescorla, 1981; Thomson & Chapman, 1977).

A second proposal suggests that overextended word choices are pragmatic strategies

to enable communication beyond vocabulary limitations (Bloom, 1973). In other words,

children stretch word meanings to refer to objects whose adult words they do not know.

This theory, while consistent with the observation that children often overextend known

words to objects whose adult words they will acquire later (Rescorla, 1981), does not

explain how children often overextend words to referents whose adult words they under-

stand correctly in comprehension.

A third interpretation of overextension is the retrieval error hypothesis (Fremgen

& Fay, 1980; Gershkoff-Stowe, 2001; Huttenlocher, 1974; Thomson & Chapman, 1977),

which suggests that overextension in production can be the result not only of a missing
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vocabulary entry, but also of difficulty in retrieving the correct word at production time,

causing a more accessible word to be retrieved and overextended instead. This hypoth-

esis complements the pragmatic interpretation with an account of how words that are

correctly comprehended can give way to overextension in production.

I suggest that a combination of these theories can best explain the diversity of phenom-

ena in children’s overextension. In particular, my computational framework incorporates

multimodal semantic relations modulated by a developmental sensitivity parameter, thus

expressing the semantic properties of overextension; a vocabulary that constrains possible

word choices in the face of potentially unbounded communicative needs; and a cognitive

effort-saving word prior that captures retrieval difficulty in a probabilistic setting, and

enables the model to reproduce asymmetries between overextension in production and

comprehension.

It is important to highlight that overextension is a general phenomenon that extends

beyond just nouns (Clark, 1973). Psychologists have observed that children also system-

atically overextend a variety of other classes of words, for example: antonym pairs re-

lated to quantity (less/more; Donaldson & Balfour, 1968) and time (before/after ; Clark,

1971); dimensional terms such as big for more specialized properties including tall and

high (Clark, 1972); verbs such as ask and tell (Chomsky, 1969); kinship terms such as

brother and sister (Piaget, 1928); spatial terms, with one general purpose term standing

in for a variety of spatial relations (Clark, 1978), among others.

In this work, I focus on overextension of nouns, but some of the computational prin-

ciples presented here, such as the probabilistic formulation integrating semantic relations

and cognitive limitations, may still apply to overextension in some of these other do-

mains. I leave it for future work to explore how to broadly define semantic relations

applicable to other classes of words.



Chapter 3

Computational approaches to word

learning

The computational approach to chilren’s overextension presented here relates to the

broader body of works in computational models of word learning and language ac-

quisition. One important framework in this field is cross-situational word learning,

which posits that children infer the meanings of words by exploiting the statistical co-

occurrences of words in utterances and meanings in different situations (Fisher, Hall,

Rakowitz, & Gleitman, 1994; Gleitman, 1990; Pinker, 1984; Siskind, 1996). Cross-

situational word learning models have been developed under different methodological

frameworks, such as symbolic (Siskind, 1996), connectionist (e.g., Davis, 2003; Li, Farkas,

& MacWhinney, 2004; Li, Zhao, & Mac Whinney, 2007; Plunkett, Sinha, Møller, &

Strandsby, 1992; Regier, 2005), associative probabilistic (e.g., Fazly, Alishahi, & Steven-

son, 2010; Kachergis, Yu, & Shiffrin, 2017; Yu & Ballard, 2007), and Bayesian (e.g., Frank,

Goodman, & Tenenbaum, 2009; Frank, Ichinco, & Saxe, 2009; Goodman, Tenenbaum,

& Black, 2008). In contrast to this rich area of research, which focuses on modelling

children’s behaviour in learning conventional word meanings, my work models children’s

linguistic innovations under communicative and cognitive pressures.

9
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My computational formulation of a multimodal semantic space that underlies overex-

tended word choices connects to previous work in visually-grounded word learning (Lazari-

dou, Chrupa la, Fernández, & Baroni, 2016; Roy & Pentland, 2002; Yu, 2005). This

research direction attempts to use visual features in the environment to model word

learning as a process grounded in perception. My framework contrasts with these works

by employing visual features to enable analogical use of language in overextension.

Although computational perspectives on children’s linguistic innovations are still in

their infancy, some computational works have begun exploring facets of this problem.

Alishahi and Stevenson (2005, 2008) provided a probabilistic model of early argument

structure acquisition that displayed a transient period of overgeneralized verb argument

structure (e.g., Mary fall toy) followed by correct production. In another research di-

rection, Beekhuizen, Fazly, and Stevenson (2014) and Beekhuizen and Stevenson (2016)

studied the relationship between cross-linguistic variation in lexicalization and children’s

overextension of spatial prepositions an colour terms, and suggested that both word

frequency and universal cognitive biases reflected in cross-linguistic data play a role chil-

dren’s overextension patterns. Contrasting with these works, my approach provides an

explicit construction of the semantic relations that may underlie children’s conceptual

leaps in overextension, and shows how these relations can be combined into a predictive

model of overextension. Another novel aspect of this work is the exploration of the rela-

tionship between production and comprehension, and a formal proposal of how cognitive

effort can explain the asymmetry between the two. Finally, the flexible way in which my

proposed models combine large-scale data sources into a parsimonious model enables a

breadth of evaluations that goes beyond previous works; I evaluate my models against

an extensive dataset of overextension over English nouns, shedding light into the predic-

tive power of the models, the contribution of each component of the framework, and the

limitations to be addressed in future work.



Chapter 4

Computational formulation of theory

I model overextension as a communicative process in which a child, in production, wishes

to refer to a novel object given vocabulary and cognitive limitations (see Figure 1.1),

and, in the opposite comprehension scenario, needs to infer the intended meaning of an

utterance given potential referents in the environment. The framework has two main

components: a generic probabilistic formulation of overextension in production and com-

prehension, and the specification of a multimodal semantic space that underlies this

probabilistic process.

4.1 Probabilistic framework

4.1.1 Production

Consider a child with limited vocabulary V who wishes to refer to some concept c in

the environment (e.g., a balloon), where the adult word for c may or may not be in the

child’s vocabulary. Given a candidate word w ∈ V for production (e.g., ball), I specify

the following probabilistic model:

pprod(w|c) =
p(c|w)p(w)∑

w′∈V p(c|w′)p(w′)
(4.1)

11
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In this formulation, the likelihood p(c|w) is the appropriateness of categorizing con-

cept c under word w, and is defined as a density function (specified in the next section)

that depends on the semantic similarity between c and cw (the concept corresponding to

word w):

p(c|w) = fsim(c|cw) (4.2)

The prior p(w) encodes the notion of cognitive effort, that is, some words are easier

to retrieve than others. Following previous work showing the effect of word frequency on

overextension (Beekhuizen & Stevenson, 2016), I define p(w) as a frequency-based word

prior:

p(w) =
F (w)∑

w′∈V F (w′)
(4.3)

where F (w) is the total frequency of word w in a representative corpus children’s linguistic

environment.

4.1.2 Comprehension

In the case of comprehension, the child hears word w and must estimate the probability

that it refers to some concept c in the referential environment. The comprehension model

recovers the similarity-based measure used above in its probabilistic formulation:

pcomp(c|w) =
fsim(c|cw)∑

c′∈E fsim(c′|cw)
(4.4)

where E is the set of possible referents in the child’s environment.
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4.2 Multimodal semantic space

I define a multimodal semantic space that captures the three types of relational features

in Rescorla (1980): categorical relation, visual analogy,1 and predicate-based relation.

I construct these relational features using a fusion of resources drawn from linguistics,

deep learning networks, and psychological experiments, as illustrated in Figure 4.1.

animal

bird

mammal

dog

squirrel

duck

Categorical relation

key door

open windowlock

truck

balloon

ballVisual relation

Predicate-based relation

Figure 4.1: Types of semantic relations in multimodal space.

4.2.1 Categorical relation

I define the categorical relation between two referents via a standard distance measure dc

in natural language processing by Wu and Palmer (1994), based on taxonomic similarity.

Concretely, for two concepts c1 and c2 under a taxonomy T (i.e., a hierarchy), the distance

is:

1While Rescorla defined analogy to include broader perceptual features, such as auditory, I restrict
this investigation to visual features in the interest of data availability for a large-scale study.
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dc(c1, c2) = 1− 2NLCS

N1 +N2

(4.5)

NLCS denotes the depth of the least common subsumer of c1 and c2 in the taxonomy,

and N1 and N2 denote the depths of the two concepts. This distance measure is bounded

between 0 and 1, and is larger for concepts that are more distantly related (i.e., share

fewer common ancestors) in the taxonomy. Under this measure, concepts from the same

semantic domain (such as dog and squirrel) should yield a lower distance than those

from across domains (such as ball and balloon). To derive the categorical features, I took

the taxonomy from WordNet (Miller, 1995) and annotated words by their corresponding

synsets in the database. I used the NLTK package (Bird & Loper, 2004) to calculate

similarities between referents for this feature.

4.2.2 Visual analogical relation

I define the visual analogical relation by cosine distance between vector representations

of referents in visual embedding space. In particular, I extracted the visual embeddings

from convolutional neural networks— VGG-19 (Simonyan & Zisserman, 2015), a state-of-

the-art convolutional image classifier pre-trained on the ImageNet database (Deng et al.,

2009)—following procedures from work on visually-grounded word learning (Lazaridou

et al., 2016). Under this measure, concepts that share visual features (such as ball and

balloon, both of which are round objects) should yield a relatively low distance even

if they are remotely related in the taxonomy. To obtain a robust visual representation

for each concept c, I sampled a collection of images I1, . . . , Ik up to a maximum of

256 images from ImageNet. With each image Ij processed by the neural network, I

extracted the corresponding visual feature vector from the first fully-connected layer

after all convolutions: vcj . I then averaged the sampled k feature vectors to obtain an

expected vector vc for the visual vector representation of c.
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4.2.3 Predicate-based relation

I define the predicate-based relation by leveraging the psychological measure of word

association. I assume that two referents that frequently co-occur together should also be

highly associable, e.g., in the case of key and door. Specifically, I followed the procedures

in De Deyne, Navarro, Perfors, Brysbaert, and Storms (2018) and took the “random

walk” approach to derive vector representations of referents in a word association prob-

ability matrix. This procedures generates word vectors based on the positive pointwise

mutual information from word association probabilities propagated over multiple leaps

in the associative network. As a result, concepts that share a common neighbourhood

of associates are more likely to end up closer together in the vector space. De Deyne

et al. (2018) showed that this measure yields superior correlations with human semantic

similarity judgements in comparison to other measures of association. I used word asso-

ciation data from the English portion of the Small World of Words project (De Deyne

et al., 2018). The data is stored as a matrix of cue-target association probabilities for a

total of 12292 cue words. I used the implementation provided by the authors2 to compute

vector representations from the association probability matrix. I used cosine distance to

compute predicate-based distances between pairs of referent vectors.

4.2.4 Multimodal space of relations

To complete the model formulation, I integrate the three types of semantic relations

specified above into a density function based on concept similarity that measures the

likelihood of concepts being associated in overextension in the probabilistic framework.

I take the Gaussian-Euclidean form of the generalized context model (GCM) or exem-

plar model of categorization (Nosofsky, 1986), which defines the similarity between two

concepts c1 and c2 as a decaying function of the distance separating them in psychological

space. First, the model computes the distance between the concepts as the Euclidean

2https://github.com/SimonDeDeyne/SWOWEN-2018
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norm over the distance components in each psychological dimension:

d(c1, c2) =
[
dc(c1, c2)

2 + dv(c1, c2)
2 + dp(c1, c2)

2
]1/2

(4.6)

In this formulation, the psychological dimensions correspond to the three types of

multimodal relations: categorical distance dc, visual analogical distance dv, and predicate-

based distance dp. Then, a Guassian kernel computes concept similarity as a decaying

function of psychological distance:

sim(c1, c2) = exp

(
−d(c1, c2)

2

h

)
(4.7)

This similarity measure is modulated by a single kernel width parameter h, which

controls the sensitivity of the model to the distance function. The magnitude of h de-

termines how slowly the similarity measure decreases with respect to distance in the

multimodal relations. I empirically estimate the value of h from data in the experiments.

In practice, this similarity measure readily yields the density function required by the

production and comprehension models; formally, it must be normalized to form a proper

density function:

fsim(c|cw) =
sim(c, cw)

Zh

(4.8)

where Zh depends only on h (concretely, Zh =
∫

exp
(
−x2

h

)
dx), and thus need not be

explicitly computed in the models.

4.2.5 Orthogonality and assumptions

To ensure that the three types of relational features provide complementary information,

I calculated their inter-correlation based on the 236 concept pairs that I used for my

analyses. Although correlations were significant (p < .001), coefficients were low or

moderate (Spearman’s ρ; category & visual: 0.238; category & predicate: 0.445; visual
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& predicate: 0.421), suggesting that each feature contributes to information encoded

in the multimodal semantic space. I further explore the predictive contribution of each

multimodal feature to overextension in Chapter 6.

One potential limitation of my construction of multimodal space is that some of the

data sources, namely taxonomy and word association, come from adult levels of knowl-

edge (taxonomy) or from experiments performed with adult participants (word associa-

tion); unfortunately, child-specific sources of similar data are scarce for the purposes of

my large-scale experiments. While I acknowledge that features obtained from these data

might not perfectly correspond to children’s representations, I expect these extensively

tested data sources to provide useful signal to my experiments, which I confirm by corrob-

orating developmental psychologists’ hypotheses in a formal predictive setting. Future

work could explore the representational and predictive effects of using child-specific se-

mantic features, either by collecting such data or by attempting to simplify the adult-level

features in a systematic way.



Chapter 5

Data

I collected linguistic data from three sources: 1) Metadata of child overextension from

the literature; 2) Vocabulary of early childhood; and 3) Word frequencies from corpora

of child-caretaker speech.

5.1 Metadata of child overextension

I performed a meta survey of 12 representative studies from developmental psychology

and collected a total of 323 overextension example word-referent pairs.1 Each pair consists

of an overextended word and the novel referent that word has been extended to. I kept

word-referent pairs of nouns that overlapped with the available data from the three

features I described, resulting in a total of 236 word-referent pairs. Table 5.1 shows

examples from this meta dataset and their sources from the literature; see Appendix D

for the complete dataset.

While the data I used for analysis may not constitute an unbiased sample of child

overextension, two factors help to alleviate this concern. First, I followed a systematic

approach in data collection by recording every utterance-referent pair in which both

constituents could be denoted by one noun. Second, the diversity of the sources that I

1I thank Yu B Xia for contributing to the preliminary collection of child overextension data.

18
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Table 5.1: Examples of overextension data, one for each source included in this study.

Uttered word → Referent Source

ball → onion Thomson and Chapman (1977)
car → truck Fremgen and Fay (1980)
apple → orange juice Rescorla (1981)
ball → marble Barrett (1978)
fly → toad Clark (1973)
cow → horse Gruendel (1977)
apple → egg Rescorla (1976)
truck → bus Rescorla (1980)

examined reduces the possibility of biasing the sample from any individual study.

5.2 Vocabulary from early childhood

To approximate children’s vocabulary in early childhood, I collected nouns reported to be

produced by children of up to 30 months of age from the American English subset of the

Wordbank database (Frank, Braginsky, Yurovsky, & Marchman, 2017). This database

is based on the MacArthur-Bates Communicative Development Inventories (Fenson et

al., 2006) and aggregates average age of acquisition for over 680 English words. Because

overextension has been typically reported to occur between 1 and 2.5 years (Clark, 1973)

(that covers the range in Wordbank), I constructed a vocabulary V using all the nouns

from Wordbank for which required semantic features could be obtained. The resulting

vocabulary includes 317 out of the 322 nouns from the database (see Appendix E for a

complete list).

5.3 Word frequencies in child-caretaker speech

To approximate the distribution of nouns in young children’s environments, I collected a

large set of child-caretaker speech transcripts from the CHILDES database (MacWhin-

ney, 2014). Concretely, I collected all transcripts from studies performed in naturalistic
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child-caretaker situations for children between 1 and 2.5 years (the typical overextension

period), resulting in 1713 transcripts with over 200K noun tokens in total.2

I measured the relative frequency of each noun by dividing its total number of token

occurrences across all transcripts by the total number of noun tokens. Then, to alleviate

the effect of minor spelling differences or variability in child versions of adult words (e.g.,

mama/mommy/mom), I counted the frequency of each entry in the overextension dataset

as the total frequency of the lemma variations of its synset in the WordNet database.

2Specifically, I collected transcripts from the studies of Bates, Bretherton, and Snyder (1988);
Bernstein-Ratner (1985); Bloom (1973); Bloom, Hood, and Lightbown (1974); Braunwald (1971); Brent
and Siskind (2001); Brown (1973); M. J. Demetras, Post, and Snow (1986); M. J.-A. Demetras (1986);
Feldman and Menn (2003); Hayes and Ahrens (1988); Higginson (1985); Kuczaj II (1977); Leubecker-
Warren and Bohannon III (1984); MacWhinney (2014); Masur and Gleason (1980); McCune (1995);
McMillan (2004); Morisset, Barnard, and Booth (1995); Newman, Rowe, and Ratner (2016); Ninio,
Snow, Pan, and Rollins (1994); Rollins (2003); Sachs (1983); Suppes (1974); Valian (1991).



Chapter 6

Results

I evaluate the proposed computational framework in three aspects: 1) model accu-

racy in predicting children’s word choices in overextension; 2) model reproduction of

the production-comprehension asymmetry; and 3) illustration of developmental trends

predicted by the model.

6.1 Predicting word choices in overextension

I evaluated the production model in Section 4.1 against the curated set of overextension

word-referent pairs, O = {(wi, ci)}, with respect to all words in the child vocabulary V .

For each pair, the model chooses the target word based on the given overextended sense

ci by assigning a probability distribution over words w in V . I assessed the model by

finding the maximum a posteriori probability (MAP) of all the overextension pairs under

the single sensitivity parameter h, which I optimized to the MAP objective function via

standard stochastic gradient descent:

max
h

∏
i

pprod(wi|ci;h, V ) = max
h

∏
i

p(ci|wi;h)p(wi)∑
w∈V p(ci|w;h)p(w)

(6.1)

To assess the contribution of the three relational features, I considered all possi-

21
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ble restrictions of the multimodal space, and thus tested the production model under

single features and all possible combinations of feature pairs, along with the full multi-

modal model consisting of categorical, visual analogical, and predicate-based relations.

I also compared these models under the frequency-based prior p(w) versus those under

a uniform prior, as well as a baseline model that chooses words only based on the prior

distribution.

I evaluated all models under two metrics: Bayesian Information Criterion and per-

formance curves.

The Bayesian Information Criterion (BIC) is a standard measure for probabilistic

models that considers both degree of fit to data (i.e., likelihood) and model complexity

(i.e., number of free parameters). The score is defined as BIC = log(n)k−2 log(L̂), where

n is the number of data points, L̂ is the maximized likelihood of the model, and k is the

number of free parameters (here, k = 0 for the prior-only baselines, and k = 1 for all

other models, which are parameterized by the kernel width h).

As a second assessment, I produced performance curves that measure model accuracy

at different numbers of allowed model predictions m. Concretely, for each level of m, I

measured the predictive accuracy of the model from its choice of top m words, or the

proportion of overextension pairs (wi, ci) for which the model ranks the correct production

wi among its top m predictions for referent ci.

Table 6.1 summarizes the BIC scores of the family of production models. I make three

observations. First, models that incorporate features performed better than the baseline

(i.e., lower in BIC scores), suggesting that children overextend words by making explicit

use of the semantic relations I considered. Second, models with the frequency-based

prior performed dominantly better than those with the uniform prior, suggesting that

word usage frequency (or cognitive effort) and semantic relations jointly affect children’s

word choices in overextension. Third, models with featural integration performed better

than those with isolated features (i.e., all features < feature pairs < single features
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Table 6.1: Bayesian Information Criterion (BIC) scores for production models with re-
spect to overextension dataset (N = 236).

Model
BIC score

frequency prior uniform prior

baseline 2471 2717

categorical (cat.) 1863 2093
visual (vis.) 1853 2041
predicate (pred.) 1817 2072

vis. + pred. 1732 1947
cat. + vis. 1682 1904
cat. + pred. 1646 1871

all features 1592 1812

in BIC score), suggesting that children rely on multiple kinds of semantic relations in

overextensional word choices.

Figure 6.1 further confirms these findings in performance curves that show the average

predictive performance under a range of m possible word choices: all features > feature

pairs > single features > baseline in the area under curves. Although Figure 6.1 shows

a large range of possible word choices to clearly contrast the performance trends of each

family of models, note that predictive performance is reasonable even within a smaller,

more plausible number of possible word choices: the full multimodal model correctly

predicts 55% of the overextension data in its top 5 word choices. In many of the cases of

incorrect prediction, the model still predicts words that are closely related to the target

referent, and since the overextension dataset cannot be taken as an exhaustive account of

child speech, this performance measure should be seen as a lower bound on the ability of

the model to reconstruct children’s overextension strategies. Appendix B shows sample

model outputs for both correct and incorrect predictions.

Figure 6.2 shows the estimated contribution of each semantic relation in the multi-

modal space toward characterizing the overextension dataset, obtained from a logistic

regression analysis that achieved 84% accuracy in distinguishing true overextension word
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Figure 6.1: Performance curves for production models showing cross-validated model ac-
curacies in reconstructing overextended word choices. Aggregated results (single features
and feature pairs) show mean accuracy over individual models; see Appendix B for a
fine-grained comparison of all models.

pairs from control pairs (see the complete analysis in Appendix A), along with some ex-

amples best explained by each multimodal feature that illustrate how the model captures

the different types of semantic relations on which children rely in overextension.
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35%
43%

22%

dog → squirrel
cow → zebra

flower → tree
airplane → submarine

apple → egg
hat → bowl
ball → orange
clock → telephone

apple → orange juice
key → door
tea → teapot

spoon → fork

categorical

visual

predicate

Figure 6.2: Percentage shares and examples explained by the three types of features from
the overextension dataset.

6.2 Predicting production-comprehension asymme-

try

To assess the ability of my model to capture the asymmetry between overextension in pro-

duction and comprehension, I performed a computational replication of the experimental

study conducted by McDonough (2002). That study tested children’s performance in

production and comprehension with respect to a set of nouns and corresponding visual

stimuli in four domains: animals, food, vehicles, and clothes. The 30 nouns were split into

two groups by age of acquisition (16 early and 14 late nouns) to test the hypothesis that

items typically learned early in development would suffer overextension less frequently

than those learned later in development.

In the production task, children were shown the stimuli in sequence and asked to
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Prompt: dog

Prompt: car

Figure 6.3: Two conditions in comprehension experiment devised by McDonough (2002).

name them. In the comprehension task, in each trial, experimenters showed a triplet of

stimuli, uttered a target word, and asked the child to find the stimulus corresponding to

the target word. The comprehension task had two conditions: high contrast, in which the

two distractors belonged to a different domain than the target stimulus, and low contrast,

in which one of the distractors belonged to the same domain as the target stimulus (see

Figure 6.3). Table 6.2 shows the stimuli triplets and conditions.

I replicated these experiments in my computational models as follows. For the produc-

tion experiment, I presented the production model in Equation 4.1 (with fixed parameter

value from the first experiment) with each stimulus c, and measured the probability of

correct (target word) production, pprod(w|c), versus all other words in the child vocab-

ulary V . For the comprehension experiment, I presented the comprehension model in

Equation 4.4 (with same parameter setting) with each target word w, and computed the

probability of the target referent versus the two distractors in the triplet; i.e., if the triplet
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Table 6.2: Experimental stimuli from McDonough (2002). Each row shows one triplet
as presented in the comprehension experiment, and columns organize them into high
and low contrast selections, as well as early and late items. The bottom section shows
triplets omitted from this experiment due to lack of feature data for the stimuli marked
by asterisks.

Early noun Early noun Late noun
(High contrast) (Low contrast) (Low contrast)

pig train bus
cow pants shorts
orange bicycle motorcycle
dog car truck
apple shirt vest
cat dress sweater
egg airplane rocket
shirt pig hippo
bicycle cow moose
boat carrot celery
pants orange beet
dress dog fox
car apple strawberry
train cat raccoon

carrot shoe *sandal
airplane cake *pie

of stimuli were (c1, c2, c3) with c2 as the target, then the probability of correct selection

would be pcomp(c2|w) with referential environment E = {c1, c2, c3} in Equation 4.4.

First, I show the results of the comprehension task. Figure 6.4 shows the probability of

correct and incorrect referent selections in low and high contrast conditions, for early and

late nouns, from empirical results by McDonough (2002) and as predicted by the model.

I observe that the model predictions reflect the qualitative trends from experimental

data: while correct comprehension was the dominant response in every condition, low

contrast trials elicited higher rates of overextension than high contrast trials, and there

was no difference between early and late items in comprehension (e.g., pig overextended

to hippo and hippo overextended to pig at similar rates). Welch’s t-tests confirmed these

results: over the 14 triplets of stimuli, the proportion of correct comprehension in the
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high contrast, early noun condition (M = 1.0) was significantly higher than in the low

contrast, early noun condition (M = 0.92): t(13) = 3.05, p < 0.01; and there was no

significant difference in the proportion of correct comprehension between the low contrast,

early noun condition (M = 0.92) and the low contrast, late noun condition (M = 0.92):

t(25) = 0.01, p = 0.995. Although the model predicts lower rates of overextension than

experimental results, it is worth highlighting that these predictions followed from training

the model on production data only, and thus the qualitative match shows that the model

is able to predict patterns of overextension in comprehension without seeing any such

data before.

Figure 6.5 shows the probability of correct word production in response to early versus

late item stimuli, from empirical results by McDonough (2002), predictions by the pro-

duction model with frequency-based word prior, and predictions by a production model

with a uniform word prior. I observe that the production model with frequency-based

prior was able to replicate the experimental finding that correct labels were produced for

the early items (n = 16, M = 0.68) more often than for late items (n = 14, M = 0.30),

for which incorrect production was the dominant response, and the difference between

the two groups was significant (Welch’s t(23) = 6.08, p < 0.001). On the other hand,

the model with uniform prior was unable to capture this difference (M(early) = 0.56,

M(late) = 0.55, t(27) = 0.36, p = 0.73), evidencing the importance of the prior in

capturing the patterns of children’s word production.

Comparing the results in the two tasks, I make two observations. First, the semantic

space and probabilistic formulation enable the model to make predictions in both pro-

duction and comprehension, even without re-tuning its sensitivity parameter from the

first task. This result suggests that the framework captures relevant features of young

children’s linguistic abilities. Second, the frequency-based word prior was essential in

enabling the model to capture the asymmetry between the production and comprehen-

sion: while correct comprehension was dominant in every condition, with no difference
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Figure 6.4: Results of comprehension experiments from McDonough (2002) and from
model reproduction. Error bars represent bootstrap 95% confidence intervals.
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Figure 6.5: Results of production experiments from McDonough (2002) and from model
reproduction. Error bars represent bootstrap 95% confidence intervals.

in performance between early and late items, performance in production was higher for

early than for late items, for which incorrect production was the dominant response.

Thus the model is able to capture an intriguing phenomenon in developmental psychol-

ogy: that children often overextend words even when they seem to correctly understand

the adult words in comprehension. As proposed by the retrieval error hypothesis, the
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model suggests that taking cognitive effort into account in production is the crucial step

in explaining this asymmetry.

6.3 Predicting developmental trends in word learn-

ing

Children typically overextend words until they are about 2.5 years old; as their productive

speech converges to adult patterns, categories undergo a restructuring process in which

the semantic space is “split up” as children start producing the correct words for concepts

that they previously named in overextension (Clark, 1973).

In this experiment, I explored the developmental trends captured by the model as a

result of varying its sensitivity parameter. Concretely, given that, as children develop,

they become more sensitive to the semantic appropriateness of labels to objects (i.e.,

they cease overextending words), I hypothesized that I could reproduce characteristics

of the development of children’s productive speech in the model by shrinking the kernel

width parameter h. In Equations 4.1 and 4.7, shrinking the parameter h has the effect

of making the similarity-based likelihood p(c|w) steeper with respect to distance in the

multimodal space; hence, given two candidate words w1 and w2 to refer to a concept c,

with respective probabilities pprod(w1|c) ∝ p(c|w1)p(w1) and pprod(w2|c) ∝ p(c|w2)p(w2),

the ratio between their frequency priors p(w1)/p(w2) becomes less relevant than the

ratio between their semantic appropriateness likelihoods p(c|w1)/p(c|w2) for the model

prediction pprod(w|c) as h shrinks. Thus, the parameter h modulates the trade-off between

semantic appropriateness and cognitive effort in the model.

Figure 6.6a shows the predicted rate of overextension of the production model as its

sensitivity parameter changes in a simulation of development. The rate of overextension

is defined as the proportion of words in the child vocabulary applied in overextension

when the model is exposed to all concepts in the vocabulary and in the overextension
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dog animal kitty duck

dog animal kitty duck

dog wolf giraffe duck swancat

airplane car truck

boat busairplane car truck

helicopter boat busairplane car truck

A

B

h = 0.677 h = 0.677

h = 0.616 h = 0.495

h = 0.343 h = 0.434

apple orange bananapear melon lemon

apple juice banana

apple orange banana

h = 0.677

h = 0.464

h = 0.312

Figure 6.6: Results of developmental simulations. (A) Predicted rate of overextended
words in the child vocabulary over development, from early overextension patterns to
convergence to adult speech. Shaded region represents bootstrap 95% confidence inter-
val. (B) Sample model predictions of children’s object naming in three domains over
development. The top row shows the earliest predictions, the middle row shows an in-
termediate stage, and the bottom row shows convergence to adult words. Each stage
indicates the kernel width (h) value for which the model first produces that pattern.

dataset. I observe that the rate of overextension reaches a peak close to the parameter

learned from the overextension data, consistent with the fact that that dataset represents
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the wide variety of overextension pairs reported in the literature. To the left of the peak

(earlier in developmental time), there is a slight decrease in overextension rate, which

can be explained as the model becoming less sensitive to semantic appropriateness, which

causes cognitive effort to dominate production, i.e., earlier words are applied more broadly

in overextension over later words. To the right of the peak (later in developmental

time), the opposite story unfolds: as sensitivity to semantic appropriateness increases

and surpasses the pressure of cognitive effort, overextension gives way to new words and

becomes increasingly rare, until it completely ceases and the model productions converge

to adult speech.

I also analyzed how individual category members were labelled throughout this de-

velopmental simulation. Inspired by the longitudinal study of Rescorla (1976), I took

concepts from the domains of animals, fruits, and vehicles, and categorized them ac-

cording to the words produced by the model to name those concepts at each point in

simulated developmental time. Figure 6.6b shows the resulting categories. I observe

several commonalities with observations by developmental accounts such as those by

Rescorla (1981) and Clark (1973): 1) Initial period in which words such as car and apple

are broadly overextended, serving as central elements for their respective domains; 2)

Progressive narrowing of categories, with emerging words “subdividing” the space by

correctly labelling referents, and possibly being themselves overextended to other closely

related concepts (e.g. orange overextended to lemons after being acquired); and 3) Even-

tual convergence to adult naming patterns, with words finally being applied in correct

extension.

This experiment also shows some limitations of my model in the developmental set-

ting. First, the model does not have a mechanism for rejecting the production of a label

altogether, which children routinely do by not naming every object in a scene. Adding

this pragmatic component to my formulation might more closely replicate children’s

strategies. Second, the model also predicts the usage of superordinate terms such as
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animal, which is not common in this period of development (Rescorla, 1981). F. Xu and

Tenenbaum (2007) showed that older children (ages 3 to 4) are sensitive to the taxonomic

properties of words and can generalize novel subordinate, basic level, and superordinate

terms to new referents. Hence, a joint account of these phenomena should explain how

children transition from favouring the overextension of basic level nouns to the acquisition

and appropriate application of superordinate terms.
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Discussion

In this thesis, I presented a formal computational account of children’s overextension. I

formulated the problem of overextension in production and comprehension in a proba-

bilistic setting, and showed that a combination of multimodal semantic relations (namely

categorical, visual analogical, and predicate-based relations), integrated in a minimally-

parameterized categorization model, explains substantial variation in children’s overex-

tended word choices in a large dataset of word-referent pairs from the developmental

literature. Furthermore, I showed how cognitive effort in word retrieval, encoded in my

model as word frequency, can account for the asymmetries between overextension in pro-

duction and comprehension, thus successfully reconstructing both processes in a unified

computational framework. Finally, I showed how the model can account for some of the

developmental trends of child language, from broad overextension to adult naming pat-

terns, by the simple manipulation of a parameter that trades off sensitivity to semantic

appropriateness and cognitive effort.

I view this work as a contribution to several research efforts. In developmental psy-

chology, it aids in resolving the debate among the three main theories about the mecha-

nisms behind overextension – incomplete semantic system, pragmatic choice under lim-

ited vocabulary, and retrieval error – by showing how a single formal model can unify the

34
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main elements of each theory into a cohesive framework. Namely, my model incorporates

the looseness of children’s semantic systems via a probabilistic categorization process

that encodes multimodal semantic relations and is modulated by a varying sensitivity

parameter; it expresses pragmatic choices motivated by a limited vocabulary by overex-

tending in-vocabulary words to out-of-vocabulary referents under communicative need;

and it incorporates cognitive effort, encoded as word frequency, into the model of word

production, so that even words that are correctly understood can probabilistically give

way to more easily retrievable words at production time.

The present work also adds to a body of computational works modelling broader lin-

guistic phenomena in children. While previous works have shown substantial progress

in modelling the conventional learning component of developmental phenomena, e.g., by

learning word meanings from word-referent co-occurrence statistics in the environment

(Fazly et al., 2010; Frank, Goodman, & Tenenbaum, 2009; Yu & Ballard, 2007), inferring

the taxonomic structure of words from limited exposure to data (F. Xu & Tenenbaum,

2007), or integrating syntax and semantics to bootstrap more advanced stages of language

learning (Abend, Kwiatkowski, Smith, Goldwater, & Steedman, 2017; Niyogi, 2002), rel-

atively little attention has been given to another crucial characteristic that distinguishes

children from adults: their cognitive limitations, the mistakes that arise from them, and

how children creatively innovate around their limitations to achieve their communica-

tive goals. Among steps in this direction are the work of Alishahi and Stevenson (2005,

2008), which showed evidence of overgeneralization in a model of verb argument structure

acquisition, and Beekhuizen et al. (2014) and Beekhuizen and Stevenson (2016), which

investigated the extent to which cognitive biases evidenced by cross-linguistic data can

recapitulate the overextension of spatial prepositions and colour terms. However, under-

explored directions regard the specific semantic relations that may underlie overextension

in general domains, and the task of predicting the diversity of overextension strategies

that children employ to name a wide range of objects under communicative need. Hence,
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my work provides a step in this direction by showing how children’s linguistic innova-

tions help them communicate about the world despite their cognitive limitations, and my

formal computational framework grounds this discussion in a concrete predictive setting.

I have tested my models of children’s overextended word choices against a large

dataset of word-referent pairs that I collected from the developmental literature, and

by making this aggregated data source available to the research community, I hope to

facilitate future investigations of young children’s linguistic creativity.

Some limitations of the present work also provide clues for future work. Although

my incorporation of cognitive effort into the model reconstructs a developing pattern

of word retrievals as emerging from a fixed vocabulary, children’s vocabularies certainly

evolve in comprehension over development. Thus, a full developmental account should

incorporate a mechanism that allows for vocabulary growth over time. One way to model

this evolution would be to integrate word learning and overextension strategies into a

unified model. Thus, future work should investigate how a single model can reproduce

both word learning and overextension phenomena from sequences of naturalistic stimuli.

I conclude by suggesting two possible areas for extensions of the present work: his-

torical patterns of word sense extension, and cross-linguistic phenomena of colexification

and cross-linguistic influence.

First, as argued in the introduction, Vygotsky’s (1962) account of children’s early

concept formation resonates with the view of historical meaning change as a chaining

process whereby referents of a word grow over time in a chain-like structure (Lakoff, 1987).

Indeed, recent work has shown that chaining predicts word sense extension in the history

of English (Ramiro, Srinivasan, Malt, & Xu, 2018) and other languages (Y. Xu, Regier,

& Malt, 2016). Furthermore, some of the same cognitive mechanisms may underlie the

chaining processes in both instances of word sense extension (e.g., the extension of mouse

from rodent to computer device may be evidence of visual analogy). Thus, future work

could explore to what extent linguistic innovation in early childhood and over the span
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of generations of speakers are subject to similar cognitive pressures and mechanisms.

Second, cross-linguistic diversity offers clues about cognitive biases in human catego-

rization in two ways. Colexification patterns may indicate that concepts that are jointly

labelled by the same word in distinct language families are more closely connected in

semantic space (François, 2008), thus raising the question of whether the same cognitive

mechanisms that drive concepts together in languages also induce co-labelling via overex-

tension in children. Indeed, this seems to be the case at least for the domains of spatial

prepositions (Beekhuizen et al., 2014) and colour terms (Beekhuizen & Stevenson, 2016).

Future work could explore the ways in which cross-linguistic variation and overextension

agree, and where they depart from each other in broader domains. A second direction

of exploration could investigate to what extent adult language learners’ or bilinguals’

naming patterns under cross-linguistic influence relate to children’s overextended word

choices. In contrast with children, adult speakers of a second language are influenced

by their first language (Jarvis & Pavlenko, 2008), and have an adult conceptual system

guiding and constraining their word choices, so that some of the flexible, multimodal in-

novations displayed by children (e.g., ball overextended to an apple) may not be displayed

by those speakers. On the other hand, it is possible that some of the mechanisms that

emerge from the pressures of communicative need and cognitive limitations in children,

e.g., favouring a more easily-retrievable word in trade-off with semantic appropriateness,

also play a role in the communicative strategies of speakers of a second language.

In conclusion, I have provided a formal computational theory of children’s overex-

tension that integrates major theories in developmental psychology, elucidates in com-

putational terms how children can make use of multimodal semantic relations to achieve

communication while constrained by cognitive limitations, and explains overextension

patterns over a large dataset of examples collected from the developmental literature. I

believe that this work paves the way toward a formal characterization of children’s lin-

guistic innovations, and provides clues about the cognitive principles that underlie word
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sense extension as a core ability of humans as constant language creators and innovators.
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Appendix A

Evidence for multimodality in

overextension

To examine directly how the multimodal semantic space I constructed accounts for vari-

ation in the overextension data, I performed a logistic regression analysis. In particular,

I considered two sets of data: the attested set of overextension word-referent pairs, and

a control set that shuffles the word-referent mappings from the attested set. I then per-

formed a binary classification task via logistic regression to assess whether the attested

set could be distinguished from the control set, given the same three relational features

that I used for my previous analyses. Concretely, for each word-referent pair, the logistic

regression factors were the z-scores of categorical, visual analogical, and predicate-based

distances, normalized over the entire dataset, and the response was a binary indicator for

the attested/control set. Finally, I also labelled each word-referent pair in the attested

set according to the top-scoring feature in the logistic regression model as a way to ap-

proximate which multimodal feature best explains each instance of overextension, and

thus assess the degree of multimodality in the overextension data.

Table S1 shows the BIC scores and cross-validated accuracies of the full multimodal

model, partial models consisting of feature pairs, and partial models consisting of single
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features. The full multimodal model best distinguishes attested overextension from con-

trol word pairs in BIC score and predictive accuracy. Furthermore, all three features of

the full multimodal model reached significance in the logistic regression (p < .001). These

results suggest that a combination of semantic relations provides significant predictability

of concept pairs that might undergo overextension.

Table S1: BIC scores and cross-validated predictive accuracies of logistic regression mod-
els (N = 472). Standard errors for accuracies are shown in parentheses.

Model BIC score Accuracy

categorical (cat.) 495 0.778(19)
visual (vis.) 464 0.767(19)
predicate (pred.) 469 0.763(20)

vis. + pred. 408 0.807(18)
cat. + vis. 393 0.816(18)
cat. + pred. 422 0.805(18)

all features 374 0.839(17)



Appendix B

Detailed model results for predicting

word choices

Predictive performance of individual partial models. Section 6.1 shows the av-

erage performance curves of models containing single features, feature pairs, and all three

multimodal features. Figure S1 shows the performance curves of all individual models,

thus elucidating the relative performance of each combination.

Sample predictions of production model. Table S2 shows the top 5 words pre-

dicted by the production model for a random sample of the overextension dataset. Re-

calling that the top-5 model accuracy is approximately 55%, I observe that in the cases

of incorrect model prediction, many of the predicted words are still closely related to

the target concept, suggesting that even predictions that do not match the recorded

child production are often sensible predictions. Since the overextension dataset is not an

exhaustive record of child speech, this performance measure should be seen as a lower

bound on the ability of the model to reconstruct children’s overextension strategies.
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Figure S1: Performance curves for all production models showing cross-validated model
accuracies in reconstructing overextended word choices.
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Table S2: Top 5 model-predicted word choices for a random sample of the overextension
dataset, stratified by correctness of model predictions. The upper panel shows examples
for which the model predicts the true child production, and the lower panel shows ex-
amples for which model predictions do not include the child word. Each row displays
the child production and intended referent from the overextension dataset, and the top
5 words predicted by the model, all denoted by their corresponding WordNet synsets.

Production Referent 1 2 3 4 5

apple.n.01 banana.n.02 apple.n.01 orange.n.01 fruit.n.01 pea.n.02 juice.n.01
horse.n.01 deer.n.01 elk.n.01 animal.n.01 sheep.n.01 cow.n.01 horse.n.01
truck.n.01 train.n.01 car.n.01 bus.n.01 truck.n.01 bicycle.n.01 toy.n.03
sock.n.01 stocking.n.01 shoe.n.01 sock.n.01 hat.n.01 shirt.n.01 chair.n.01
dad.n.01 man.n.01 son.n.01 girl.n.01 baby.n.01 dad.n.01 animal.n.01
bicycle.n.01 motorcycle.n.01 car.n.01 bicycle.n.01 truck.n.01 wheel.n.01 train.n.01
catsup.n.01 mayonnaise.n.01 cheese.n.01 egg.n.02 peanut butter.n.01 catsup.n.01 juice.n.01
ball.n.01 marble.n.02 ball.n.01 toy.n.03 chair.n.01 table.n.02 box.n.01
cheese.n.01 butter.n.01 cheese.n.01 milk.n.01 food.n.01 egg.n.02 toast.n.01
shoe.n.01 slipper.n.01 shoe.n.01 sock.n.01 blanket.n.01 hat.n.01 boot.n.01

kitten.n.01 horse.n.01 domestic ass.n.01 pony.n.01 cow.n.01 animal.n.01 hog.n.03
cow.n.01 fish.n.01 tuna.n.03 animal.n.01 duck.n.01 child.n.01 baby.n.01
cat.n.01 lamb.n.01 sheep.n.01 animal.n.01 kitten.n.01 baby.n.01 dog.n.01
ball.n.01 peach.n.03 apple.n.01 orange.n.01 fruit.n.01 plum.n.02 grape.n.01
horse.n.01 jaguar.n.01 tiger.n.02 animal.n.01 lion.n.01 bear.n.01 cat.n.01
catsup.n.01 dressing.n.01 food.n.01 juice.n.01 cheese.n.01 pizza.n.01 pickle.n.01
bubble.n.01 marble.n.02 ball.n.01 toy.n.03 chair.n.01 table.n.02 box.n.01
horse.n.01 dog.n.01 puppy.n.01 animal.n.01 cat.n.01 kitten.n.01 kitty.n.04
cat.n.01 hog.n.03 cow.n.01 baby.n.01 animal.n.01 dog.n.01 bear.n.01
banana.n.02 tomato.n.01 apple.n.01 potato.n.01 juice.n.01 carrot.n.03 cheese.n.01



Appendix C

Validation of linguistic data from

McDonough (2002)

The computational replication of McDonough (2002) in Section 6.2 follows the original

experiment in dividing the stimuli into early and late items (in age of acquisition). Fig-

ure S2 shows that the relative frequency data collected from child-directed speech reflects

this division, i.e., on average, early nouns are more frequent than late nouns. This “san-

ity check” verifies that my data is in sufficient agreement with McDonough (2002) for a

meaningful computational reproduction.
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Figure S2: Relative frequencies of early and late nouns from McDonough (2002) in child-
directed speech. Error bars represent bootstrap 95% confidence intervals.
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Appendix D

Dataset of children’s overextension

Table S3 shows all examples of overextension collected from the literature for this study,

along with their sources. Each example includes a word and its intended referent, along

with WordNet synsets coded for each.

Table S3: Dataset of children’s overextension. Each row shows the word overextended in
production and its intended referent, along with WordNet synsets for each.

Production Synset Referent Synset Source

airplane airplane.n.01 boat boat.n.01 Rescorla (1976)
airplane airplane.n.01 helicopter helicopter.n.01 Rescorla (1976)
airplane airplane.n.01 rocket rocket.n.01 Rescorla (1976)
airplane airplane.n.01 submarine submarine.n.01 Rescorla (1976)
airplane airplane.n.01 train train.n.01 Rescorla (1976)
apple apple.n.01 ball ball.n.01 Thomson and Chapman (1977)
apple apple.n.01 balloon balloon.n.02 Rescorla (1976)
apple apple.n.01 banana banana.n.02 Rescorla (1981)
apple apple.n.01 cherry cherry.n.03 Thomson and Chapman (1977)
apple apple.n.01 egg egg.n.02 Rescorla (1976)
apple apple.n.01 fruit fruit.n.01 Rescorla (1976)
apple apple.n.01 grape grape.n.01 Rescorla (1981)
apple apple.n.01 lemon lemon.n.01 Rescorla (1981)
apple apple.n.01 melon melon.n.01 Rescorla (1981)
apple apple.n.01 onion onion.n.01 Thomson and Chapman (1977)
apple apple.n.01 orange orange.n.01 Thomson and Chapman (1977)
apple apple.n.01 orange juice orange juice.n.01 Rescorla (1981)
apple apple.n.01 peach peach.n.03 Thomson and Chapman (1977)
apple apple.n.01 pear pear.n.01 Thomson and Chapman (1977)
apple apple.n.01 plum plum.n.02 Rescorla (1981)
apple apple.n.01 pumpkin pumpkin.n.02 Thomson and Chapman (1977)
apple apple.n.01 strawberry strawberry.n.01 Thomson and Chapman (1977)
apple apple.n.01 teapot teapot.n.01 Thomson and Chapman (1977)
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apple apple.n.01 tomato tomato.n.01 Thomson and Chapman (1977)
baby baby.n.01 child child.n.01 Barrett (1978)
baby baby.n.01 statue statue.n.01 Clark (1973)
ball ball.n.01 apple apple.n.01 Clark (1973)
ball ball.n.01 balloon balloon.n.02 Barrett (1978)
ball ball.n.01 button button.n.01 Rescorla (1976)
ball ball.n.01 circle circle.n.01 Thomson and Chapman (1977)
ball ball.n.01 dome dome.n.04 Barrett (1978)
ball ball.n.01 egg egg.n.02 Rescorla (1976)
ball ball.n.01 grapefruit grapefruit.n.02 Rescorla (1976)
ball ball.n.01 helmet helmet.n.01 Thomson and Chapman (1977)
ball ball.n.01 marble marble.n.02 Barrett (1978)
ball ball.n.01 onion onion.n.01 Thomson and Chapman (1977)
ball ball.n.01 orange orange.n.01 Rescorla (1976)
ball ball.n.01 oval ellipse.n.01 Thomson and Chapman (1977)
ball ball.n.01 peach peach.n.03 Rescorla (1976)
ball ball.n.01 radish radish.n.01 Clark (1973)
ball ball.n.01 squash squash.n.02 Thomson and Chapman (1977)
ball ball.n.01 toy plaything.n.01 Clark (1973)
banana banana.n.02 apple apple.n.01 Thomson and Chapman (1977)
banana banana.n.02 cherry cherry.n.03 Thomson and Chapman (1977)
banana banana.n.02 fruit fruit.n.01 Rescorla (1976)
banana banana.n.02 lemon lemon.n.01 Thomson and Chapman (1977)
banana banana.n.02 orange orange.n.01 Thomson and Chapman (1977)
banana banana.n.02 peach peach.n.03 Thomson and Chapman (1977)
banana banana.n.02 pear pear.n.01 Rescorla (1981)
banana banana.n.02 raisin raisin.n.01 Rescorla (1981)
banana banana.n.02 strawberry strawberry.n.01 Thomson and Chapman (1977)
banana banana.n.02 tomato tomato.n.01 Thomson and Chapman (1977)
bath bathtub.n.01 water water.n.06 Rescorla (1976)
bear bear.n.01 rabbit rabbit.n.01 Thomson and Chapman (1977)
bear bear.n.01 seal seal.n.09 Thomson and Chapman (1977)
bee bee.n.01 bug bug.n.01 Rescorla (1976)
beer beer.n.01 soy sauce soy sauce.n.01 Thomson and Chapman (1977)
bike bicycle.n.01 motorcycle motorcycle.n.01 Rescorla (1976)
bike bicycle.n.01 scooter scooter.n.02 Rescorla (1976)
bike bicycle.n.01 tricycle tricycle.n.01 Rescorla (1976)
bike bicycle.n.01 wheelchair wheelchair.n.01 Rescorla (1976)
bird bird.n.01 cat cat.n.01 Clark (1973)
bird bird.n.01 cow cow.n.01 Clark (1973)
bird bird.n.01 dog dog.n.01 Clark (1973)
bird bird.n.01 duck duck.n.01 Fremgen and Fay (1980)
boat boat.n.01 airship airship.n.01 Barrett (1978)
boat boat.n.01 bulldozer bulldozer.n.01 Rescorla (1976)
boat boat.n.01 raft raft.n.01 Rescorla (1976)
book book.n.01 magazine magazine.n.02 Rescorla (1976)
bottle bottle.n.01 cup cup.n.01 Rescorla (1976)
box box.n.01 drawer drawer.n.01 Clark (1973)
box box.n.01 TV television receiver.n.01 Rescorla (1976)
boy son.n.01 child child.n.01 Barrett (1978)
bubble bubble.n.01 egg egg.n.02 Rescorla (1976)
bubble bubble.n.01 marble marble.n.02 Rescorla (1976)
bunny bunny.n.02 squirrel squirrel.n.01 Gruendel (1977)
bus bus.n.01 cable car cable car.n.01 Rescorla (1976)
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bus bus.n.01 firetruck fire engine.n.01 Rescorla (1976)
bus bus.n.01 train train.n.01 Rescorla (1981)
bus bus.n.01 truck truck.n.01 Rescorla (1981)
butter butter.n.01 peanut butter peanut butter.n.01 Rescorla (1976)
cake cake.n.03 candy candy.n.01 Barrett (1978)
candy candy.n.01 cherry cherry.n.03 Barrett (1978)
car car.n.01 airplane airplane.n.01 Rescorla (1981)
car car.n.01 bike bicycle.n.01 Rescorla (1981)
car car.n.01 bus bus.n.01 Rescorla (1981)
car car.n.01 cassette cassette.n.01 Rescorla (1976)
car car.n.01 stroller baby buggy.n.01 Rescorla (1981)
car car.n.01 train train.n.01 Rescorla (1981)
car car.n.01 truck truck.n.01 Rescorla (1981)
car car.n.01 vehicle vehicle.n.01 Rescorla (1976)
cat cat.n.01 bear bear.n.01 Rescorla (1981)
cat cat.n.01 camel camel.n.01 Rescorla (1981)
cat cat.n.01 chicken chicken.n.02 Rescorla (1981)
cat cat.n.01 coyote coyote.n.01 Rescorla (1981)
cat cat.n.01 dog dog.n.01 Rescorla (1976)
cat cat.n.01 giraffe giraffe.n.01 Rescorla (1981)
cat cat.n.01 horse horse.n.01 Rescorla (1981)
cat cat.n.01 lamb lamb.n.01 Rescorla (1981)
cat cat.n.01 lion lion.n.01 Rescorla (1976)
cat cat.n.01 pig hog.n.03 Rescorla (1976)
cat cat.n.01 rabbit rabbit.n.01 Rescorla (1981)
cheese cheese.n.01 butter butter.n.01 Rescorla (1976)
clock clock.n.01 bracelet bracelet.n.02 Rescorla (1976)
clock clock.n.01 meter meter.n.02 Rescorla (1976)
clock clock.n.01 radio radio receiver.n.01 Rescorla (1976)
clock clock.n.01 telephone telephone.n.01 Rescorla (1976)
clock clock.n.01 timer timer.n.01 Rescorla (1976)
clock clock.n.01 watch watch.n.01 Rescorla (1976)
comb comb.n.01 centipede centipede.n.01 Rescorla (1976)
cow cow.n.01 ant ant.n.01 Thomson and Chapman (1977)
cow cow.n.01 bear bear.n.01 Thomson and Chapman (1977)
cow cow.n.01 buffalo american bison.n.01 Thomson and Chapman (1977)
cow cow.n.01 camel camel.n.01 Thomson and Chapman (1977)
cow cow.n.01 elephant elephant.n.01 Thomson and Chapman (1977)
cow cow.n.01 fish fish.n.01 Thomson and Chapman (1977)
cow cow.n.01 gorilla gorilla.n.01 Thomson and Chapman (1977)
cow cow.n.01 hippopotamus hippopotamus.n.01 Thomson and Chapman (1977)
cow cow.n.01 horse horse.n.01 Gruendel (1977)
cow cow.n.01 kangaroo kangaroo.n.01 Thomson and Chapman (1977)
cow cow.n.01 leopard leopard.n.02 Thomson and Chapman (1977)
cow cow.n.01 lion lion.n.01 Thomson and Chapman (1977)
cow cow.n.01 polar bear ice bear.n.01 Thomson and Chapman (1977)
cow cow.n.01 reindeer caribou.n.01 Thomson and Chapman (1977)
cow cow.n.01 seal seal.n.09 Thomson and Chapman (1977)
cow cow.n.01 zebra zebra.n.01 Thomson and Chapman (1977)
dada dad.n.01 man man.n.01 Rescorla (1976)
dada dad.n.01 mom ma.n.01 Rescorla (1976)
deer deer.n.01 horse horse.n.01 Thomson and Chapman (1977)
dog dog.n.01 bear bear.n.01 Thomson and Chapman (1977)
dog dog.n.01 cat cat.n.01 Rescorla (1976)



Appendix D. Dataset of children’s overextension 56

dog dog.n.01 doe doe.n.02 Thomson and Chapman (1977)
dog dog.n.01 fish fish.n.01 Thomson and Chapman (1977)
dog dog.n.01 fox fox.n.01 Thomson and Chapman (1977)
dog dog.n.01 frog frog.n.01 Rescorla (1981)
dog dog.n.01 giraffe giraffe.n.01 Rescorla (1981)
dog dog.n.01 hippopotamus hippopotamus.n.01 Thomson and Chapman (1977)
dog dog.n.01 horse horse.n.01 Fremgen and Fay (1980)
dog dog.n.01 lamb lamb.n.01 Rescorla (1981)
dog dog.n.01 lion lion.n.01 Fremgen and Fay (1980)
dog dog.n.01 rabbit rabbit.n.01 Gruendel (1977)
dog dog.n.01 raccoon raccoon.n.02 Thomson and Chapman (1977)
dog dog.n.01 rhinoceros rhinoceros.n.01 Thomson and Chapman (1977)
dog dog.n.01 squirrel squirrel.n.01 Rescorla (1981)
dog dog.n.01 turtle turtle.n.02 Rescorla (1981)
dog dog.n.01 wolf wolf.n.01 Thomson and Chapman (1977)
door door.n.01 shutter shutter.n.02 Clark (1973)
duck duck.n.01 bird bird.n.01 Fremgen and Fay (1980)
duck duck.n.01 chicken chicken.n.02 Fremgen and Fay (1980)
duck duck.n.01 goose goose.n.01 Rescorla (1981)
duck duck.n.01 pigeon pigeon.n.01 Rescorla (1981)
duck duck.n.01 platypus platypus.n.01 Thomson and Chapman (1977)
duck duck.n.01 swan swan.n.01 Rescorla (1981)
fish fish.n.01 bee bee.n.01 Thomson and Chapman (1977)
fish fish.n.01 butterfly butterfly.n.01 Thomson and Chapman (1977)
fish fish.n.01 crab crab.n.01 Thomson and Chapman (1977)
fish fish.n.01 firefly firefly.n.01 Thomson and Chapman (1977)
fish fish.n.01 mosquito mosquito.n.01 Thomson and Chapman (1977)
fish fish.n.01 moth moth.n.01 Thomson and Chapman (1977)
fish fish.n.01 seal seal.n.09 Rescorla (1976)
fish fish.n.01 spider spider.n.01 Thomson and Chapman (1977)
flower flower.n.01 tree tree.n.01 Rescorla (1976)
fly fly.n.01 insect insect.n.01 Clark (1973)
fly fly.n.01 frog frog.n.01 Clark (1973)
fruit fruit.n.01 applesauce applesauce.n.01 Rescorla (1981)
fruit fruit.n.01 pear pear.n.01 Rescorla (1981)
grandma grandma.n.01 grandpa grandfather.n.01 Rescorla (1976)
hat hat.n.01 bowl bowl.n.01 Rescorla (1976)
hat hat.n.01 bucket bucket.n.01 Rescorla (1976)
hat hat.n.01 crown crown.n.04 Rescorla (1976)
hat hat.n.01 mitten mitten.n.01 Rescorla (1976)
hat hat.n.01 scarf scarf.n.01 Rescorla (1976)
helicopter helicopter.n.01 rocket rocket.n.01 Rescorla (1976)
horse horse.n.01 camel camel.n.01 Rescorla (1976)
horse horse.n.01 cow cow.n.01 Rescorla (1976)
horse horse.n.01 deer deer.n.01 Thomson and Chapman (1977)
horse horse.n.01 donkey domestic ass.n.01 Rescorla (1976)
horse horse.n.01 fox fox.n.01 Thomson and Chapman (1977)
horse horse.n.01 giraffe giraffe.n.01 Rescorla (1976)
horse horse.n.01 goat goat.n.01 Rescorla (1976)
horse horse.n.01 hyena hyena.n.01 Thomson and Chapman (1977)
horse horse.n.01 kangaroo kangaroo.n.01 Thomson and Chapman (1977)
horse horse.n.01 llama llama.n.01 Thomson and Chapman (1977)
horse horse.n.01 reindeer caribou.n.01 Thomson and Chapman (1977)
horse horse.n.01 dog dog.n.01 Thomson and Chapman (1977)
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horse horse.n.01 panther jaguar.n.01 Thomson and Chapman (1977)
juice juice.n.01 drink drink.n.01 Rescorla (1976)
juice juice.n.01 milk milk.n.01 Rescorla (1976)
juice juice.n.01 orange orange.n.01 Rescorla (1976)
juice juice.n.01 water water.n.06 Rescorla (1976)
ketchup catsup.n.01 dressing dressing.n.01 Thomson and Chapman (1977)
ketchup catsup.n.01 mayonnaise mayonnaise.n.01 Thomson and Chapman (1977)
ketchup catsup.n.01 pancake syrup syrup.n.01 Thomson and Chapman (1977)
key key.n.01 door door.n.01 Rescorla (1976)
key key.n.01 hook hook.n.02 Rescorla (1976)
kitty kitten.n.01 beaver beaver.n.07 Thomson and Chapman (1977)
kitty kitten.n.01 fox fox.n.01 Thomson and Chapman (1977)
kitty kitten.n.01 gorilla gorilla.n.01 Thomson and Chapman (1977)
kitty kitten.n.01 horse horse.n.01 Thomson and Chapman (1977)
kitty kitten.n.01 lamb lamb.n.01 Thomson and Chapman (1977)
kitty kitten.n.01 lion lion.n.01 Fremgen and Fay (1980)
kitty kitten.n.01 skunk skunk.n.04 Thomson and Chapman (1977)
kitty kitten.n.01 tiger tiger.n.02 Thomson and Chapman (1977)
kitty-cat kitty.n.04 fox fox.n.01 Thomson and Chapman (1977)
kitty-cat kitty.n.04 raccoon raccoon.n.02 Thomson and Chapman (1977)
kitty-cat kitty.n.04 skunk skunk.n.04 Thomson and Chapman (1977)
mom ma.n.01 dada dad.n.01 Rescorla (1976)
mom ma.n.01 woman woman.n.01 Rescorla (1976)
man man.n.01 boy son.n.01 Rescorla (1976)
octopus octopus.n.02 porcupine porcupine.n.01 Thomson and Chapman (1977)
onion onion.n.01 fruit fruit.n.01 Rescorla (1976)
onion onion.n.01 potato potato.n.01 Rescorla (1976)
peach peach.n.03 plum plum.n.02 Rescorla (1976)
pen pen.n.01 pencil pencil.n.01 Rescorla (1976)
plum plum.n.02 applesauce applesauce.n.01 Rescorla (1976)
plum plum.n.02 peach peach.n.03 Rescorla (1981)
salt salt.n.02 coffee coffee.n.01 Thomson and Chapman (1977)
shoe shoe.n.01 boot boot.n.01 Rescorla (1976)
shoe shoe.n.01 slipper slipper.n.01 Rescorla (1976)
sock sock.n.01 stockings stocking.n.01 Rescorla (1976)
sock sock.n.01 tights tights.n.01 Rescorla (1976)
spoon spoon.n.01 fork fork.n.01 Rescorla (1976)
squirrel squirrel.n.01 chipmunk chipmunk.n.01 Thomson and Chapman (1977)
squirrel squirrel.n.01 polar bear ice bear.n.01 Thomson and Chapman (1977)
squirrel squirrel.n.01 skunk skunk.n.04 Thomson and Chapman (1977)
tea tea.n.01 coffee coffee.n.01 Rescorla (1976)
tea tea.n.01 cup cup.n.01 Rescorla (1976)
tea tea.n.01 teapot teapot.n.01 Rescorla (1976)
tiger tiger.n.02 lion lion.n.01 Thomson and Chapman (1977)
truck truck.n.01 bulldozer bulldozer.n.01 Rescorla (1976)
truck truck.n.01 bus bus.n.01 Rescorla (1980)
truck truck.n.01 train train.n.01 Rescorla (1981)
water water.n.06 hose hose.n.03 Rescorla (1976)
wheel wheel.n.01 ring ring.n.08 Barrett (1978)
wheel wheel.n.01 wagon wagon.n.01 Barrett (1978)
wheel wheel.n.01 wheelbarrow barrow.n.03 Barrett (1978)



Appendix E

Vocabulary from early childhood

Table S4 shows the approximate vocabulary from early childhood extracted from Word-

bank and used in my analyses, with each word manually coded as a WordNet synset to

enable its representation in the semantic space.

Table S4: Approximate vocabulary from early childhood. Each cell shows the WordNet
synset corresponding to one word in the vocabulary.

Synset

airplane.n.01 alligator.n.02 animal.n.01 ant.n.01
apple.n.01 applesauce.n.01 aunt.n.01 baby.n.01
baby buggy.n.01 bag.n.04 ball.n.01 balloon.n.01
banana.n.02 basement.n.01 basket.n.01 bat.n.01
bath.n.01 bathroom.n.01 bathtub.n.01 beach.n.01
bean.n.01 bear.n.01 bed.n.01 bedroom.n.01
bee.n.01 beer.n.01 belt.n.02 bench.n.01
beverage.n.01 bicycle.n.01 bird.n.01 bite.n.04
black.n.01 blanket.n.01 block.n.03 blue.n.01
boat.n.01 book.n.01 boot.n.01 bottle.n.01
bowl.n.01 box.n.01 breakfast.n.01 broom.n.01
brush.n.02 bubble.n.01 bucket.n.01 bug.n.01
bulge.n.01 bunny.n.02 bus.n.01 business district.n.01
butter.n.01 butterfly.n.01 button.n.01 cake.n.03
camera.n.01 camping.n.01 can.n.01 candy.n.01
car.n.01 carrot.n.03 cat.n.01 catsup.n.01
chair.n.01 chamberpot.n.01 cheese.n.01 chewing gum.n.01
chicken.n.02 child.n.01 chip.n.04 chocolate.n.03
church.n.02 clock.n.01 cloud.n.02 clown.n.02
coat.n.01 coca cola.n.01 cock.n.04 coffee.n.01
comb.n.01 corn.n.01 cow.n.01 cracker.n.01
crayon.n.01 crib.n.01 cup.n.01 cupboard.n.01
dad.n.01 dance.n.02 deer.n.01 diaper.n.01
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dinner.n.01 dish.n.01 doctor.n.01 dog.n.01
doll.n.01 domestic ass.n.01 door.n.01 doughnut.n.02
drawer.n.01 dress.n.01 dryer.n.01 duck.n.01
dwelling.n.01 egg.n.02 elephant.n.01 elk.n.01
face.n.01 fire engine.n.01 fireman.n.04 fish.n.01
flag.n.01 flower.n.01 fly.n.01 food.n.01
foot.n.01 fork.n.01 french fries.n.01 friend.n.01
frog.n.01 fruit.n.01 game.n.09 garage.n.01
garbage.n.03 garden.n.01 gelatin.n.02 giraffe.n.01
girl.n.01 glass.n.02 glove.n.02 goose.n.01
grandfather.n.01 grandma.n.01 grape.n.01 grass.n.01
green.n.01 gym shoe.n.01 hair.n.06 hamburger.n.01
hammer.n.02 hand.n.01 hat.n.01 head.n.01
helicopter.n.01 hen.n.01 hog.n.03 horse.n.01
hose.n.03 house.n.01 ice.n.01 ice cream.n.01
ice lolly.n.01 jacket.n.01 jar.n.01 jean.n.01
jello.n.01 juice.n.01 key.n.01 kitchen.n.01
kitten.n.01 kitty.n.04 knife.n.01 lady.n.01
lamb.n.01 lamp.n.01 lawn mower.n.01 light.n.02
lion.n.01 lip.n.02 living room.n.01 lollipop.n.02
lunch.n.01 ma.n.01 man.n.01 melon.n.01
menagerie.n.02 milk.n.01 mitten.n.01 monkey.n.01
mother.n.01 motorcycle.n.01 mouse.n.01 mouth.n.01
movie.n.01 muffin.n.01 nail.n.02 napkin.n.01
necklace.n.01 nurse.n.01 nut.n.01 octopus.n.02
onion.n.01 orange.n.01 oven.n.01 owl.n.01
paint.n.01 pancake.n.01 paper.n.01 party.n.02
patty.n.01 pea.n.02 peach.n.03 peanut butter.n.01
pen.n.01 pencil.n.01 penguin.n.01 people.n.01
person.n.01 pickle.n.01 picnic.n.03 pillow.n.01
pizza.n.01 plant.n.02 plate.n.04 playground.n.02
plum.n.02 pony.n.01 pop.n.02 popcorn.n.01
porch.n.01 potato.n.01 pretzel.n.01 pudding.n.01
pumpkin.n.01 puppy.n.01 puzzle.n.02 radio.n.01
raisin.n.01 rear.n.05 refrigerator.n.01 rock.n.01
rocking chair.n.01 roof.n.01 room.n.01 salt.n.02
sandwich.n.01 sauce.n.01 scarf.n.01 school.n.02
scissors.n.01 sheep.n.01 shirt.n.01 shoe.n.01
shop.n.01 short pants.n.01 shoulder.n.01 shovel.n.01
shower.n.01 sidewalk.n.01 sink.n.01 sister.n.01
skate.n.01 sky.n.01 sled.n.01 slide.n.04
slide fastener.n.01 slipper.n.01 snow.n.01 sock.n.01
sofa.n.01 son.n.01 soup.n.01 spaghetti.n.01
spectacles.n.01 spoon.n.01 sprinkler.n.01 squirrel.n.01
stairs.n.01 star.n.03 stick.n.01 stove.n.01
strawberry.n.01 street.n.01 sun.n.01 swab.n.02
sweater.n.01 swing.n.02 table.n.02 tape.n.04
tea.n.01 teacher.n.01 telephone.n.01 television.n.01
tiger.n.02 tights.n.01 toast.n.01 tooth.n.02
toothbrush.n.01 towel.n.01 toy.n.03 tractor.n.01
train.n.01 tray.n.01 tree.n.01 tricycle.n.01
trouser.n.01 truck.n.01 tuna.n.03 turkey.n.01
turtle.n.02 underpants.n.01 vacuum.n.04 vanilla.n.01
vitamin.n.01 walker.n.04 wash.n.01 washer.n.03



Appendix E. Vocabulary from early childhood 60

watch.n.01 water.n.06 wheel.n.01 white.n.02
window.n.01 wolf.n.01 yellow.n.01 yogurt.n.01
zebra.n.01


