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Abstract. Group mutual exclusion (GME) is a natural generalisation
of the classical mutual exclusion problem. In GME, when a process leaves
the non-critical section it requests a “session”; processes are allowed to
be in the critical section simultaneously if they have requested the same
session. We present GME algorithms (where the number of sessions is
not known a priori) that use O(NN) remote memory references in dis-
tributed shared memory (DSM) multiprocessors, where N is the num-
ber of processes, and prove that this is asymptotically optimal even if
there are only two sessions that processes can request. We also present
an algorithm for two-session GME that requires O(log N) remote mem-
ory references in cache-coherent (CC) multiprocessors. This establishes
a complexity separation between the CC and DSM models: there is a
problem (two-session GME) that is provably more efficiently solvable in
the former than in the latter.

1 Introduction

Group mutual exclusion (GME) [1] is a generalisation of the classical mutual
exclusion problem [2,3]. In GME there are N processes 1,2,..., N, each hav-
ing the structure shown in Figure 1. Each process alternates between a (possibly
nonterminating) non-critical section (NCS) and a (terminating) critical sec-
tion (CS). Each time a process leaves the NCS to enter the CS, it “requests”
a positive integer (not necessarily the same each time) called a session. Two
processes are said to conflict if they are requesting different sessions. Processes
coordinate their entry to the CS by executing the trying and exit protocols so
that the following properties are satisfied:

Mutual exclusion: No two conflicting processes are in the CS simultaneously.

Lockout freedom: A process that leaves the NCS eventually enters the CS.

Bounded exit: A process completes its exit protocol in a bounded number of
its own steps.

Concurrent entering: If process p is in the trying protocol while no process
is requesting a conflicting session, then p completes the trying protocol in a
bounded number of its own steps.

* Research supported in part by the Natural Sciences and Engineering Research Coun-
cil of Canada.
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Fig. 1. GME process structure

The ordinary mutual exclusion problem is the special case where each process p
always requests session p, and thus any two processes conflict.

In some applications it may be important that processes enter the CS in
a “fair” manner — i.e., roughly in the order in which they leave the NCS. To
formalise this we assume that the trying protocol starts with a bounded section of
code (i.e., one that contains no unbounded loops), called the doorway; the rest
of the trying protocol is called the waiting room (see Figure 1). The fairness
requirements can now be stated as follows:

First-come-first served (FCFS): If process p completes the doorway before
a conflicting process ¢ starts the doorway, then ¢ does not enter the CS
before p [3,4].

First-in-first-enabled (FIFE): If process p completes the doorway before a
non-conflicting process ¢ starts the doorway, and q enters the CS before p,
then p enters the CS in a bounded number of its own steps [5, 6].

We can also strengthen the concurrent entering property to:

Strong concurrent entering: If process p completes the doorway before any
conflicting process ¢ starts the doorway, then p enters the CS in a bounded
number of its own steps [6].

Model: We work in the context of the asynchronous, shared-memory model
of computation. More precisely, we consider a system consisting of N pro-
cesses, named 1,2,..., N, and a set of shared variables. Each process also has
its own private variables. Processes can communicate only by accessing the
shared variables by means of read, write and COMPARE&SWAP operations.
(COMPARE&SWAP(z, v, w) atomically reads the shared variable z, writes w into
it iff its old value was v, and returns the old value.) One of our algorithms addi-
tionally uses FETCH& ADD(z,v), which atomically adds v to shared variable x
and returns the old value of z. An execution is modeled as a sequence of process
steps. In each step, a process either performs some local computation affecting
only its private variables, or accesses a shared variable by applying one of the
available operations. Processes take steps asynchronously: there is no bound on
the number of other processes’ steps that can be executed between two succes-
sive steps of a process. Every process, however, is live: if it has not terminated,
it will eventually execute its next step.



Within this general framework, there are two models of shared memory: the
distributed shared-memory (DSM) model and the cache-coherent (CC)
model. These differ on where shared variables are physically stored and how
processes can access them. These models are important for our results and we
describe them next.

In the DSM model, each process has an associated memory module. Every
shared variable is stored at the memory module associated with exactly one
process. Accessing a variable stored at a different process’s memory module
causes the process to make a remote memory reference.

In the CC model, all shared variables are stored in a global store that is
not associated with any particular process. Every time a process reads a shared
variable, it does so using a local (cached) copy of the variable. Whenever the
cached variable is no longer valid — either because the process has never read the
variable before, or because some process overwrote it in the global store — the
process makes a remote memory reference and copies the variable into its local
store (i.e., it caches the variable). Also, every time a process writes a variable,
the process writes the variable to the global store (thereby invalidating all cached
copies), which involves a remote memory reference. In our complexity analysis of
algorithms under the CC model we assume that unsuccessful COMPARE& SWAP
operations, i.e., ones that do not update the shared variable they access, do not
invalidate cached copies of the variable.

Remote memory references are orders of magnitude slower than accesses to
the local memory module (or cache); they also generate traffic on the processor-
to-memory interconnect, which can be a bottleneck. For these reasons, the per-
formance of many algorithms for shared memory multiprocessor systems depends
critically on the number of remote memory references they generate [7]. In such
systems, it is therefore important to design algorithms that minimise the number
of remote memory references. An ordinary or group mutual exclusion algorithm
is called local spin (under the DSM or CC model) if the maximum number of
remote memory references made in any passage is bounded. (A passage is the
sequence of steps executed by a process between the time it leaves the NCS and
the time it next returns to it.) Many such algorithms have been devised for or-
dinary mutual exclusion; see [8] for a survey. In this paper we present local-spin
algorithms for group mutual exclusion under the DSM model. To our knowledge,
these are the first such algorithms (but see “Related Work” below for a caveat).

In the pseudocode description of algorithms we use the construct

cobegin Sy || ... || Sk coend

where Sy,..., Sy are “threads”, i.e., statements typically containing one or more
unbounded loops. The meaning of this construct is that the threads are executed
concurrently in an arbitrary fair interleaving. (A fair interleaving is one which,
if infinite, contains an infinite number of instructions of every thread.) Fur-
thermore, if one of the threads terminates, then the execution of the remaining
threads is eventually suspended and the entire cobegin-coend statement termi-
nates.



Outline of Results: In Section 2 we present three local-spin GME algorithms
under the DSM model. Two of these algorithms satisfy strong fairness properties;
the third sacrifices strong fairness to achieve greater concurrency. These three
algorithms require O(IN) remote memory references per passage. We also prove
that this is in some sense asymptotically optimal: In the DSM model, any GME
algorithm (even for the special case of only two sessions and regardless of how
powerful synchronisation primitives it may use), requires {2(N) remote memory
references for some passage. This is in sharp contrast to ordinary (as opposed
to group) mutual exclusion, which can be solved in the DSM model using only
O(log N) remote memory references, even if the shared variables can be accessed
only by read and write operations [9].

In Section 3 we present an algorithm for two-session GME that requires
only O(log N) remote memory references in the CC model. This algorithm uses
COMPARE&SWAP and FETCH& ADD primitives to access shared memory. This
result is interesting, as it provides a complexity separation between the DSM
and CC models. We are not aware of other such separation results for these
two models in asynchronous systems (but see “Related Work” below for similar
results in synchronous systems).? By using a tournament-tree technique, this
algorithm can be used to solve the M-session GME problem, for any fixed M,
with O(log M log N) remote memory references in the CC model.

We omit proofs from this extended abstract. They can be found in [10].

Related Work: Group mutual exclusion was first formulated and solved by
Joung [1]. Many algorithms for this problem (or variants of it) have been pro-
posed [1,11,4,12,6]. The only one of these that is local-spin in the DSM model is
that by Keane and Moir [11]; it requires O(log N) remote memory references per
passage. This algorithm, however, does not satisfy concurrent entering: there are
executions where, although all processes request the same session, some processes
are delayed arbitrarily long in the trying protocol. It satisfies a weaker liveness
property called concurrent occupancy [4]. The difference between concurrent
entering and concurrent occupancy turns out to be substantial: as our lower
bound shows, there is no GME algorithm that satisfies concurrent entering and
requires only o(/N) remote memory references per passage.

Kim and Anderson studied local-spin algorithms for ordinary mutual exclu-
sion in synchronous systems, where there is a known maximum delay on the
time to access a shared variable, and processes have access to reasonably ac-
curate timers [13]. Their results provide a complexity separation between the
DSM and CC models in such systems. They show that to solve ordinary mutual
exclusion in synchronous systems, ©(1) remote memory references are sufficient
in the DSM model, while O(loglog N) remote memory references are necessary
(and sufficient) in the CC model. Intriguingly, this separation in the synchronous

3 Truth in advertising: This separation result is not as strong as one might hope.
In particular, we are able to prove it only in the context where COMPARE&SWAP
and FETCH&ADD are both available, and under the assumption that unsuccessful
COMPARE&SWAP operations do not invalidate cached copies. We view this result as
a modest first step in exploring the relationship between the CC and DSM models.



model is in the reverse direction than the separation we show in this paper for
the asynchronous model.

All the GME algorithms we present in this paper use as a “black box” —
i.e., without any assumptions about how it works — an abortable algorithm
for ordinary mutual exclusion that satisfies the FCFS property. (This is the
property stated above keeping in mind that, in ordinary mutual exclusion, any
two processes conflict.) An abortable mutual exclusion algorithm has, in addition
to the trying and exit protocols, an abort protocol. This can be invoked at any
time while a process is waiting in its trying protocol and causes the process to
re-enter the NCS in a bounded number of its own steps. Jayanti has devised
an abortable FCFS mutual exclusion algorithm that requires O(log N) remote
memory references per passage in the DSM and CC models [14]. We use this fact
in our complexity analyses, and we refer to this algorithm as the underlying
mutual exclusion algorithm.

2 Local-Spin GME Algorithms for the DSM Model

In this section we present GME algorithms that require O(/N) remote memory
references per passage in the DSM model, and show a matching lower bound.

2.1 “Fair” GME Algorithms

In this section we present two algorithms that emphasise fairness. The first of
these satisfies mutual exclusion, lockout freedom, bounded exit, strong concur-
rent entering and FCFS. This algorithm is conceptually simple, but it does not
satisfy FIFE. The second algorithm is an elaboration of the first, and satisfies
FIFE in addition to all the other properties. The two algorithms are shown
together in pseudocode form in Figure 2. The first consists of the non-shaded
portions of the pseudocode; the second also includes the shaded portions. We
now give an informal but hopefully informative presentation of the algorithms,
cross-referenced to the pseudocode, explaining the actions of each process at a
high level.

We start with the simple version that satisfies FCFS but not FIFE. (Refer
to Figure 2, ignoring the shaded portions.) Upon leaving the NCS, a process p
makes public its session by writing it into a shared variable statusCS[p] (line 4).
It then executes the doorway portion of the underlying FCFS mutual exclusion
algorithm denoted MUTEXDOORWAY (line 5), and notes the set of conflicting
processes (lines 6-9). As p considers each process j to determine if they con-
flict, it sets to true a boolean variable barricade[p,j] (line 8). This is a spin-
lock used by p to wait for j, as we will see shortly. These actions comprise p’s

* In all places where statusCS[p] is written in the first version of the algorithm (ini-
tialisation, and lines 4 and 20), the second component passage is set to —1. So, in
this version of the algorithm, we can think of this variable as containing only the
first component session. The component passage plays a role in the second version
of the algorithm.
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shared variables:
statusCS: array[1..N] of record session: integer; passage: integer init (0, —1)
barricade: array[l..N][1..N] of boolean > barricade[p, j] is in p’s memory, Vj

‘ capture: array[l..N] of integer init 0 > capture[p] is in p’s memory ‘

private variables:
mysession: integer > session p wants to attend, set when p leaves the NCS
conflict_set: set of integer

passage: integer init 0
l_status: array[l..N] of record session: integer; passage: integer

repeat
NCS
passage := passage + 1
for j € {1..N} \ {p} do Lstatus[j] := statusCS[j]

statusCS[p] := (mysession, —1)
MUTEXDOORWAY
conflict_set := ()
for j =1to N do
barricade[p, j] := true
if statusCS[j].session & {0, mysession} then conflict_set := conflict_setU{j}

‘statusCS[p] := (mysession, passage) ‘
cobegin
MuTeEXWAITINGROOM

for each j € conflict_set do await —barricade[p, j]

await capture[p] = passage

coend > when one co-routine terminates, go to the next line

for j € {1.N}\ {p} do
if Jv # —1 : statusCS[j] = L_status[j] = (mysession, v) then
capture[j] 1= [_status[j].passage

CS

statusCS[p] := (0, —1)

for j =1 to N do barricade[j, p] := false

if mutez qualified then MUTEXEXIT else MUTEXABORT
forever

Fig. 2. “Fair” GME algorithms




doorway. The process then enters its waiting room, where it waits for one of
two events: (a) the completion of the underlying mutual exclusion algorithm’s
waiting room, denoted MUTEXWAITINGROOM (line 12), or (b) the clearing of
spinlocks barricade[p, j] by every conflicting process j (line 13). At that time, p
enters the CS. If it does so because of event (a) (respectively, (b)) we say that
it enters the CS mutex qualified (respectively, conflict-free qualified).

When p leaves the CS it executes its exit protocol, which consists of the
following actions: First p signals to other processes that it is no longer interested
in a session by setting statusCS[p] to 0 (line 20). For every process j, p then
clears the spinlock barricade[j, p] that j uses to wait for p (line 21). As a result,
if j is waiting for p in line 13 of its waiting room (because j, in its doorway,
found p to be conflicting) it stops doing so. Finally, p executes either the exit
(MUTEXEXIT) or the abort (MUTEXABORT) protocol of the underlying mutual
exclusion algorithm, depending on whether it entered the CS mutex qualified or
conflict-free qualified (line 22).

This algorithm satisfies mutual exclusion, lockout freedom, bounded exit,
FCFS, and strong concurrent entering. It does not, however, satisty FIFE. We
describe a scenario that shows how FIFE can be violated. The scenario involves
processes p and ¢ requesting the same session s and process T requesting a
different session s’. Suppose that r enters the CS. Process p then leaves the
NCS; while in the doorway, p notes the conflicting process r and completes the
doorway. Process r leaves the CS and sets session[r] to 0, but does not (yet)
execute any more steps of its exit protocol. Process g leaves the NCS; in the
doorway it notes no conflicting processes and so it enters the CS conflict free.
However, because r has not yet cleared the spinlock barricade[p,r], p is still
waiting for 7. Moreover, r has not yet executed MUTEXEXIT or MUTEXABORT
and so p cannot become mutex qualified. Thus, we have a situation where p’s
doorway precedes ¢’s and g enters the CS, but p cannot enter the CS in a bounded
number of its own steps. This is a violation of FIFE.

To avoid this we embellish the algorithm with a “capturing mechanism”.
The overall idea is that a process such as ¢ in the above scenario will, before
entering the CS, “capture” a process such as p thereby enabling it to enter the CS
without waiting. In more detail, the capturing mechanism, which is implemented
by the shaded portions of pseudocode in Figure 2, works as follows. Each process
p makes public in shared variable statusCS[p] two pieces of information: the
session number it is requesting and its current passage number. Process p starts
its doorway by making a note of all other processes’ statusCS variables (line 3).
It then makes public its session number but writes —1 as its current passage; this
indicates that p is active but still in the doorway. Process p then executes the
doorway of the underlying mutual exclusion algorithm and notes all conflicting
processes j, setting the spinlocks barricade[p, j]; these play exactly the same role
as before. Finally, p indicates that it has completed the doorway by writing its
passage number in the second component of statusCS[p] (line 10). These actions
comprise p’s doorway. The process then enters the waiting room, where it now
waits for one of three events to happen:



(a) The waiting room of the underlying mutual exclusion algorithm finishes
(line 12). As before, we say that p enters the CS mutex qualified.

(b) The spinlocks barricade[p, j] have been cleared for every conflicting process
j (line 13). This indicates that all conflicting processes noted in p’s doorway
are done. We say that p enters the CS conflict-free qualified.

(c) Variable capture[p] equals p’s passage number (line 14). As we will see shortly,
this indicates that p has been captured and can enter the CS without (fur-
ther) waiting. In this case, we say that p enters the CS capture qualified.

Just before entering the CS, p examines every other process j to determine
whether to capture it (lines 16-18). Process p captures j iff: (i) p and j do
not conflict; and (ii) statusCS[j] has not changed since p made a note of it in
its doorway (line 3) and, at that time, j had finished the doorway (and so the
passage recorded in statusCS[j] was not —1). If this is the case, p captures j
by setting the spinlock capture[j] to j’s current passage number. (As we saw
in case (c) above, a process completes the waiting room and becomes capture
qualified when its capture variable is set to its current passage.) The capturing
mechanism completes p’s entry protocol. The exit protocol is identical to the
previous algorithm’s.

The opening of a new pathway to the CS via the capturing mechanism is
cause for concern regarding mutual exclusion: We have to verify that a captured
process is not enabled to enter the CS while another process requesting a different
session is in the CS. Fortunately, this is the case but some interesting machinery
is needed to prove that mutual exclusion is never violated.

Theorem 1. The algorithm in Figure 2 satisfies mutual exclusion, lockout free-
dom, bounded exit, strong concurrent entering, FCFS and FIFE. Furthermore, in
the DSM model, it requires O(N) remote memory references per passage in addi-
tion to those used by the underlying mutual exclusion algorithm. Thus, combining
this algorithm with Jayanti’s abortable FCFS mutual exclusion algorithm [14],
yields a GME algorithm with the above properties that requires O(N) remote
memory references per passage in the DSM model.

2.2 “High-Concurrency” GME Algorithms

A drawback of both algorithms in Section 2.1 is illustrated by the following
scenario: Let S be a set of processes, and p be a process that is not in S.
Suppose that all processes in S leave the NCS at about the same time requesting
the same session s, while p requests a different session s’. Further suppose that
p publicises its session (line 4) before any process in S goes through the loop in
the doorway that checks for conflicting processes (lines 7-9). Thus every process
in S detects conflict and cannot be conflict-free qualified until after p leaves the
CS. Moreover, assume that all processes in S took a snapshot of the statusCS
variables (line 3) before any of them wrote its statusCS variable (line 4), so that
there is no opportunity for any process in S to be capture qualified. Finally,
suppose that the processes in S U {p} execute through the doorway and waiting



room in such a way that all processes in S become mutex qualified before p.
This means that all the processes in S execute through the CS sequentially, even
though they could all enter the CS concurrently.

We will now describe a “high-concurrency” GME algorithm that alleviates
this problem by using a capturing mechanism. A process that enters the CS
mutex qualified “captures” other processes that have requested the same session
and enables them to enter the CS wait free. In doing so, our algorithm sacrifices
FCFS and FIFE, the strong fairness properties of the previous algorithms.

shared variables:
statusCS: array[1..N] of {(0,0uT), (integer, IN), (integer, REQ)} init (0,0uUT)
barricade: array[l1..N][1..N] of boolean init true

> barricade[p, j] is in p’s memory, Vj

private variables:
mysession: integer > session p wants to attend, set when p leaves the NCS
conflict_set: set of integer

repeat
1 NCS
2 status CS[p] := (mysession, REQ)
3 MUTEXDOORWAY
4 conflict_set := ()
5 for j =1to N do
6 barricade[p, j] := true
7 if statusCS[j] ¢ {(0,0uT), (mysession, REQ), (mysession, IN)} then
8 conflict_set := conflict_set U {j}
9 cobegin
10 MUTEXWAITINGROOM
l
11 for each j € conflict_set do await —barricade[p, j]
I
12 await statusCS[p] = (mysession, IN)
13 coend > when one co-routine terminates, go to the next line
14 for j =1to N do
15 barricade[p, j] := true
16 if 3s # mysession : statusCS[j] = (s,IN) await ~barricade[p, j|
17 if mutez qualified then
18 for j € {1.N}\ {p} do
19 COMPARE&SWAP(statusCS[j], (mysession, REQ), (mysession, IN))
20 CSs

21 statusCS[p] := (0,0uT)
22 for j =1 to N do barricade[j, p] := false
23 if mutex qualified then MUTEXEXIT else MUTEXABORT forever

Fig. 3. “High concurrency” GME algorithm using COMPARE& SWAP

The algorithm is shown in Figure 3. Each process p has a shared variable
statusCS[p] in which it publicises some information about itself in the form of a



pair (s,v). The value of s is the session that p is requesting or 0; the value of v
is one of ouT, REQ or IN. If v = IN then p has been captured; if v = REQ then p
in in the trying protocol or the CS but has not been captured. If v = oUT then
p is in the NCS or in the exit protocol (and s = 0).

Upon leaving the NCS, p writes (s, REQ) into statusCS[p], where s is the ses-
sion it is requesting (line 2), and executes the doorway of the underlying mutual
exclusion algorithm (line 3). It then records the name of every conflicting process
j and sets the spinlock barricade[p, j] on which it will wait for conflicting pro-
cesses to finish, as in the previous algorithms (lines 4-8). These actions comprise
the doorway.

Process p then enters the waiting room which consists of two phases. The first
phase is as in the previous algorithm; p waits for one of three events (lines 9-13):
(a) to be the winner in the underlying mutual exclusion algorithm (mutex quali-
fied); (b) to find that all conflicting processes are done (conflict-free qualified); or
(¢) to be captured (capture qualified). In the second phase, p waits for captured
conflicting processes to finish the CS (lines 14-16) and then, if it completed the
first phase of the waiting room mutex qualified, p captures any processes that
have requested the same session (lines 17-19). Waiting for captured conflicting
processes is accomplished by (re)using the barricade spinlocks: p resets the spin-
lock barricade[p, j], and then waits for j to clear the spinlock in its exit protocol
(line 22) if j is conflicting. Capturing processes that have requested the same
session s as p is accomplished by writing (s, IN) into statusCS[j] for every process
J whose statusCS[j] was previously (s, REQ) (line 19). Note that here we use the
COMPARE&SWAP operation, so that the reading of statusCS[j] (to see if it is
(s,REQ)) and its updating (to make it (s,IN)) are done in one atomic action. At
this point, p has completed the trying protocol and enters the CS.

The exit protocol is very similar to the algorithms we have seen before: p
indicates that it is out of the CS by writing (0,0uUT) in statusCS[p] (line 21),
clears the spinlocks of every process j that could be waiting for it (line 22),
and then executes the exit or abort procedure of the underlying mutual exclu-
sion algorithm, depending on whether it entered the CS mutex qualified or not
(line 23).

Theorem 2. The algorithm in Figure 3 satisfies mutual exclusion, lockout free-
dom, bounded exit and concurrent entering. Furthermore, in the DSM model, it
requires O(N) remote memory references per passage in addition to those used by
the underlying mutual exclusion algorithm. Thus, combining this algorithm with
Jayanti’s abortable FCFS mutual exclusion algorithm [14], yields a GME algo-
rithm with the above properties that requires O(N) remote memory references
per passage in the DSM model.

2.3 Lower Bound on Remote Memory References

We now show that, in some sense, the preceding algorithms are asymptotically

optimal in terms of the number of remote memory references they generate in
the DSM model.



Theorem 3. Any algorithm that satisfies mutual exclusion, lockout freedom,
bounded exit and concurrent entering, and is local-spin under the DSM model,
must perform 2(N) remote memory references in some passage. This holds even
for the two-session GME problem, i.e., when each process can request one of only
two sessions.

We now sketch a proof of this lower bound. Let A be an algorithm for two-
session GME that is local-spin under the DSM model. Consider the following
execution of A: Some process p requests session s, while no other process is
active. Process p enters the CS (because A is lockout-free). At this point the
remaining N — 1 processes, each requesting the other session s', enter the trying
protocol. Since p is in the CS and A satisfies mutual exclusion, none of the N —1
processes requesting s’ can enter the CS. There is no bound on the amount of
time that p can spend in the CS, so we assume that p stays in the CS until each
of the N — 1 processes in the trying protocol enters a busy-wait loop. Since A
is local-spin under the DSM model, this implies that there are at least N — 1
distinct variables on which the processes in the trying protocol are busy-waiting.
For any such process to enter the CS, the local-spin variable(s) it is busy-waiting
on must be updated. Thus, when p leaves the CS and executes the exit protocol,
it must update at least N — 1 remotely stored variables: If it updated any fewer
then we could continue the execution in such a way that at least one process in
the trying protocol would not enter the CS in a bounded number of its own steps
after p is no longer active. This would violate the concurrent entering property
that A is supposed to satisfy. Therefore, there is an execution of A in which a
process executes 2(IN) remote memory references during a passage.

The difficulty in formalising this proof is that the idea of a process “entering
a busy-wait loop”, although intuitively clear, is not easy to express formally. A
rigorous proof is given in [10] (see Chapter 3). Although the technical details of
that proof are intricate, the basic intuition is contained in the simplified proof
sketch we presented here.

3 Local-Spin Algorithms for GME in the CC model

We now turn our attention to the CC model. We will describe a two-session
GME algorithm that uses (as a black box) an abortable FCFS ordinary mutual
exclusion algorithm and requires O(1) remote memory references in addition to
those used by the underlying mutual exclusion algorithm.

The algorithm is shown in pseudocode in Figure 4. We assume that the two
sessions that processes can request are 1 and 2. If s € {1,2}, 5 denotes the
“other” session than s — i.e., 5 = 3 — s. We provide a high-level overview of
the algorithm, cross-referenced to the pseudocode. We start by describing the
shared variables used in the algorithm, and then explain how they are used.

Associated with each session s € {1,2} are two shared variables: a counter,
active[s], and a spin-lock, gate[s]. Each process increments by one the counter
of the session it is requesting when it enters the trying protocol (line 3) and



atomically reads and decrements that counter by one when it leaves the CS
(line 17). In addition, each process atomically reads and increments by N + 1
the counter of the other session when it enters the waiting room (line 9), and
decrements that counter by the same amount when it leaves the waiting room
(line 15). Thus, if active[s] = a(N + 1) + b, where 0 < b < N, then there are
exactly b processes requesting s in lines 4-17, and exactly a processes requesting
5 in lines 10-15. We will later see in more detail how this variable is used, but it
is clear that by reading this variable a process can get some idea of how many
active processes request each of the sessions.

shared variables:
gate: array|[l..2] of record tag: {0..N}; state : {OPEN, CLOSED} init (0, CLOSED)
active: array/[l..2] of integer init 0

private variables:

mysession : {1, 2} > session p wants to attend, set when p leaves the NCS
lactive: array[l..2] of integer > private copy of active
[_gate: record tag: {0..N}; state : {OPEN,CLOSED} b and of gate[mysession]

repeat
1 NCS
2 othersession := 3 — mysession > the opposite session than the one p requests
3 FeETCH& ADD(active[mysession], 1)
4 l_gate := gate[othersession]
5 if [_gate # (0, CLOSED) then
6 COMPARE& SWAP(gate[othersession], l_gate, (0, CLOSED))
7 COMPARE&SWAP(gate[othersession], (0, OPEN), (0, CLOSED))
8 MUTEXDOORWAY
9 l_active[othersession] := FETCH& ADD(active[othersession], N + 1)
10 cobegin
11 MuTEXxWAITINGROOM

I

12 if Lactive[othersession] mod (N +1) > 0 then
13 await gate[mysession] = (0, OPEN)
14 coend > when one coroutine terminates, go to the next line
15 FETCH& ADD(activeothersession], —(N + 1))
16 CSs
17 l_active[mysession] := FETCH& ADD(active[mysession], —1)
18 if [_activelmysession| mod (N +1) = 1 and Lactive[mysession] > (N + 1) then
19 gate[othersession] := (p, CLOSED)
20 if active[mysession] mod (N + 1) = 0 then
21 COMPARE&SWAP(gate[othersession], (p, CLOSED), (0, OPEN))
22 if mutez qualified then MUTEXEXIT else MUTEXABORT

forever

Fig. 4. Two-session GME algorithm for the CC model

To enter the CS, a process executes the doorway of the underlying mutual
exclusion algorithm (line 8) and then waits for one of two events: (a) the waiting



room of the underlying mutual exclusion algorithm completes (line 11), in which
case we say that the process enters the CS mutex qualified; or (b) it detects
that no conflicting process is active (lines 12-13), in which case we say that
the process enters the CS conflict-free qualified. We now discuss how a process
detects that no conflicting process is active.

As alluded to earlier, a process requesting s can detect that there are no active
processes currently requesting 5 by checking that active[s] mod (N + 1) = 0.
Unfortunately, a mechanism for detecting absence of conflicting requests that
spins on the value of active[s] does not give us the desired complexity of only
O(1) remote memory references in the CC model.

For this reason we need a different mechanism for processes to detect the
absence of conflicting requests. The shared variable gate[s] provides this mecha-
nism. At a high level, the idea behind this mechanism is that as soon as a process
requesting 5 leaves the NCS, it “closes” gate[s] by setting it to (0, CLOSED) (lines
4-7), thereby preventing processes requesting s from entering the CS conflict-
free qualified (line 13). We refer to this as the “gate-closing” phase of the trying
protocol. The subsequent opening of gate[s] is accomplished as follows: As each
process requesting § leaves the CS, it checks whether (a) it is the last such pro-
cess to do so, and (b) there are conflicting processes in the waiting room. Process
D, requesting session 3, does this by looking at the old value v of active[s] when
it decremented it (line 18): If v mod (N +1) = 1, then p is the last one request-
ing 5 to leave the CS; and if v > (N + 1), then there are conflicting processes
(requesting s) in the waiting room. If both of these conditions are satisfied, p
attempts to “open” gate[s] (lines 19-21). (The second condition, that a conflict-
ing process be in the waiting room, is needed only to ensure that our algorithm
makes O(1) remote memory references in addition to those of the underlying
mutual exclusion algorithm, not for any of the correctness properties.)

Process p should not “open” gate[s] by using a simple assignment statement
to set it to (0, OPEN). If p did this, there is the possibility that between the time
when p reads active[s] (line 17) and the time when it writes gate[s] = (0, OPEN),
some other process p' requesting session 5 executes its doorway (lines 2-9) and
goes into its waiting room (lines 10-15) without closing the gate, since it al-
ready found it closed (lines 4-6). Process p could then set gate[s] = (0, OPEN)
and return to the NCS, leaving us in a situation where gate[s] is open, and a
process requesting session 35 (i.e., p') has gotten past the gate-closing phase of
the algorithm (lines 4-7) without ensuring that gate[s] is closed. This is danger-
ous: after p' enters the CS, since gate[s] is open, processes requesting session s
can also enter the CS conflict-free (by completing line 13), thus violating mutual
exclusion.

The preceding could be avoided if p, when it leaves the CS, could somehow
do the following atomically: read and decrement the variable active[s], check
if the value read meets the conditions for opening gate[s] and, if it does, set
gate[s] = (0, 0PEN). This would ensure that other processes requesting session 3
(such as p' in the above scenario) could not race into the waiting room before
p has the opportunity to set gate[s] = (0, OPEN). However, there is no realistic



synchronization primitive that allows p to perform atomically all the required
operations on active[s] and gate[s]. This leads us to devise a mechanism that
achieves an equivalent effect.

Such a mechanism is located in lines 19-21. The first thing that p does in this
fragment of the algorithm is to set gate[s] = (p, CLOSED). This essentially “tags”
the gate[s] variable with p’s identifier. Using this tag, p can later determine if
anyone else has written to gate[s] since p last wrote to it. Process p then repeats
the check of whether it is the last active process to leave the CS (line 20). If the
recheck fails, then p knows that it should not open gate[s] to processes requesting
session s. If, however, the check succeeds, then p is still responsible for opening
gate[s]. This is what p does in line 21. Again, however, p cannot use a simple
assignment statement to set gate[s] = (0, OPEN) because of the danger of some
other process requesting session s racing out of the NCS and into the waiting
room. Instead, p makes use of the fact that it can safely assign (0, OPEN) to
gate[s] as long as no one wrote to gate[s] since the time p performed the recheck.
Specifically, by using COMPARE&SWAP, p atomically checks that its tag is still
in gate[s] (which it set before the recheck) and, if it is, it sets gate[s] = (0, OPEN)
(line 21).

After a process carries out the “gate opening” procedure (lines 17-21), it com-
pletes the exit protocol by executing MUTEXEXIT or MUTEXABORT depending
on whether it entered the CS mutex or conflict-free qualified (line 22).

Theorem 4. The algorithm in Figure 4 solves the two-session FCFS GME prob-
lem. That is, it satisfies mutual exclusion, lockout freedom, bounded exit, concur-
rent entering and FCFS. Furthermore, in the CC model, it requires O(1) remote
memory references per passage in addition to those used by the underlying mu-
tual exclusion algorithm. Thus, combining this algorithm with Jayanti’s abortable
FCFS mutual exclusion algorithm [14], yields a two-session GME algorithm that
requires O(log N) remote memory references per passage in the CC model.

Note that this “beats” the lower bound on the number of remote memory
references per passage for the two-session GME problem in the DSM model
(Theorem 3). Thus, two-session GME provides a complexity separation between
the DSM and CC models. Consequently there is no general transformation that
takes an algorithm that works in the CC model and turns it into one that solves
the same problem and works as efficiently (within a constant factor) in the DSM
model. This confirms the intuition that in general it is harder to design efficient
local-spin algorithms for the DSM model than for the CC model.

Using the two-session GME algorithm as a building block, we can construct
an algorithm for the M-session GME problem, for any fixed M, that requires
O(log M log N) remote memory references per passage in the CC model. The
idea is to create a “tournament tree” with M leaves (one per session), and
height |log, M |. Each internal node of the tree corresponds to an instance of
the two-session algorithm. A process p requesting session s starts at the leaf that
corresponds to s and traces a path from that leaf to the root. At each internal
node along that path, p executes the trying protocol of the corresponding two-
session GME algorithm, using session 1 or 2 depending on whether p reached



the node from its left or right child. When p completes the trying protocol of a
node, it moves “up” to the node’s parent; in the case of the root, p enters the
CS. Upon leaving the CS, p retraces the same path in reverse order (from root
to leaf) executing the exit protocols of the nodes it visits on the way “down” the
tree. Yang and Anderson’s algorithm for ordinary mutual exclusion [9] exhibits a
similar recursive structure, though in that case the recursion is on the number of
processes N, while here it is on the number of sessions M. A precise description
of this algorithm, along with its correctness proof and remote memory reference
complexity analysis in the CC model, can be found in [10].
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