LOCAL-SPIN GROUP MUTUAL EXCLUSION ALGORITHMS

Robert Danek

A thesis submitted in conformity with the requirements
for the degree of Master of Science
Graduate Department of Computer Science
University of Toronto

Copyright (©) 2004 by Robert Danek

Abstract

LOCAL-SPIN GROUP MUTUAL EXCLUSION ALGORITHMS

Robert Danek
Master of Science
Graduate Department of Computer Science

University of Toronto

2004

The group mutual exclusion (GME) problem is a variant of the mutual exclusion prob-
lem in which multiple processes that request the same session (and thus belong to the
same “group”) may be admitted to the critical section concurrently. We examine N-
process group mutual exclusion under two different shared-memory models: the dis-
tributed shared-memory (DSM) model and the cache-coherent (CC) model. We prove
that the remote memory reference (RMR) complexity of any GME algorithm in the
DSM model is Q(N), and we present and prove correct several local-spin GME algo-
rithms whose RMR complexity matches this lower bound. We also present a 2-session
local-spin GME algorithm for the CC model that beats the lower bound of the DSM
model, and use it to construct an M-session GME algorithm. Each algorithm we present

is in the form of a reduction to a FCFS abortable mutual exclusion algorithm.

ii

Acknowledgements

Firstly, I would like to thank my supervisor, Vassos Hadzilacos, for the insight and
feedback that he provided on my work. His numerous suggestions helped shape this
thesis into its current form.

I would also like to thank Sam Toueg for the helpful comments that he provided as
my second reader.

Finally, T would like to thank my family and friends for their encouragement and
patience while I completed my degree. Without their support, I would not have been

able to make it this far.

iii

Contents

1 Introduction
1.1 The Mutual Exclusion Problem
1.2 The Group Mutual Exclusion Problem
1.3 Models and Measures of Complexity
1.4 The Reduction Concept,
1.5 Previous Work

1.6 Contributions and Thesis OQutline

2 Preliminaries
2.1 Formal Model oo
2.2 Memory Models
2.3 Algorithm Preliminaries 0.

2.4 Definitions of Common Terms and Notation

3 GME Lower Bound Under the DSM Model
3.1 Proof Sketch of Lower Bound

3.2 Lower Bound Proof

4 Fair Local-Spin GME
4.1 Jayanti’s Algorithm oL oL oo
4.2 A FCFS Local-Spin GME Algorithm

v

10

12

15
15
18
19

21

23
23

24

32

4.2.1 Definitions o e, 38

4.2.2 FIFE Violation Lo 40
4.2.3 Proof of Correctness 40
424 RMR Complexity L oL 45

4.3 A FCFS and FIFE Local-Spin GME Algorithm 45
4.3.1 Definitions and Notation 46
4.3.2 Line by Line Commentary of the Algorithm 49
4.3.3 Proof of Correctness 50
4.3.4 RMR Complexity 0L oL 69

5 High Concurrency Local-Spin GME 70
5.1 An Algorithm That Uses Compare-And-Swap 71
5.1.1 Definitionso 72
5.1.2 Line by Line Commentary of the Algorithm 74
5.1.3 Proof of Correctness 75
5.1.4 RMR Complexity oL 84

5.2 An Algorithm With Only Read/Write Operations 85
5.3 An Algorithm With Bounded Variables 87
5.3.1 Definitions and Notation 90
5.3.2 Line by Line Commentary of the Algorithm 92
5.3.3 Proof of Correctness 93
5.3.4 RMR Complexity L oL 114

6 Local-Spin GME Under The CC Model 115
6.1 2-Session GME With Low RMR Complexity 117
6.1.1 Introduction 118
6.1.2 Definitions and Notation 118
6.1.3 Informal Description of the Algorithm 119

6.1.4 Line by Line Commentary of the Algorithm 123

6.1.5 Proof of Correctness 125

6.1.6 RMR Complexity 0L 136

6.2 M-Session GME With Low RMR Complexity 144
6.2.1 Introduction 145

6.2.2 Definitions 146

6.2.3 Proof of Correctnesso 146

6.2.4 RMR Complexity oL 149

7 Conclusion 150
Bibliography 152

vi

List of Figures

1.1 Structure of Algorithm Executed by Processes
1.2 Structure of Algorithm Executed by Processes (Fair Case)
2.1 Cobegin-Coend Block oo o oL

4.1 Jayanti’s Algorithm; Process pe {1.N}

4.2 Method CONFLICT-FREE() for Algorithm in Figure 4.1

4.3
4.4
4.5
4.6
4.7
4.8
5.1
5.2
9.3
0.4
9.5
2.6
2.7
2.8
2.9

Header for Algorithm in Figure 4.4
A FCFS Local-Spin GME Algorithm; Process pe {1.N}
Method CONFLICT-FREE() for Algorithms in Figures 4.4, 4.7
Header for Algorithm in Figure 4.7
A FCFS and FIFE Local-Spin GME Algorithm; Process p € {1.N} . . .
Method AWAIT-CAPTURE() for Algorithm in Figure 4.7
Header for Algorithm in Figure 5.2
An Algorithm That Uses Compare-And-Swap; Process p € {1.N}
Method CONFLICT-FREE() for Algorithm in Figures 5.2, 5.6,5.9
Method AWAIT-CAPTURE() for Algorithm in Figure 5.2
Header for Algorithm in Figure 5.6
An Algorithm With Only Read/Write Operations; Process p € {1..N} . .
Method AWAIT-CAPTURE() for Algorithm in Figures 5.6,5.9
Header for Algorithm in Figure 5.9

An Algorithm With Bounded Variables; Process p € {1.N}

vii

34
39
39
39
47
48
48
72
73
73
73
85
86

6.1 2-Session GME Algorithm; Process p € {1..N}

6.2 Method CONFLICT-FREE() for Algorithm in Figure 6.1

6.3 M-Session GME Algorithm; Process p € {1..N}

viii

Chapter 1

Introduction

1.1 The Mutual Exclusion Problem

The N-process mutual exclusion problem is a well-studied problem in the field of dis-
tributed computing. The motivation for the problem arises from the fact that there are
certain resources in systems, called critical resources, that can only be accessed by at
most one process at a time. Examples of such resources include a disk drive, a printer,
or a “software” resource such as a data structure that can be modified by different pro-
cesses. One can imagine the havoc that can be wreaked in a system if multiple processes
were allowed to write to different parts of a disk, write different documents to a printer,
or update the same data structure, at the same time.

To formalize the mutual exclusion problem, we assume that processes execute an

algorithm structured as per Figure 1.1.

Figure 1.1 Structure of Algorithm Executed by Processes

loop
Non-Critical Section (NCS)
Trying Protocol (TP)
Critical Section (CS)
Exit Protocol (EP)

end loop

The CS is the section of the algorithm where a process accesses the critical resource.

CHAPTER 1. INTRODUCTION 2

We assume that the CS is finite and that a process that enters the CS eventually leaves
it.
A solution to the N-process mutual exclusion (ME) problem counsists of a trying and

exit protocol (called the ME algorithm) so that the following properties are satisfied:

Mutual Exclusion: If a process p is in the CS, then no process ¢ # p is in the CS

concurrently with p.

Lockout Freedom: If a process p enters the trying protocol, then p eventually enters

the CS.

Bounded Exit: If a process enters the exit protocol, then the process returns to the

NCS in a bounded number of its own steps.

We assume that the trying and exit protocols do not refer to any variables that are
used inside the NCS or the CS.

An ME algorithm clearly guarantees that at most one process accesses a critical
resource at a time. However, the order in which processes are admitted to the CS if
more than one processes tries to enter the CS simultaneously is undefined. For example,
suppose at some time ¢ a process p tries entering the CS and remains in the trying
protocol for a long time. Then, at some time ¢’ long after ¢, a process ¢ # p attempts to
enter the CS. It is possible for an ME algorithm to admit ¢ into the CS before p.

The notion of one process attempting to enter the CS long after another is vague.
However, despite this vagueness, one can intuitively see the scenario described above is
unfair. Consider the situation of waiting in line at a bank or a grocery store: one expects
that it is fair for those people who arrived in the line earlier to be served before those
who arrived in the line at some later time. Similarly, processes that “arrive” (i.e., leave
the NCS) earlier should be granted access to the CS earlier.

In order to formalize the concept of fairness, we first split the trying protocol into

two parts: a doorway, and a waiting room. The doorway is a piece of code that a process

CHAPTER 1. INTRODUCTION 3

executes in a bounded number of its own steps. We now assume processes execute an

algorithm structured as per Figure 1.2.

Figure 1.2 Structure of Algorithm Executed by Processes (Fair Case)

loop
Non-Critical Section (NCS)
Doorway
Waiting Room
Critical Section (CS)
Exit Protocol (EP)
end loop

An ME algorithm that satisfies the following property is considered fair:

First-Come-First-Served (FCFS): If a process p finishes the doorway before a pro-

cess q # p starts the doorway, then p enters the CS before ¢ enters the CS.

The FCFS property captures the notion that processes that attempt to enter the CS
earlier than other processes will be granted access to the CS earlier. An ME algorithm
satisfying the FCF'S property is referred to as an FCFS ME algorithm.

We now return to our example of a line at a bank or grocery store. Besides the
expectation of fairness in such lines, one also expects that a person can leave the line at
any time prior to being served. For example, one might want to take advantage of this
ability if one spends too long in the line without being served. Processes may want an
analogous ability when attempting to access a critical resource. There may be a lot of
processes simultaneously wanting to access the CS, and this may cause a long wait before
a process is actually granted entry into the CS. In this case, a process should be able to
somehow abort its attempt to enter the CS. ME algorithms that provide this ability are
called abortable ME algorithms.

An abortable ME algorithm works as follows: when a process leaves the NCS, it first
executes a trying protocol that consists of a doorway and waiting room (see Figure 1.2),
where the waiting room is simply a busy-wait loop. (A busy-wait loop is an unbounded

loop in which a process waits for one or more shared variables to acquire certain values.

CHAPTER 1. INTRODUCTION 4

Busy-wait loops are discussed more in the next chapter.) Once the process is in the
busy-wait loop, it may decide to abort its attempt to enter the CS, at which point it
abandons busy-waiting, executes a section of code referred to as the abort protocol, and
then returns to the NCS. Otherwise, if the process succeeds in entering the CS, then
the process proceeds through the CS and to the exit protocol, as with the other ME
algorithms.

In addition to the ME properties, an abortable ME algorithm satisfies the following

property:

Bounded Abort: If a process enters the abort protocol, then the process returns to the

NCS in a bounded number of its own steps.

1.2 The Group Mutual Exclusion Problem

Up until now we have been considering resources that can only be accessed by at most
one process at a time. It turns out there are other types of resources in systems that can
be accessed by more than one process concurrently as long as all the processes accessing
the resource belong to the same “group”. One example of such a resource is provided
by Joung [11]. A Computer Supported Cooperative Work application may make use of
an electronic white board (the resource), to which multiple users (the processes) have
access. When a user wants to share some piece of information about a certain topic (the
group) with other users, he posts it to the white board, and any users interested in the
same topic may access that information, and potentially add other pieces of information
by writing to the white board. However, users interested in a different topic cannot use
the white board until the current users are finished. Another example is provided by
Hadzilacos [8]. Consider a server (the resource) that has the ability to cache some subset
of data from a large distributed database. Clients (the processes) of this server that are

interested in the subset of data (the group) that the server currently has cached can

CHAPTER 1. INTRODUCTION 5

access the server concurrently, but those clients interested in some other subset of data
must wait until no other process is accessing the current data.

Clearly a mutual exclusion algorithm is sufficient for protecting access to these types
of resources, but the drawback of using such an algorithm is that it does not admit any
concurrency. This leads us to the definition of the N-process group mutual exclusion
problem.

In the group mutual exclusion problem, originally defined by Joung [11], processes
execute an algorithm structured as per Figure 1.1. Before a process leaves the NCS, it
declares which session it wants to attend (i.e., to which “group” it wants to belong). For
our purposes, this is done by simply writing an integer to a private variable. When a
process is outside of the NCS, we say that the process is requesting the session whose
value is written to that variable.

A solution to the N-process group mutual exclusion (GME) problem consists of a
trying and exit protocol (called the GME algorithm) so that the following properties’

are satisfied:

Mutual Exclusion: If a process p, requesting a session s, is in the CS, then no other

process ¢, requesting a session s’ # s, is in the CS concurrently with p.

Lockout Freedom: If a process p enters the trying protocol, then p eventually enters

the CS.

Bounded Exit: If a process p enters the exit protocol, then p returns to the NCS in a

bounded number of its own steps.

Concurrent Entering: If a process p is requesting a session s, and no other process is
requesting a session s’ # s, then p enters the CS in a bounded number of its own

steps.

1Some of the property names are the same as those given for the mutual exclusion problem. When we
refer to these properties, it will be clear from the context whether we are referring to the ME properties
or the GME properties.

CHAPTER 1. INTRODUCTION 6

Similar to the ME problem, we assume that the trying and exit protocols do not refer
to any variables used inside the NCS or CS.

GME algorithms guarantee that a resource is sufficiently protected while at the same
time, under certain circumstances, allowing processes requesting the same session to
access the resource concurrently. However, as with ME algorithms, there is no guarantee
on the order in which processes are admitted to the CS.

Consider the FCFS property we defined in the context of the ME problem. The
purpose of the FCFS property there is to capture the notion that it is fair for a process
that attempts to enter the CS earlier than other processes to be granted entry into the
CS before those other processes. An analogous notion of fairness in the context of the
GME problem is for processes that request a session s to be granted entry into the CS
earlier than processes that request a session s’ # s some time later. Assuming processes
execute an algorithm structured as per Figure 1.2, this notion of fairness is captured by

the following property, defined by Hadzilacos [8]:

First-Come-First-Served (FCFS): If a process p, requesting a session s, finishes the
doorway before a process ¢, requesting a session s’ # s, starts the doorway, then p

enters the CS before ¢ enters the CS.

A GME algorithm satisfying the above property is referred to as an FCFS GME
algorithm.

The FCFS property only addresses the problem of fairness between processes that re-
quest different sessions, but says nothing about processes requesting the same session. To
address the problem of fairness among all processes, one might naively consider adopting
the FCFS property as it was stated in the context of the ME problem. However, this is
not possible, since the FCFS property stated in that manner, without the embellishment
given above, would conflict with the concurrent entering property, which is undesirable.

To see the conflict with the concurrent entering property, consider the following scenario:

CHAPTER 1. INTRODUCTION 7

a process p finishes executing the doorway before another process ¢ starts executing the
doorway, where both processes request the same session, and all other processes are in
the NCS. The FCFS property says that p must enter the CS before ¢, which means that
¢ may have to wait until p enters the CS. This violates the concurrent entering property,
which says that both p and ¢ must enter the CS in a bounded number of their own steps.

Instead, we consider a notion of fairness among processes requesting the same session
that works at an intuitive level as follows: suppose a process p requests some session at
some time ¢, and long after ¢, another process ¢ requests the same session. Now, suppose
q enters the CS before p. Then it is fair that p should be able to enter the CS unimpeded.

The foregoing intuition is captured formally by the following property, defined by

Jayanti et al. [10]:

First-In-First-Enabled (FIFE): If a process p, requesting session s, completes the
doorway before a process ¢ # p, also requesting session s, starts the doorway, and ¢

enters the CS before p, then p enters the CS in a bounded number of its own steps.

Another concept of fairness in the context of the GME problem deals with the con-
current entering property. In its current form, the property implies that a process should
be given unimpeded access to the CS as long as no other process requests a conflicting
session. This allows for the situation where a process p requests a session s, and long
after this, a process ¢, requesting a session s’ # s, leaves the NCS and blocks p from
entering the CS in a bounded number of its own steps. This situation is undesirable and
unfair, because ¢ did not leave the NCS until long after p.

A variant of the concurrent entering property that formalizes the above intuition is

given below. This property was also defined by Jayanti et al. [10].

Strong Concurrent Entering: If a process p, requesting a session s, completes the
doorway before any process ¢, requesting a session s’ # s, starts the doorway, then

p enters the CS within a bounded number of its own steps.

CHAPTER 1. INTRODUCTION 8

To recap: the most basic properties that any GME algorithm must satisfy are mutual
exclusion, lockout freedom, bounded exit, and concurrent entering. The lower bound
proof that we present in this thesis applies to such GME algorithms. In addition to the
basic properties, we have also defined a number of fairness properties: FCFS, FIFE, and

strong concurrent entering.

1.3 Models and Measures of Complexity

Our discussion here on models and measures of complexity is based on the discussion in
Anderson et al. [2].

There are two major types of models under which group mutual exclusion and mutual
exclusion algorithms may run. One is the message-passing model, and the other is the
shared-memory model. In this thesis, we focus on shared-memory models.

The two main types of shared-memory models are the distributed shared-memory
(DSM) model, and the cache-coherent (CC) model. The difference between the two
models is with respect to where variables are physically stored and how processes access
the variables.

Intuitively, under the DSM model, every variable is associated with exactly one pro-
cess. Accessing a variable associated with another process causes the process to make a
remote memory reference.

Under the CC model, variables are located in a global store that is not associated
with any particular process. Every time a process reads a variable, it does so using a
local copy (cached copy) of the variable. Whenever the cached variable is no longer valid
— either because the process has never read the variable before, or because some other
process overwrote it in the global store — the process makes a remote memory reference
and copies the variable into its local store (i.e., it caches the variable). Also, every time

a process writes a variable, the process writes the variable to the global store, which

CHAPTER 1. INTRODUCTION 9

involves making a remote memory reference. The reader is directed to Chapter 2 for a
more detailed description of the two models.

An important measure of algorithmic complexity used in evaluating the performance
of mutual exclusion or group mutual exclusion algorithms is the remote memory refer-
ence (RMR) complexity. This is a measure of the maximum number of remote memory
references that a process makes between the time it leaves the NCS and the time it next
returns to the NCS. Accessing a remote variable is much more expensive than accessing
a local variable, and so the more remote memory references that are made by a process,
the poorer the performance of that process.

We say that a ME or GME algorithm is local-spin under the DSM or CC model
if the number of remote memory references that are made between the time a process

leaves the NCS and the time it next returns to the NCS is bounded.

1.4 The Reduction Concept

At this point we consider whether there is any algorithmic relationship between group
mutual exclusion and mutual exclusion. We can clearly use an algorithm that solves the
group mutual exclusion problem to solve the mutual exclusion problem. Each process
need only request a unique session (e.g., its process identifier). However, it is not so clear
that one can take a mutual exclusion algorithm and somehow use it to construct a group
mutual exclusion algorithm.

Making use of an algorithm that solves one problem A in the construction of an
algorithm that solves another problem B is referred to as a reduction of B to A (or
transformation of A to B).

It turns out that it is possible to reduce a group mutual exclusion algorithm to a
FCFS abortable mutual exclusion algorithm. We explore this reduction in detail in this

thesis.

CHAPTER 1. INTRODUCTION 10

1.5 Previous Work

Dijsktra [5] was the first to propose a solution to the mutual exclusion problem. However,
his solution did not satisfy the lockout freedom property. Instead, it satisfied a weaker

variant of this property, called deadlock freedom:

Deadlock Freedom: If a process p is stuck forever in its trying protocol, then there is

some process that enters the CS infinitely often.

Knuth [13] was the first to provide a solution to the mutual exclusion problem that
satisfied lockout freedom. Lamport presented his “bakery algorithm” in [14]. The “bakery
algorithm” was the first mutual exclusion algorithm to satisfy the FCFES property. In
addition to this, Lamport’s algorithm did not assume atomic reads and writes; all earlier
mutual exclusion algorithms assumed that variables could be read and written atomically,
which is a form of mutual exclusion. Assuming mutual exclusion at a lower-level is
theoretically undesirable when constructing a mutual exclusion algorithm.

Local-spin mutual exclusion algorithms were presented in [3] by Anderson, and [7]
by Graunke and Thakkar. Both of these have O(1) RMR complexity, but are local-
spin only under the CC model. In [15] Mellor-Crummey and Scott presented a mutual
exclusion algorithm that is local-spin under the DSM model. The RMR complexity of this
algorithm is O(1), but it has a drawback: the algorithm does not satisfy the bounded
exit property; rather, it satisfies a weaker form of this property, called exit protocol

termination:

Exit Protocol Termination: If a process p enters the exit protocol, then p eventually

returns to the NCS.

Another undesirable property of all the preceding local-spin algorithms is that they

make use of strong synchronization primitives, such as “fetch-and-store”, “fetch-and-

CHAPTER 1. INTRODUCTION 11

add”, and “compare-and-swap”.?

Yang and Anderson [18] presented a mutual exclusion algorithm that is local-spin
under the DSM model, has RMR complexity O(log N), and does not use any strong

synchronization primitives — it uses only ordinary (atomic) read and write operations.

Abortable mutual exclusion algorithms were studied by Scott in [16] and Scott and
Scherer in [17]. Jayanti [9] was the first to provide a FCFS abortable mutual exclu-
sion algorithm that is local-spin under the DSM model. Jayanti’s algorithm has RMR

complexity O(min(k,log N)), where k is the point contention.?

Lower bounds on the RMR complexity for mutual exclusion algorithms were stud-
ied by Cypher [4] and by Anderson and Kim [1]. In particular, Cypher showed that
the amortized lower bound for the number of remote memory references that an N-
process mutual exclusion algorithm can make is Q(log log N/log log log N). Anderson
and Kim improved on this by proving that the lower bound for the number of remote
memory references a mutual exclusion algorithm can make is Q(log N/log log N). Both
lower bounds apply to both the DSM and CC models, and to algorithms using atomic
reads, writes, and a certain class of strong synchronization primitives, called comparison
primitives, that includes “test-and-set” and “compare-and-swap” (but not primitives like

“fetch-and-add”).

The group mutual exclusion problem was first introduced and solved by Joung [11].
His solution does not satisfy any fairness properties, and is not local-spin. It also has the

drawback that processes must request sessions from a finite set of known size.

Keane and Moir [12] almost succeeded in presenting a local-spin group mutual exclu-
sion algorithm. Unlike Joung’s algorithm, Keane and Moir’s solution allowed for processes

to request sessions from a set of unknown size. The problem with Keane and Moir’s so-

2A detailed discussion of strong synchronization primitives is provided in Chapter 2.

3Intuitively, point contention is a measure of the number of processes that are simultaneously active
at some point in the algorithm. The reader is directed to [9] and [2] for more details and references on
this topic.

CHAPTER 1. INTRODUCTION 12

lution, pointed out by Hadzilacos [8], is that it does not satisfy the concurrent entering

property, but rather a weaker property called the concurrent occupancy property:

Concurrent Occupancy: If a process p requests a session and no process requests a
different session, then p eventually enters the CS (even if other processes do not

leave the CS).

Hadzilacos [8] formally defined the concurrent entering property, and went on to define
the FCF'S property in the context of group mutual exclusion. He also presented a FCFS
GME algorithm. His solution, like Keane and Moir’s, allows for processes to request
sessions from a set of unknown size, but unlike Keane and Moir’s, is not local-spin.

In [10], Jayanti, Petrovic and Tan defined the FIFE property for the group mutual
exclusion problem. (The FIFE property was originally defined in the context of the
l-mutual exclusion by Fischer, et al. [6].) Jayanti also defined the strong concurrent
entering property, and presented a group mutual exclusion algorithm that satisfies FCF'S,
FIFE, and strong concurrent entering. The algorithm they presented is in the form of a
reduction to a FCFS abortable mutual exclusion algorithm, and allows for processes to
request sessions from a set of unknown size. The algorithm is local-spin under the CC
model (a fact overlooked in [10]) but not under the DSM model.

We know of no lower bounds research done for group mutual exclusion algorithms.

1.6 Contributions and Thesis Outline

We start in Chapter 2 by presenting some preliminaries, including a formal model of
computation that will be used in the rest of the thesis for proving our results.

In Chapter 3, we show an Q(N) lower bound on the RMR complexity of any N-
process group mutual exclusion algorithm under the DSM model. This lower bound is
strong in that it applies even if the number of sessions is known a priori and limited

to two, and applies regardless of the synchronization primitives the algorithm may use.

CHAPTER 1. INTRODUCTION 13

Note that this result shows that GME is qualitatively different than ME since, as we
have seen, there are ME algorithms whose RMR complexity under the DSM model is
only O(1) (if strong synchronization primitives are available) or only O(log N) (if only

atomic read and write operations can be applied to shared memory).

In Chapters 4 - 6 we present a number of new local-spin group mutual exclusion
algorithms. Each algorithm is in the form of a reduction to a FCFS abortable mutual ex-
clusion algorithm. In particular, in Chapter 4, we first review the reduction by Jayanti et
al. [10], and then present two variants of this algorithm that are local-spin under the DSM
model. The first and simplest variant satisfies the FCF'S and strong concurrent entering
fairness properties, but not FIFE. The second variant is significantly more complex, and

satisfies FCF'S, strong concurrent entering, and FIFE.

An undesirable feature of the algorithms presented in Chapter 4 is that there are
certain scenarios in which processes execute through the CS sequentially, even when it is
possible for those processes to execute through the CS concurrently. We start Chapter 5
by explaining this problem in more detail, and then provide an algorithm that overcomes
this problem at the expense of the fairness properties. This algorithm is presented in
several different forms: the first variant uses COMPARE_AND_SWAP; the second variant,
whose correctness we do not formally prove, uses no strong synchronization primitives
but requires unbounded variables; the third variant, whose correctness we do prove, is

similar to the second but uses only bounded variables.

The algorithms we present in Chapters 4 and 5 have RMR complexity O(N) un-
der the DSM model. Given the lower bound we prove in Chapter 3, it follows that
these algorithms are optimal with respect to RMR complexity under the DSM model.
In Chapter 6, we first present a 2-session GME algorithm that is local-spin under the
CC model and has RMR, complexity O(f(N)), where f(NN) is the RMR complexity of
the FCFS abortable mutual exclusion algorithm used in the reduction. Given Jayanti’s

FCFS abortable ME algorithm in [9], which has RMR complexity O(min(k,log N)), our

CHAPTER 1. INTRODUCTION 14

2-session GME algorithm under the CC model beats the 2-session GME RMR lower
bound of Q(N) under the DSM model. This shows that the DSM and CC models are
qualitatively different: it is not, in general, possible to translate an algorithm from the
CC model to the DSM model, without at least some loss of efficiency (as measured by the
number of remote memory references). We then use the 2-session algorithm as a building
block for an M-session group mutual exclusion algorithm that is local-spin under the CC
model and has RMR complexity O(loghM - f(N)).

We conclude in Chapter 7.

Chapter 2

Preliminaries

In this chapter we outline the formal model of computation that we will use throughout
this thesis, and describe the two memory models with which we are concerned. In
addition, we provide some details about how our algorithms are structured and what
features we make use of in our algorithms, and conclude by defining some terms and

notation.

2.1 Formal Model

A system consists of a set of NV processes and a set of shared variables (i.e., variables to
which all processes in the system have access). A process is an automaton that has a
private state, which is reflected by the values of a set of private variables (i.e., variables
to which only that process has access). A global state of the system consists of a private
state for each process and a value for each shared variable. An initial private state for
a process p specifies an assignment of values to the private variables of p, and an initial
global state for a system specifies an initial private state for each process in the system
and an assignment of values to the shared variables.

Processes execute actions (sometimes called steps) based on their state. The ac-

tion involves executing an operation on zero or one shared variables, possibly changing

15

CHAPTER 2. PRELIMINARIES 16

its value, and possibly changing the private state of the process. Operations that
can be performed on shared variables when executing an action include read, write, or
read-modify-write. Read and write operations are self-explanatory; read-modify-write
operations are explained in more detail below. Also, note that in executing an operation
on a shared variable and changing the private state of the process, the global state is

changed as well.

b

More formally, as part of a process i’s specification, there is a func-
tion 6; : PRIVATESTATE +— ACTION that describes the action that
1 takes when it is in a given private state. We also define a function
Otrans : STATE x ACTION x PROCESS — STATE that describes the new global
state after a process performs an action. In particular, given a state s and an action
a performed by a process p, the state s’ = 0yqns(S, a,p) is a state that is identical to s
except that the shared variable (if any) that was accessed by the action a and the private

state of p are updated according to a.

A run (sometimes called an execution) of the system is an alternating sequence of
global states and process identifiers that starts with an initial global state sqo: sg, p1, s1,
P2, So, ... etc. Intuitively, a run describes an order in which processes execute actions
and the sequence of states through which the system proceeds because of those actions.
More formally, runs are infinite in length and must satisfy two conditions: they must
be fair, and they must be valid. A fair run is a run in which every process executes
an action infinitely often (i.e., it appears in the sequence infinitely often). (We do not
consider systems in which processes “terminate”. This is not a limitation since any system
in which a process does “terminate” can be modeled by the process entering an empty
infinite loop.) Given a global state s and process p, we use the notation s(p) to denote the
private state of process p contained within the global state s. A valid run is a run such
that for each positive integer i, if p; = p and a = 0,(s;—1(p)), then s; = irans(Si—1,a, p):

i.e., for each positive integer 7, the triple s;_1, p;, s; in the alternating sequence of global

CHAPTER 2. PRELIMINARIES 17

states and processes that make up the run, “makes sense” according to the specification

of the system.

A point in a run is simply an index of some element in the run.

An algorithm is a way of specifying the system (i.e., it is a specification of the
automaton of each process in the system and the initial (global) state). A run of an

algorithm A is shorthand for saying a run of the system specified by algorithm A.

Processes execute actions atomically. At an intuitive level this means that no two
processes can execute an action at the same time. This is formally captured in the

preceding by the fact that executions are modeled as sequences of actions.

Also, processes execute actions asynchronously. At an intuitive level this means that
there is a unbounded, but finite, amount of time between the time when a process executes
an action and when it next executes an action. This is formally captured in the preceding
by the fact that in any run, each process p must perform an infinite number of actions, yet
there is no bound on the number of actions that can be performed by different processes
in between a point when p performs one action and the point when p performs its next

action.

The synchronization primitives that we will consider in this thesis are defined below.

Shared variables are capitalized and private variables are in lower-case.

FETCH_AND_ADD(V7,vs : integer) {

old_val := V;
Vi=V1 + v
return old_val;
}
ATOMIC_ADD(V;, vg : integer) {

Vi :=V1 4+ v

}

CHAPTER 2. PRELIMINARIES 18

COMPARE_AND_SWAP(V},v2, v3) {
if Vi = vy then
Vi :=vs;
return true;
else
return false;
end if

2.2 Memory Models

We use the abstraction of a memory module to help describe the semantics of the
different memory models. Each process has exactly one memory module associated with
it. Whenever a process accesses some shared variable, it does so by referencing some
memory module (depending on the memory model, as described below). If a process
accesses a variable by referencing its own memory module, then we say that the process
makes a local memory reference; otherwise, we say that the process makes a remote
memory reference (RMR).

The two memory models that we are interested in are the distributed shared-
memory (DSM) model, and the cache-coherent (CC) model.

If a system operates under the DSM model, then each shared variable is located within
exactly one process’s memory module. For example, consider a system that consists of
two processes, p and ¢, and two shared variables, v, and v,. Assume v, is stored in the
memory module of process p, and v, is stored in the memory module of process g. When
P accesses v, Or g accesses U,, the processes make local memory references. However,
when p accesses v, or g accesses v, the processes make remote memory references.

If a system operates under the CC model, then we assume the existence of an ad-
ditional memory module, called the global memory module. In this case, all shared
variables are located in the global memory module. Intuitively, the memory modules
associated with the processes act as caches. When a process p executes a read or read-

modify-write operation on some shared variable v, if v is not “cached” in p’s memory

CHAPTER 2. PRELIMINARIES 19

module, then p accesses the global memory module and copies v into its local memory
module. A variable is not cached in p’s memory module when p accesses v for the first
time, or when the copy of v that p has in its cache is invalid. Process p’s copy of v
becomes invalid when a process ¢ # p overwrites v in the global memory module. When
a process p executes a write or a successful read-modify-write (i.e., a read-modify-write
in which the variable is actually written) on some shared variable v, then p updates both
its local memory module and the global memory module (and therefore invalidates any
copies of that variable in other processes’ memory modules). We assume that the global
memory module is remote to every process, and so a process p must make a remote mem-
ory reference whenever it writes some shared variable, tries to read a shared variable for

the first time, or tries to read an invalid variable.

As an example of how things work under the CC model, consider a system that
consists of two processes, p and ¢, and a shared variable v. Assume p reads v, and then
q reads v. Both p and ¢ make remote memory references because they are reading v
for the first time. Now, assume p writes v, p reads v, and then ¢ reads v. When p
writes v, it makes a remote memory reference, since it must update the global memory
module. Process p’s subsequent read is a local memory reference since the copy of v
in p’s memory module is not invalid. However, ¢’s read of v involves a remote memory
reference, because p, by writing v, invalidated ¢’s copy of v.

We say that a ME or GME algorithm is local-spin under the DSM or CC model
if the number of remote memory references that are made between the time a process

leaves the NCS and the time it next returns to the NCS is bounded.

2.3 Algorithm Preliminaries

Each group mutual exclusion algorithm that we present in this thesis is in the form

of a reduction to a FCFS abortable mutual exclusion algorithm. We use the methods

CHAPTER 2. PRELIMINARIES 20

MUTEXDOORWAY (), MUTEXWAITINGROOM(), MUTEXABORT(), and MUTEXEXIT()
in our GME algorithms to denote the doorway, the waiting room, the abort protocol,
and the exit protocol, respectively, of the underlying FCFS abortable mutual exclusion
algorithm.

In order to satisfy the mutual exclusion property, it is clearly necessary for the al-
gorithms to have a mechanism that can prevent processes from entering the CS. The
mechanism we use for this purpose is a busy-wait loop, which is essentially a loop that
can be executed an unbounded number of times. The busy-wait loops that we use are
fairly small and consist of checking a boolean condition to know when to advance in the
algorithm. We use the notation “await v” as shorthand for “while v do /* */ od”,

where v is a boolean expression.

Figure 2.1 Cobegin-Coend Block
cobegin
M1();

I
M2();

coend

Our algorithms also use cobegin-coend blocks. Consider the code fragment given in
Figure 2.1. M1() and M2() are referred to as co-routines. (We sometimes refer to them
just as methods when it is clear from the context that they are in fact co-routines.)
Each co-routine in a cobegin-coend block is separated by the “||” symbol. When a
process executes a cobegin-coend block it executes the co-routines within that block in
a fair manner. (“Fair” here means that in any infinite execution both coroutines take
infinitely many steps.) When one of the co-routines terminates, the process automatically
aborts execution of all other co-routines in that cobegin-coend block and advances in the
algorithm.

Finally, every process has a private variable called mysession. A process sets this
variable before leaving the NCS, and no process ever sets mysession to 0 when leaving

the NCS. A process indicates that it is not presently requesting a session by setting

CHAPTER 2. PRELIMINARIES 21

mysession to 0.

2.4 Definitions of Common Terms and Notation

We define some terms that are used throughout the thesis.

Invocation: An invocation of a group mutual exclusion algorithm by some process p
refers to an interval of time delimited by p’s leaving the NCS and its subsequent return.
Active: We say that a process is active when it is outside of the NCS.
Doorway-Precede: Process p doorway-precedes another process ¢ iff p finishes exe-
cuting the doorway before ¢ begins executing the doorway.

Doorway-Concurrent: Process p is doorway-concurrent with process ¢ iff neither
process doorway-precedes the other.

Note that in the preceding definitions to be strictly precise we ought to refer to the
invocations that the processes are executing, rather than the processes themselves. For
example, we should be saying that a particular invocation of p doorway-precedes (or
is doorway-concurrent with) a particular invocation of ¢. However, for simplicity, we
assume that the invocations in question are the “current” (i.e., the latest) ones with
respect to some point in a given run.

In the proofs of correctness of the algorithms, we use the following notation:

We say that p@i is true iff process p is about to execute line i. Also, p@{i..j} is true
iff p is about to execute any line in the range i to j.

We say that a process p is enabled to execute some lines i..j iff p@{i..j}.

The notation p.v denotes process p’s private variable v.

The underlying FCFS abortable mutual exclusion algorithm is often referred to for
simplicity as algorithm A. For example, when we write “due to the FCFS property of
A we are referring to the FCFS property of the underlying FCFS abortable mutual

exclusion algorithm.

CHAPTER 2. PRELIMINARIES

For s € {0,1},5=1-s.

22

Chapter 3

GME Lower Bound Under the DSM
Model

In this chapter we prove that under the DSM model any GME algorithm (i.e., an algo-
rithm satisfying mutual exclusion, lockout freedom, bounded exit, and concurrent enter-
ing) must perform 2(N) RMRs per invocation in the worst case. This lower bound holds
even for the 2-session GME problem (i.e., when each process can request one of only two
sessions), and even if processes can access shared variables using strong synchronization
primitives.

We first give a proof sketch of the lower bound in order to convey some intuition, and

follow this by presenting the formal proof.

3.1 Proof Sketch of Lower Bound

In the proof sketch we make the simplifying assumption that when a process busy-waits,
it does so by spinning on a single variable in the process’s local memory module. For
example, a process might busy-wait on a boolean variable b by executing the statement
await —b. Typically local-spin algorithms tend to have busy-wait loops that are of this

form, or very similar. In fact, all the algorithms that we present in this thesis, with the

23

CHAPTER 3. GME LowgR BounND UNDER THE DSM MODEL 24

exception of Jayanti’s algorithm, have busy-wait loops of this form. However, to make
our result as general as possible, this assumption is not made in the formal version of the
proof.

Theorem 3.1: Let Apgy be a DSM local-spin algorithm for 2-session GME. Algorithm
Apgy must perform Q(N) RMRs per invocation in the worst case.

Proof sketch: Without loss of generality, let s and s’ # s be the two sessions that
processes executing Apgys are allowed to request. Consider the following run: some
process p requests session s, while no other process is active. Process p enters the CS
(because Apgy satisfies the lockout freedom property), after which point N — 1 other
processes enter the trying protocol, each requesting session s'. Since p is in the CS, and
Apgy satisfies the mutual exclusion property, none of the N — 1 processes requesting
session §' can enter the CS. There is no bound on the amount of time that p can spend
in the CS, so we assume that p is in the CS until the N — 1 processes in the trying
protocol enter a busy-wait loop. Since Apgy, is an algorithm that is local-spin under the
DSM model, this implies that there are at least NV — 1 distinct variables on which each
process in the trying protocol is busy-waiting. For any such process to enter the CS, the
local-spin variable it is busy-waiting on must be updated. Now, consider what happens
when p leaves the CS and executes the exit protocol. Process p must update at least
N — 1 variables. If it updates any less, then we can complete the construction of this
run in such a way that there will be at least one process in the trying protocol that does
not enter the CS in a bounded number of its own steps after p is no longer active. This

violates the concurrent entering property that Apgy satisfies by assumption. [

3.2 Lower Bound Proof

Proof of Theorem 3.1:

As in the proof sketch, without loss of generality, let s and s’ # s be the two sessions

CHAPTER 3. GME LowgR BounND UNDER THE DSM MODEL 25

that processes executing Apgy, are allowed to request.

We want to construct a run of Apgy such that Q(N) remote memory references are
made by some process during an invocation of Apgy. We call this our goal run. In
constructing such a run, at different steps of our construction, we will admit “pseudo-
runs” that are not necessarily fair (i.e., runs in which all processes execute steps infinitely
often). We will show that certain properties must hold in these “pseudo-runs” by con-
structing proper runs (i.e., runs that are fair and valid) from them. This will eventually

lead to the construction of our goal run, which is both fair and valid.

We begin by constructing a pseudo-run (3, similar to the way that was done in the
proof sketch, as follows:

Assume a process p requests session s, and let S be the set of the remaining N — 1
processes that request session s’. The processes in SU {p} execute in the following order:
p leaves the NCS, enters the trying protocol, and then enters the CS. While p is in the
CS, all processes in S leave the NCS and enter the trying protocol. Then, Vq € S, ¢
continually executes steps of Apsy. Apgy is a correct GME algorithm, and so by the
mutual exclusion property, while p is in the CS, no process in S can enter the CS. So
Vg € S, q executes steps inside the trying protocol of Apsy. (Note that 8 is not fair
because p takes finitely many steps.)

In the proof sketch, we assumed that there was a point after which all processes in
S must enter a loop where each process busy-waits on some variable in its local memory
module. Here, instead, we prove the more general claim that there is a point in S after
which no process in S makes any remote memory references.

Claim 3.1.1: Vq € S, there is a point in g after which ¢ makes no remote memory
references.

Proof: Suppose, by way of contradiction, that the claim is false. By this assumption,
and the fact that every process in S continually executes steps in the trying protocol,

there exists some ¢ € S such that ¢ makes a remote memory reference in the trying

CHAPTER 3. GME LowgR BounND UNDER THE DSM MODEL 26

protocol infinitely often. From this it follows that for any positive integer k, there is
a point n in B such that ¢ makes at least £ remote memory references in the trying
protocol before point n. We construct a run of Apgy,, Runy, identical to 5 up to point 7,
after which the following happen, in order: p leaves the CS, executes the exit protocol,
and returns to the NCS, followed by all processes in S finishing execution of the trying
protocol, executing passage through the CS, executing the exit protocol, and returning
to the NCS. Runs 8 and Runy are illustrated by the following diagram (note, in this
diagram, and in the diagrams used elsewhere in this proof, thick lines represent where

the runs are equivalent, and thin lines represent where the runs diverge):

/ g makes kK RMRs in TP

8 |
n

| p, followed by each ¢ € S, finishes its invocation
Rumny, |

Ui

Hence, Vk, there is a run of Apgy, Runy, in which some process makes at least k
remote memory references in the trying protocol in a single invocation. This implies that
the number of remote memory references per invocation is unbounded, contradicting that
Apgu is a local-spin algorithm. O (Claim 3.1.1)

By Claim 3.1.1 there is a point 7 in pseudo-run § after which no process in S makes
any remote memory references. We create a new pseudo-run, 3’, which is identical to
up to and including point 7, after which the processes in S execute no steps, and p leaves
the CS, executes the exit protocol, and returns to the NCS. We illustrate the two runs

in the diagram below:

CHAPTER 3. GME LowgR BounND UNDER THE DSM MODEL 27

pin CS and all ¢ € S in TP making no RMRs

B !
n

3 p finishes its invocation and all ¢ € S take no steps
|

n

In the following claim we will show that in ', p makes Q(N) remote memory references
in the exit protocol. Once we have shown this, we will be able to construct the goal run
from B’ by simply letting all processes in S finish executing their invocation after p has
finished the exit protocol.

Claim 3.1.2: In £, p makes at least N —1 remote memory references in the exit protocol.

Proof: Suppose, by way of contradiction, that p makes fewer than N — 1 remote
memory references in the exit protocol. By this assumption, the fact that processes are
executing under the DSM model, and the fact that there are N — 1 processes in S, it
follows that there exists a process ¢ € S, such that in 8, p does not reference any variable
local to ¢ during p’s execution of the exit protocol. Now, consider some positive integer
k. We construct a run of Apgy, Run', identical to 8 up to and including the point \
where p returns to the NCS, after which the following occur, in order: g executes exactly
k steps, and each process in S finishes executing the trying protocol, executes passage
through the CS, executes the exit protocol, and returns to the NCS. Let k be a point in
B such that ¢ executes exactly k steps in 5 between point 7 and k; and let &’ be the point
in Runy after which ¢ has finished executing the said k£ steps that it must execute but
before the other processes in S start executing steps again. We illustrate the relationship

between the different runs in the diagram below:

INote that Runy, in this claim has no relation to Run; from Claim 3.1.1

CHAPTER 3. GME LowgR BounND UNDER THE DSM MODEL 28

q takes exactly k steps
B 4 1
n

5 No ¢' € S takes any steps
|
Voo

p executes EP \ p returns to the NCS

‘q takes exactly k steps ‘
Rumy, ﬁ | |

n A f-c’/
Each ¢’ € S finishes its invocation

Before we can state our next sub-claim, we first need to define what we mean by a
process’s sequence of private states in a run. As defined in the formal model, a run is
just an alternating sequence of global states and process identifiers that starts from some
global state and satisfies the fairness and validity conditions. A process r’s sequence of
private states in a run is simply the sequence of global states that appear in the run,
restricted to the private states of process r.

It turns out that ¢’s sequence of private states is identical in both 5 and Run; up to
points x and &', respectively. This is formally proven in the next sub-claim.
Sub-Claim 3.1.2.1: The sequence of ¢’s private states in 5 up to point k is identical to
the sequence of ¢’s privates states in Run, up to point x'.

Proof: Suppose, by way of contradiction, that the sub-claim is false. Let 7 and 7’ be
the points in § and Runy, respectively, such that for the point 7 — 1 immediately before
7, and for the point 7’ — 1 immediately before 7/, the sequence of ¢’s private states in 3

up to point 7 — 1 is identical to the sequence of ¢’s private states in Run; up to point

CHAPTER 3. GME LowgR BounND UNDER THE DSM MODEL 29

7' — 1, but the sequence of ¢’s private states in 8 up to point 7 is not identical to the
sequence of ¢’s private states in Rung up to point 7’. By the way Runy is constructed
from A, and, in turn, 3, it follows that Run, and § are the same up to and including
point 7, so m and 7’ can only occur after point 7. Moreover, by the assumption that the
sub-claim is false, 7 and 7’ must be before (or be identical to) x and &', respectively.
This is illustrated by the following diagram. (Note, in this diagram, dashed lines are
used to represent where the sequence of ¢’s private states are identical in the two runs
exclusive of the region where the two runs are identical. Thick lines still represent where
the two runs are identical. Hence, the region covered by the thick lines and the dashed
lines together represent where the sequence of ¢’s private states are identical in the two

runs.)

sequence of ¢’s private states
identical in both runs before these points

Now, consider the reason why ¢’s private state in 8 and Run, diverges at m and =’.
Since Apgys is deterministic, and both runs start from the same initial state, it follows
that ¢’s private state diverges in the two runs because ¢ reads (either through a read
operation, or the read portion of a read-modify-write operation) some variable v, and
the value ¢ reads is different in the two runs. We will refer to this read in the following
as the diverging read. Since the value q reads from v is different in the two runs, it
follows that there must be a last write to variable v by some process in either 5 or Runy
before the diverging read (i.e., before point 7 or 7', respectively). Since S and Rumn

are identical up to point 7, the last write must occur after point . We further claim

CHAPTER 3. GME LowgR BounND UNDER THE DSM MODEL 30

that this last write must be by a process other than ¢q. To see this, suppose, by way of
contradiction, that ¢ performs the last write to v in one of the runs. From this, and the
fact that ¢’s sequence of private states in 8 and Run; are identical prior to the diverging
read, it must be the case that ¢’s last write to v, before the diverging read, sets v to the
same value in both g and Rung. This contradicts that the value ¢ reads from v in f is
different from the value ¢ reads from v in Runy when it performs the diverging read.

Consider the cases:

Case 1: A last write to v occurs in 3 between points 7 and 7.

Since ¢ is in the trying protocol in [after point 7, and ¢ performs the diverging
read of variable v in § after point 7, it follows that v cannot be referenced in the CS or
NCS. Hence, since p is in the CS in § after point 7, it follows that p is not the process
that performs the last write to v. This, and the fact that ¢ does not perform the last
write, imply that for some process ¢’ € S\ {q}, ¢’ is the process that performs the last
write. Now, by assumption, no process in S makes a remote memory reference in 3 after
point 1, and so v is local to ¢’. This implies that ¢ accesses ¢'’s memory module when ¢
performs the diverging read of v in [after point 7, contradicting that ¢ does not make

any remote memory references in g after point 7.
Case 2: A last write to v occurs in Run, between points 7 and 7'.

By our construction of Runy, no process in S\ {q} executes any steps in Runy between
points n and «’. This, and the fact that the process ¢ does not perform the last write,

imply that p must be the process that performs the last write.

Also by our construction of Runy, any steps that p executes in Run, between points 7
and 7’ are part of the exit protocol. From this, the fact that p does not write any variable
local to ¢ when it executes the exit protocol, and the fact that p performs the last write
to v in Runy between points n and 7', it follows that v is stored in the memory module
of a process other than ¢g. Thus ¢ makes a remote memory reference when it performs

the diverging read in § (which occurs after point 1), contradicting that no process in S

CHAPTER 3. GME LowgR BounND UNDER THE DSM MODEL 31

makes a remote memory reference in § after point 1. O (Sub-Claim 3.1.2.1)

By Sub-Claim 3.1.2.1, and the fact that ¢ does not enter the CS in 3, ¢ does not
enter the CS in Runy, before point «’. Hence, Vk, there is a run of Apgys, Rung, in which
some process executes k steps in the trying protocol while there is no process requesting
a conflicting session. This implies that the number of steps a process executes in the
trying protocol, while no other process is requesting a conflicting session, is unbounded,
contradicting that Apgy satisfies concurrent entering. O (Claim 3.1.2)

We now create a new run 3" that is identical to 8’ up to the point A\ where p returns
to the NCS, after which all processes in S finish executing the trying protocol, execute
passage through the CS, execute the exit protocol, and finally return to the NCS. This

new run is illustrated in the diagram below.

No g € S takes any steps
ﬂl |
| ! >

n/' A

p executes EP \ p returns to the NCS

g ‘ ‘Each q € S finishes its invocation
| |
n A

By Claim 3.1.2, p makes at least N — 1 remote memory references in the exit protocol
in run ', and so p must also do so in 3”. Hence 3" is our goal run in which some process
makes at least N — 1 remote memory references in an invocation. From this it follows
that Apsy must perform (N) remote memory references per invocation in the worst
case. [

Corollary 3.2: Let Apgy be a DSM local-spin algorithm for GME (for any number of
sessions). Algorithm Apgy must perform ©Q(/N) RMRs per invocation in the worst case.

Proof: Follows immediately from Theorem 3.1. [

Chapter 4

Fair Local-Spin GME

We start by reviewing Jayanti’s [10] algorithm. This algorithm satisfies all the regu-
lar group mutual exclusion properties, and also satisfies the stronger fairness properties:
FCFS, FIFE, and strong concurrent entering. We also discuss a drawback to this algo-

rithm: the fact that it is not local-spin under the DSM model.

After reviewing Jayanti’s algorithm, we present two versions of the algorithm that
are local-spin under the DSM model. Our first version attempts to change Jayanti’s
algorithm as little as possible. In doing this, however, we end up with an algorithm that
does not satisfy the FIFE property. To achieve FIFE in addition to the other properties,
we need to develop some more complicated machinery. We do this in the second algorithm
we present. Both algorithms have RMR complexity O(NN). In view of Corollary 3.2, this

is the best possible RMR complexity (within a constant factor).

32

CHAPTER 4. FAIR LOCAL-SPIN GME 33

4.1 Jayanti’s Algorithm

Jayanti’s group mutual exclusion algorithm [10] is shown in Figure 4.1." Jayanti’s al-
gorithm is in the form of a reduction to a FCFS abortable mutual exclusion algorithm,
and satisfies the FCFS, FIFE, and strong concurrent entering properties. The algorithm
conforms to the structure presented in Figure 1.2: the doorway consists of lines 3 to 11,
the waiting room consists of lines 12 to 16, the CS is at line 17, and the exit protocol

consists of lines 18 to line 26.

The algorithm works as follows: when a process p enters the doorway, it declares its
intention to enter the CS by setting its copy of the session variable (i.e., session[p]) to
the session that it is requesting (line 3). It then proceeds to execute the doorway of
the underlying FCFS abortable mutual exclusion algorithm (MUTEXDOORWAY()) used
in the reduction (line 4). After this, it checks to see if there are any processes request-
ing a conflicting session and sets the p* row of barricade to true (lines 5..11). When
this is done, p has completed the doorway. When p enters the waiting room it exe-
cutes two co-routines concurrently: one is the waiting room of the underlying FCFS
abortable mutual exclusion algorithm (MUTEXWAITINGROOM()), and the other is the
method CONFLICT-FREE(). Process p completes the waiting room (of the GME algo-
rithm) and enters the CS when one of the preceding co-routines terminates. (When
the MUTEXWAITINGROOM() co-routine terminates, we say that the process is mutex
qualified, and when the CONFLICT-FREE() co-routine terminates, we say that the pro-
cess is conflict-free qualified.) If p detected no other processes requesting a conflicting
session when it executed the doorway, then p immediately becomes conflict-free qualified
because conflict_set = (). Otherwise, if the process detected conflict, the process will be

blocked in the waiting room until the earliest time it can enter the CS without violating

! Jayanti presents two reductions in [10]; the algorithm in Figure 4.1 corresponds to his “bounded
reduction”. Also, we have changed the variable names to be more descriptive: in [10], barricade is flag
and conflict_set is S;.

CHAPTER 4. FAIR LOCAL-SPIN GME 34

the mutual exclusion property.

Figure 4.1 Jayanti’s Algorithm; Process p € {1..N}
shared variables:

session: array[l..N] of integer
barricade: array[1..N][1..N] of boolean

private variables:

conflict_set: set of integer
mysession: integer /* Session that p wants to attend; set before leaving NCS */

1

2: NCS

3: session|[p] := mysession;

4: MUTEXDOORWAY();

5. conflict_set := {);

6: for j=1to N do

7 barricade[p][j] = true;

8: if session[j] & {0, mysession} then
9: conflict_set := conflict_setU {j};

10: end if

11: end for

12: cobegin

13: MUTEXWAITINGROOM();

14: [l

15: CONFLICT-FREE(); /* defined in Figure 4.2 */
16: coend /* when one co-routine terminates, go to the next line */
17: CS

18: if mutez qualified then

19: MUTEXEXIT();

20: else

21: MUTEXABORT();

22: end if

23: session[p] := 0;
24: for j=1to N do

25: barricade[j][p] := false;
26: end for
27: end loop

Figure 4.2 Method CONFLICT-FREE() for Algorithm in Figure 4.1
1: repeat
2: for each j € conflict_set do

3 if session[j] € {0, mysession} then
4 conflict_set = conflict_set — {j};
5 end if
6 if barricade[p][j] = false then
T conflict_set = conflict_set — {j};
8 end if
9 end for

10: until conflict_set = ()

After p executes through the CS it executes one of MUTEXEXIT() or MUTEXABORT()

CHAPTER 4. FAIR LOCAL-SPIN GME 35

(lines 18..22). At this point one can see the reason why the FCFS mutual exclusion
algorithm used in the reduction needs to be abortable. When p finished the waiting room,
it did so because either MUTEXWAITINGROOM() or CONFLICT-FREE() terminated. If
MUTEXWAITINGROOM() terminated, then the method MUTEXEXIT() executes after p
has finished executing through the CS. Otherwise, if CONFLICT-FREE() terminated, then
the execution of MUTEXWAITINGROOM() was aborted and MUTEXABORT() executes
after p has finished executing through the CS. After this, p declares that it is no longer
requesting entry into the CS by resetting its session variable (line 23), and then setting
the p'* column of barricade to false for each process (lines 24..26). By resetting the session
variable, any processes that execute through the doorway at some future point will no
longer see p as a process that is potentially requesting a conflicting session. Furthermore,
by resetting the session variable and by setting the p** column of barricade to false, any
other process that detected that p was requesting a conflicting session will now be able

to remove p from its conflict_set (see lines 4 and 7 of CONFLICT-FREE()).
The reader is directed to [10] for a formal proof of correctness.

The drawback of Jayanti’s algorithm is that it is not local-spin under the DSM model.
This is due to the way the co-routine CONFLICT-FREE() is implemented. Under the DSM
model, each session variable can be associated with at most one process. Since, in the
CONFLICT-FREE() method, every process accesses every session variable an unbounded
number of times, an arbitrary number of remote memory references can occur.

However, the algorithm is local-spin under the CC model, despite a statement to the
contrary in [10]. Recall that under the CC model a process makes a remote memory
reference reading a variable when it reads that variable for the first time or when the
process’s copy of the variable is invalid. (A process p’s copy of a variable becomes invalid
when another process writes to the variable after the last time p read the variable.)

Theorem 4.1: Jayanti’s [10] algorithm is local-spin under the CC model.

Proof: By inspection we see that the only place in the algorithm where an unbounded

CHAPTER 4. FAIR LOCAL-SPIN GME 36

number of remote memory references can occur is in the method CONFLICT-FREE().
Thus, it suffices to show that the number of remote memory references that can occur in
this method, due to a process reading the session and barricade variables, is bounded.

This is done in the next two claims.

Claim 4.1.1: In a given invocation by a process p, for each process j, p makes at
most three remote memory references to variable session[j] while executing the method

CONFLICT-FREE().

Proof: Suppose, by way of contradiction, that for some j, process p makes at least
four remote memory references to variable session[j] during its execution of the method
CONFLICT-FREE(). Of these four remote memory references, the first may have been
required to initially load the value of session[j]| into p’s cache, but the remaining (at
least three) were caused by invalidations due to writes into session[j]. Only process j
writes into session[j]. So, while p was in CONFLICT-FREE(), i.e., after p finished the
GME doorway, j wrote into session[j| at least three times. Since j writes into session|j]
only twice during each invocation (in lines 3 and line 23), it follows that j executes an
invocation in which it starts the GME doorway after p has finished the GME doorway,
and enters the CS while p is still in the GME waiting room. This contradicts the FCFS

property of the algorithm. O (Claim 4.1.1)

Claim 4.1.2: In a given invocation by a process p, for each process j, p makes
at most two remote memory references to variable barricade[p][j] while executing the

method CONFLICT-FREE().

Proof: Suppose, by way of contradiction, that for some j, process p makes at least
three remote memory references to variable barricade[p][j] during its execution of the
method CONFLICT-FREE(). Ounly the first of these remote memory references is due
to the variable being read for the first time; all the others must be because p’s copy
of the variable is invalid. Moreover, by inspecting the algorithm, we see that the

only other process besides p that writes to barricade[p][j] is process j when it executes

CHAPTER 4. FAIR LOCAL-SPIN GME 37

line 25. From this and the fact that p makes at least two remote memory references
while executing CONFLICT-FREE() due to the variable barricade[p][j] being invalid, it
follows that j must write to barricade[p][j] at least twice while p executes the method
CONFLICT-FREE(). Since j writes false to barricade[p][j] at line 25, when p makes the
second remote memory reference reading barricadelp][j]|, barricade[p]j] = false. But
when p reads barricade[p][j] = false, it removes j from conflict_set and does not read
barricade[p][j] in any future iteration of the method CONFLICT-FREE() until the next
invocation of the algorithm. This, in turn, implies that p does not make more than two
remote memory references to barricade[p][j], contradicting the assumption that p makes

at least three such remote memory references. [J (Claim 4.1.2)

[l

4.2 A FCFS Local-Spin GME Algorithm

As already discussed, Jayanti’s algorithm is not local-spin under the DSM model. The
reason is the unbounded number of remote memory references that can occur during a
process’s execution of the method CONFLICT-FREE(), which arises from the fact that
each session variable can be stored in the memory module of at most one process.

As a naive first approach to converting the algorithm into one that is local-spin under
the DSM model, we consider the effect of removing the entire “if” clause starting at
line 3 of the CONFLICT-FREE() method in Figure 4.2. This eliminates the problem of
unbounded remote memory references due to reads of the session variable. Moreover,
Vp > 1, Vj > 1, we can clearly place the variable barricade[p][j] in the memory module
of process p. This makes all the references in the method CONFLICT-FREE() local. Now,
notice that for any process p > 1, once a process j has set the variable barricade[p][j] =
false, process p removes j from p.conflict_set. In other words, there is no point for waiting

until conflict_set = () any more; we need only wait until each barricade[p][j] variable is

CHAPTER 4. FAIR LOCAL-SPIN GME 38

set to false.

It turns out that the preceding naive first approach works quite well. The algorithm
in Figure 4.4 is the result of following this approach, and the updated CONFLICT-FREE()
method is in Figure 4.5. The algorithm has RMR complexity O(NN) under the DSM
model. The only drawback that this algorithm has is that it does not satisfy FIFE.

We proceed as follows: we give some definitions relative to the algorithm, describe
why the algorithm violates FIFE, give a proof of correctness, and then give a proof
for why the algorithm has RMR complexity O(N). (As this algorithm is a variant of
Jayanti’s algorithm, the correctness proof has certain similarities to the correctness proof

given in [10].)

4.2.1 Definitions

GME Doorway: The doorway consists of lines 3..11.
GME Waiting Room: The waiting room consists of lines 12..16
GME Exit Protocol: The exit protocol consists of lines 18..26

Mutex Qualified Process: Process p is mutex qualified iff p@{17..22} and p reached

line 17 because it completed execution of the method MUTEXWAITINGROOM().

Conflict-free Qualified Process: Process p is conflict-free qualified iff p@{17..18}

and p reached line 17 because it completed execution of the method CONFLICT-FREE().

As with the definitions of “doorway-precedes” and “doorway-concurrent” (see Sec-
tion 2.4, page 21), in the preceding definitions to be strictly precise we ought to refer to
the invocations that the processes are executing, rather than the processes themselves.
For example, we should be saying that a particular invocation of p is mutex qualified
(or conflict-free qualified). However, for simplicity, we assume that the invocations in
question are the “current” (i.e., the latest) ones with respect to some point in a given

run.

CHAPTER 4. FAIR LOCAL-SPIN GME 39

Figure 4.3 Header for Algorithm in Figure 4.4

shared variables:

session: array[l..N] of integer
barricade: array[1..N][1..N] of boolean

/* barricade[p][4] is stored in memory module for process p for all j. */

private variables:

conflict_set: set of integer
mysession: integer /* Session that p wants to attend; set before leaving NCS */

Figure 4.4 A FCFS Local-Spin GME Algorithm; Process p € {1..N}
1: loop
2: NCS
3: session[p] := mysession;
4: MUTEXDOORWAY();
5: conflict_set := {);
6: for j=1to N do
7.
8

barricade[p][j] = true;
: if session[j] & {0, mysession} then
9: conflict_set := conflict_setU {j};

10: end if

11: end for

12: cobegin

13: MUTEXWAITINGROOM();

14: |

15: CONFLICT-FREE(); /* defined in Figure 4.5 */

16: coend /* when one co-routine terminates, go to the next line */
17: CS

18: session[p] := 0;
19: for j=1to N do

20: barricade[j][p] := false;
21: end for

22: if mutex qualified then
23: MuTeXEXIT();

24: else

25: MUTEXABORT();

26: end if

27: end loop

Figure 4.5 Method CONFLICT-FREE() for Algorithms in Figures 4.4, 4.7
1: for each j € conflict_set do
2: await —barricade[p][j];
3: end for

CHAPTER 4. FAIR LOCAL-SPIN GME 40

4.2.2 FIFE Violation

The following describes a scenario in which FIFE is violated by the algorithm in Fig-
ure 4.4:

Let p and ¢ be processes both requesting a session s, and let r be a process requesting
a session s’ # s. Assume r enters the CS. Process p then leaves the NCS and exe-
cutes the GME doorway in its entirety. Process p adds r to p.conflict_set and blocks on
barricade[p]|r] in the method CONFLICT-FREE(). Process r then executes the first line
of the GME exit protocol, setting session[r] = 0. Process ¢ then leaves the NCS and
executes the GME doorway in its entirety. Note that p doorway-preceded ¢. In executing
the GME doorway, ¢ sees session[r] = 0, and hence does not add r to its conflict_set.
Since ¢’s conflict_set is empty, it finishes executing the method CONFLICT-FREE() and
enters the CS. However, p is still blocked on barricade[p][r] since r has not executed any
more lines of the GME exit protocol. Process p cannot proceed into the CS until after r
executes the loop where barricade[p][r] is assigned false. Thus p will not be able to enter
the CS in a bounded number of its own steps, even after ¢ is in the CS, violating the

FIFE property.

4.2.3 Proof of Correctness

We start by proving an elementary lemma, followed by a corollary. The corollary will be
used in proving that the algorithm satisfies the required properties.
Lemma 4.2: Suppose a process p assigns true to barricade[p][q] at some time t;. Let
to be a time such that ty > ¢;. If session[q] # 0 is invariant in the interval [t1, 5], then
barricade[p]lq] = true is invariant in interval [t1, to].

Proof: Assume session[q] # 0 is invariant in the interval [ti,%3]. Then clearly
¢q@{4..18} is invariant in the interval [¢, t5], and so q executes no part of its exit protocol

in [t1,t5]. Since the only place where false can be assigned to barricade[p][q] is in ¢’s exit

CHAPTER 4. FAIR LOCAL-SPIN GME 41

protocol, at line 20, it must be the case that false is never assigned to barricade[p][q]
in [t;,t5]. Hence, because true is assigned to barricade[p|[q] at time t;, it follows that
barricade[p]|q] = true is invariant in [¢1,t5]. O

The following corollary gives a necessary condition for a process to become conflict-

free qualified in a certain interval.
Corollary 4.3: Suppose a process p, requesting a session s,, assigns true to
barricade[p]lq] at line 7 at some time ¢;. Let ty be a time such that ¢, > #;. If
sessionlq] € {0, s,} is invariant in the interval [t1,%5], then p cannot be conflict-free
qualified in the interval [t1, to].

Proof: Assume session[q] & {0, s,} is invariant in the interval [t1, t2]. Suppose, by way
of contradiction, that p is conflict-free qualified at some point in the interval [t;, 5]. Thus
p finishes executing the method CONFLICT-FREE() by time 5. Now, by our assumption
that session[q] € {0, s,} is invariant in the interval [¢, 5], p evaluates the condition at
line 8 to true and thus adds ¢ to p.conflict_set at line 9, for iteration j = ¢. Thus p
busy-waits on barricade[p][q] in the method CONFLICT-FREE() until it equals false. By
Lemma 4.2, however, barricade[p][q] = true is invariant in [t;,?s]. Hence the method
CONFLICT-FREE() cannot finish by time ¢y, which contradicts the fact it does finish by

time t2 . O

Mutual Exclusion

Theorem 4.4: The algorithm in Figure 4.4 satisfies the mutual exclusion property.
Proof: Let p be a process that requests session s, and ¢ be a process that requests
session s,, where s, # s,. Suppose, by way of contradiction, that p and ¢ are in the CS
simultaneously at time t. At most one process in the CS is mutex qualified, so assume,
without loss of generality, that ¢ is conflict-free qualified.
Claim 4.4.1: Process g begins the loop at line 6 before p executes line 3.

Proof: Let t, be the time when ¢ writes true to barricade[q|[p] at line 7. Now,

CHAPTER 4. FAIR LOCAL-SPIN GME 42

suppose, by way of contradiction, that the claim is false. Then session[p] = s, throughout
the interval [t,,¢]. Hence, by Corollary 4.3, ¢ cannot be conflict-free qualified in the
interval [t,,t], which contradicts that ¢ is in the CS conflict-free qualified at time ¢. [
(Claim 4.4.1)

Either p enters the CS mutex qualified, or it enters the CS conflict-free qualified. We
consider these two cases, in turn:
Case 1: Process p is mutex qualified.

By Claim 4.4.1, q starts executing the loop at line 6 before p executes line 3, and so ¢
will finish executing the method MUTEXDOORWAY() at line 4 before p starts executing
the method MUTEXDOORWAY/() at line 4. Hence, due to the FCFS property of A, p
cannot become mutex qualified until ¢ executes the method MUTEXABORT() at line 25,
contradicting the assumption that p and ¢ are in the CS simultaneously at time .
Case 2: Process p is conflict-free qualified.

By Claim 4.4.1, q starts executing the loop at line 6 before p executes line 3, and so ¢
executes line 3 before p does. Since p and q are both conflict-free qualified, symmetrically,
p executes line 3 before ¢ does. This is a contradiction.

For p to be in the CS at time %, it must either be mutex qualified or conflict-free

qualified. The preceding two cases contradict this. Hence mutual exclusion holds. [

Strong Concurrent Entering

Theorem 4.5: The algorithm in Figure 4.4 satisfies the strong concurrent entering
property.

Proof: Let p be a process requesting session s, that is in its GME waiting room at
time t;. Assume that at t; every active process that doorway-precedes or is doorway-
concurrent with p requests session s,. Now, let t2 be the time when p starts its next
invocation, if it exists. If there is no next invocation, then ¢, = co. We want to show

that p will enter the CS in its current invocation in a bounded number of its own steps.

CHAPTER 4. FAIR LOCAL-SPIN GME 43

For this it suffices to show that Vj € p.conflict_set, barricade[p][j] = false during the
interval [t1,?2). Suppose that ¢ € p.conflict_set. Then at line 8 at some time t, < t1, p
read session[q] & {0, sp}. This implies that at time ¢,, ¢@{4..18}. This, in turn, implies
that ¢ doorway-precedes or is doorway-concurrent with p. By assumption, ¢ is not active
at time ¢;, and so at some time in (¢, ¢1), ¢ will execute the loop at line 19, assigning false
to barricade[p][q]. Now, the only process that can set barricade[p][q] to true is process
p. Process p’s last assignment of true to barricade[p][q] occurred before ¢,, and its next
assignment occurs after t,. It follows that barricade[p](q] = false in [t1,1;), as required.

O

FCFS

Theorem 4.6: The algorithm in Figure 4.4 satisfies the FCFS property.

Proof: Assume p requests session s,, ¢ requests session s,, s, # s4, and p doorway-
precedes q. We must prove that ¢ does not enter the CS before p enters the CS. Suppose,
by way of contradiction, that it does. There are two cases, depending on how ¢ enters
the CS.

Case 1: Process ¢ enters the CS mutex qualified before p.

Since p doorway-precedes ¢, p finishes executing the method MUTEXDOORWAY ()
at line 4 before ¢ begins executing the method MUTEXDOORWAY() at line 4. Hence,
by the FCFS property of A, ¢ cannot become mutex qualified until p executes one of
MUTEXEXIT() or MUTEXABORT(). This contradicts the assumption that g enters the
CS mutex qualified before p.

Case 2: Process ¢ enters the CS conflict-free qualified before p.

Let t, be the time when ¢ assigns true to barricade[q][p] at line 7, and let ¢, be the
time when p enters the CS. Since p doorway-precedes g, session[p] & {0, s,} is invariant
in the interval [t,,t,]. By Corollary 4.3, ¢ cannot be conflict-free qualified in the interval

[ty tp]. This implies that ¢ cannot enter the CS conflict-free qualified before p, which

CHAPTER 4. FAIR LOCAL-SPIN GME 44

contradicts the assumption that it does. [J

Lockout Freedom

Theorem 4.7: The algorithm in Figure 4.4 satisfies the lockout freedom property.

Proof: Suppose, by way of contradiction, that the algorithm does not satisfy the
lockout freedom property. This means that there is an execution in which some process
gets stuck forever in the GME waiting room when it tries to enter the CS. The following
claim proves that this is impossible.

Claim 4.7.1: No process can be stuck forever in the method
MuTEXWAITINGROOM().

Proof: A is an abortable mutual exclusion algorithm that satisfies the lock-
out freedom property. Hence the only way for a process to get stuck forever in
MUTEXWAITINGROOM() is if some other process becomes mutex qualified and then
does not execute the method MUTEXEXIT(); or, if some process starts executing
MuTEXWAITINGROOM(), aborts execution of it, but then does not execute the method
MUTEXABORT(). If a process becomes mutex qualified, then we see by examining the
algorithm that it will eventually execute the method MUTEXEXIT(). Furthermore, the
only way a process will abort execution of MUTEXWAITINGROOM() once started is if the
process becomes conflict-free qualified. In this case, again by examining the algorithm,
we see that such a process will eventually execute the method MUTEXABORT(). Hence
no process can be stuck forever in the method MuTEXWAITINGROOM(). O (Claim 4.7.1)

Claim 4.7.1 contradicts the fact that there is an execution in which some process is

stuck forever in the GME waiting room. [J

Bounded Exit

Theorem 4.8: The algorithm in Figure 4.4 satisfies the bounded exit property.

Proof: Since the underlying FCFS abortable ME algorithm satisfies the bounded exit

CHAPTER 4. FAIR LOCAL-SPIN GME 45

property, it is evident by inspection of the algorithm that there are no unbounded loops

in the exit protocol. This implies that the bounded exit property holds. [

4.2.4 RMR Complexity

Theorem 4.9: The algorithm in Figure 4.4 has RMR complexity O(N) under the DSM
model.

Proof: The loops at lines 6 and 19 make exactly N — 1 remote memory references.
Also, there exists a FCFS abortable mutual exclusion algorithm that has RMR complexity
O(min(k,log N)) [9], where k is the point contention. Outside of the said loops and the
FCFS abortable mutual exclusion algorithm, there are no remote memory references.

Hence the resulting algorithm makes O(N) remote memory references. [J

4.3 A FCFS and FIFE Local-Spin GME Algorithm

The algorithm that we gave in the preceding section is local-spin under the DSM model
but violates FIFE. The scenario that violates FIFE involves a process p that doorway-
precedes a process ¢, where both p and ¢ request the same session, while a third process
r, requesting a session that conflicts with p and ¢, is already in the CS. Upon leaving the
CS, r “releases” g before it releases p, thus allowing ¢ to enter the CS, while p cannot
enter the CS in a bounded number of its own steps.

The FIFE-violating scenario just discussed would be avoided if ¢ could somehow
“capture” p before g entered the CS. This is the approach we use in the GME algorithm
in Figure 4.7. Informally we say that a process ¢ “captures” p if it modifies the shared
variables in such a way that p can enter the CS in a bounded number of its own steps.
Basically, the idea behind the capturing mechanism is for ¢ to capture those processes that
finish executing the doorway sufficiently ahead of it. So, if p doorway-precedes ¢, then ¢

captures p before g enters the CS, which allows p to finish the method AWAIT-CAPTURE()

CHAPTER 4. FAIR LOCAL-SPIN GME 46

and enter the CS in a bounded number of its own steps. In more detail, the capturing
mechanism operates as follows: a process ¢, when it enters the doorway (lines 4..6), reads
the statusCS variable of every process into the private variable I_status. Then, just before
entering the CS (lines 24..28), ¢ checks each process p to see if p is requesting the same
session as ¢, p was in the GME waiting room at the time when ¢ started the doorway,
and p is still in the GME waiting room. If these conditions hold, then ¢ attempts to
capture p by setting the variable capture[p| to the value of p.passage that ¢ previously
read.

The opening of a new pathway to the CS via the capturing mechanism is an obvious
source of concern regarding ME: a captured process may be enabled to enter the CS at a
time when a process requesting a different session is in the CS. Our algorithm naturally
prohibits this, but as we will see later, some technical machinery must be developed to
prove that ME is guaranteed.

Under the DSM model, the algorithm in Figure 4.7 has RMR complexity O(N).

A drawback to this algorithm is that it uses an integer (passage) that increases without
bound. However, the increase is linear in the number of CS invocations, so an integer of
modest size (say 64 bits) would suffice in practice.

We proceed as follows: we give some notation and definitions relative to the algorithm,
provide a line by line commentary of the algorithm, present a proof of correctness, and

then supply a proof for why the algorithm has RMR complexity O(N).

4.3.1 Definitions and Notation

When dealing with values of type SessionNode in the algorithm, we sometimes use the
notation (a,b), where a is the value of the session field and b is the value of the passage
field.

To refer to the fields of SessionNode variables separately, we use dot notation. That

is, if v is a variable of type SessionNode, then v.sesston refers to the value of the session

CHAPTER 4. FAIR LOCAL-SPIN GME 47

field, and v.passage refers to the value of the passage field.

GME Doorway: The doorway consists of lines 3..16.

GME Waiting Room: The waiting room consists of lines 17..28
GME Exit Protocol: The exit protocol consists of lines 30..38

p-doorway-precede: Process p (-doorway-precedes another process g iff p executes

line 16 before g executes line 7.

Mutex Qualified Process: Process p is mutex qualified iff p@{24..34} and p reached

line 24 because it completed execution of the method MUTEXWAITINGROOM().

Conflict-free Qualified Process: Process p is conflict-free qualified iff p@{24..30}

and p reached line 24 because it completed execution of the method CONFLICT-FREE().

Capture Qualified Process: Process p is capture qualified iff p@{24..30} and p

reached line 24 because it completed execution of the method AWAIT-CAPTURE().

Critical-section Qualified Process: Process p is critical-section qualified iff
p@{24..29}. Intuitively, a process is critical-section qualified iff it can enter the CS

in a bounded number of its own steps in any execution.

Figure 4.6 Header for Algorithm in Figure 4.7

type
SessionNode = record session: integer; passage: integer end

shared variables:

statusCS: array[1..N] of SessionNode init (0,—1)
capture: array[l..N] of integer init 0
barricade: array[1..N][1..N] of boolean

/* capture[p], barricade[p][j] are stored in process p’s memory, for each j. */

private variables:

mysession: integer /* Session that p wants to attend */

conflict_set: set of integer

passage: integer init 0

l_status: array[l..N] of SessionNode [* for storing statusCS[j] locally */

CHAPTER 4. FAIR LOCAL-SPIN GME 48

Figure 4.7 A FCFS and FIFE Local-Spin GME Algorithm; Process p € {1..N}

1: loop

2: NCS

3: passage := passage + 1;

4: for j € {1.N}\ {p} do

5: I_status[j] := statusCS[j];
6: end for
7.
8

statusCS[p] := (mysession, —1);
: MUuTEXDOORWAY();
9: conflict_set := ();
10: for j=1to N do

11: barricade[p][j] := true;

12: if statusCS[j].session ¢ {0, mysession} then
13: conflict_set := conflict_setU {j};

14: end if

15: end for

16: statusCS[p] := (mysession, passage);

17: cobegin

18: MUTEXWAITINGROOM();

19: |

20: CONFLICT-FREE(); /* defined in Figure 4.5 */
21: |

22: AWAIT-CAPTURE(); /* defined in Figure 4.8 */

23: coend /* when one co-routine terminates, go to the next line */
24: for j € {1.N}\ {p} do

25: if Jv # —1: statusCS[j] = Lstatus[j] = (mysession,v) then
26: capture[j] := l_status[j].passage;

27: end if

28: end for

29: CS

30: statusCS[p] := (0,-1);
31: forj=1to N do

32: barricade[j][p] := false;
33: end for

34: if mutex qualified then
35: MuTEXEXIT();

36: else

37: MUTEXABORT();

38: end if

39: end loop

Figure 4.8 Method AWAIT-CAPTURE() for Algorithm in Figure 4.7
1: await capture[p] = passage;

Capture: Suppose a process p, requesting session s,, executes line 26 at time t, for
iteration 7 = q. Let ¢; be the time p last executed line 5 for iteration j = ¢q. We say that
process p captures process ¢ at time ¢y iff ¢@{17..30} is invariant in [t, to].

As with the definitions of “doorway-precedes” and “doorway-concurrent” (see Sec-

tion 2.4, page 21), in the preceding definitions to be strictly precise we ought to refer to

CHAPTER 4. FAIR LOCAL-SPIN GME 49

the invocations that the processes are executing, rather than the processes themselves.
For example, we should be saying that a particular invocation of p is mutex qualified
(or conflict-free qualified). However, for simplicity, we assume that the invocations in
question are the “current” (i.e., the latest) ones with respect to some point in a given

rumn.

4.3.2 Line by Line Commentary of the Algorithm

Line 3: Process p increments the value of its private variable passage upon leaving the
NCS.

Line 4..6: Process p reads the statusCS variable of every other process into a private
variable [_status. Process p will use [_status later to check whether there were any pro-
cesses in the GME waiting room when p started the doorway.

Line 7: Process p declares that it is requesting session mysession, and sets
statusCS[p].passage = —1. The latter indicates to other processes that p is not in the
GME waiting room.

Line 8: Process p executes the method MUTEXDOORWAY() of the underlying mutual
exclusion algorithm.

Line 10..15: Process p scans all processes to check if there are any processes requesting
a different session. If there are, p adds the identifiers of these processes to its conflict_set.
Then, when the method CONFLICT-FREE() executes, for each j € conflict_set, p will wait
until barricade[pl[j] = false.

Line 16: Process p sets statusCS[p].passage = passage. This serves two purposes: it
indicates to other processes that p has finished the doorway and entered GME waiting
room; and, it allows any process that may want to capture p after this point to read the
value it should assign to capture[p].

Line 17..23: Process p waits until it completes one of the co-routines

MUTEXWAITINGROOM(), CONFLICT-FREE() or AWAIT-CAPTURE(), becoming, respec-

CHAPTER 4. FAIR LOCAL-SPIN GME 50

tively, mutex qualified, conflict-free qualified, or capture qualified, and proceeding to
line 24.

Line 24..28: Process p attempts to capture those processes in the GME waiting room
that S-doorway-precede p. This helps ensure the FIFE property.

Line 29: Process p executes the CS.

Line 30: Process p declares that it has left the CS.

Line 31..33: There may be other processes waiting for p to leave the CS. By assigning
false to barricade[j][p] for each process j, p ensures that any process j waiting for p does
not have to wait for p any longer.

Line 34..38: If p is mutex qualified it executes the method MUTEXEXIT() be-
fore returning to the NCS. Otherwise, p previously aborted execution of the method
MuTEXWAITINGROOM() at line 18, and so it executes the method MUTEXABORT()

before returning to the NCS.

4.3.3 Proof of Correctness

The proof that the algorithm satisfies all the GME properties makes use of several crucial
facts, which we prove in this section.

Our first goal is to show that if a process ¢ is capture qualified, then there is some
process p requesting the same session as ¢ that captures ¢ in ¢’s current invocation before
q is capture qualified. This is formally stated and proven in Lemma 4.12.

Lemma 4.10: If a process p captures a process ¢ at some time ¢, then ¢.passage =
p.l_status|q].passage at time t.

Proof: Assume p captures g at time ¢. Let ¢’ be the time when p last executed line 5
for iteration j = ¢. By definition of capture, p executes line 26 for iteration j = ¢ at
time ¢, and ¢@{17..30} is invariant in [¢,¢]. Now, let x be the value of ¢.passage that
q assigns to statusCS|[q].passage when it executes line 16. By the fact that ¢@{17..30}

is invariant in [t', t] and the fact that neither statusCS[q] or ¢.passage are updated while

CHAPTER 4. FAIR LOCAL-SPIN GME 51

q@{17..30}, statusCS|q].passage = = and g¢.passage = x are invariant in [t',¢]. Hence,
because p sets p.l_status[q].passage = statusCS[q|.passage at time t', it follows that p sets
p.l_status[q].passage = = at time ¢'. Furthermore, since no process alters p.l_status[q] in
(¢',t], it follows that p.l_status|q].passage = x at time t. From this and the fact that

g-passage = x at time ¢, it follows that g.passage = p.l_status|q].passage at time ¢. OJ

Lemma 4.11: If a process p, requesting a session s,, captures a process g, requesting
session sS4, then s, = s,.

Proof: Assume that process p, requesting session s,, captures process ¢, requesting
session s,. Let ¢; be the time when p sets p.l_status[q] = statusCS[q] at line 5, and ¢, be
the time when p sets capture|q] = p.l_status|[q|.passage at line 26 (i.e., t5 is the time when
p captures ¢). Then, by definition of capture, ¢@{17..30} is invariant in [¢1,%5]. From
this, and the fact that p must evaluate the condition at line 25 to be true, it follows that
statusCS]q].session = s, is invariant in [t1, t5]. But statusCS[q].session is the session that
g is requesting, and so s, = s,. [

Lemma 4.12: If a process g requests a session s and is capture qualified during some
invocation I, then there exists a process p, also requesting session s, that captures g

while ¢ is executing invocation I, before ¢ is capture qualified.

Proof: Assume that process ¢ requests session s and is capture qualified during some
invocation I,. Then ¢ reaches line 24 in I, by finishing the method AWAIT-CAPTURE().
For ¢ to finish the method AWAIT-CAPTURE(), it must be the case that ¢ sees capture[q] =

g.passage. Let v be the value of ¢.passage (and capture|q]) when this happens.

The variable q.passage = 0 initially, ¢ increments q.passage at the start of every
invocation of the algorithm at line 3, and no process ever decrements g.passage. From

this it follows that v > 0.
Now, since capture[q] = 0 initially, and v > 0, it follows that there must exist some
process p that sets capture[q] = v prior to ¢ being capture qualified. By examining the

algorithm, we see that the only place where p can set capture[q] = v is at line 26 (for

CHAPTER 4. FAIR LOCAL-SPIN GME 52

j = q). Let ty be the time when p executes line 26 (for j = ¢), and let ¢; be the time
when p sets p.lstatus[q] = statusCS[q] at line 5 prior to t,.

Claim 4.12.1: statusCS[q|.passage = v at time ;.

Proof: Suppose, by way of contradiction, that statusCS[q].passage # v at time ;.
Then the value p assigns to p.l_status[q].passage at time ¢, is not equal to v, and so the
value p assigns to capture|q] at time ¢, is also not equal to v. This contradicts the fact
that p sets capture[q] = v at time t,. O (Claim 4.12.1)

Claim 4.12.2: ¢@{17..30} at time ¢;.

Proof: Suppose, by way of contradiction, that the claim is false. @ Then
statusCS[q|.passage = —1 at time ¢;. This, together with Claim 4.12.1, implies v = —1.
But this contradicts the fact that v > 0. O (Claim 4.12.2)

Claim 4.12.3: q.passage = v at time ;.

Proof: By Claim 4.12.1, statusCS|q|.passage = v at time t;, and by Claim 4.12.2,
q@{17..30} at time t;. Since g sets statusCS|q].passage = g.passage when it executes
line 16, and no process changes either g.passage or statusCS|[q|.passage until after g exe-
cutes line 30, it follows that g.passage = v at time ¢;. O (Claim 4.12.3)

Claim 4.12.4: Process q is executing invocation I, at time ¢;.

Proof: Suppose, by way of contradiction, that the claim is false. Then, at time t;, ¢ is
either executing an invocation that precedes I, or one that follows I,. Since g is capture
qualified in I, after p sets capture[q] = v at time 5, it follows that at time ¢;, ¢ cannot be
executing an invocation that follows I,. Hence, at time ?;, ¢ is executing an invocation
I(’J that precedes I,. Now, by Claim 4.12.3, ¢.passage = v at time ?;. From this and the
fact that g.passage is incremented at line 3 at the start of every invocation, it follows
that when ¢ starts invocation I, g.passage will be set to some value v’ > v. So, when ¢
reads capture[q] = g.passage during invocation I, ¢.passage = v'. This contradicts the
assumption that g.passage = v at this time. O (Claim 4.12.4)

Claim 4.12.5: ¢@{17..30} is invariant in [ty, o).

CHAPTER 4. FAIR LOCAL-SPIN GME 53

Proof: By Claim 4.12.2, ¢@{17..30} is true at time t;, and by Claim 4.12.4, ¢ is
executing invocation I, at time ¢;. From these two facts, and the fact that ¢ is capture
qualified in invocation I, after time 5, it follows that ¢@{17..23} is invariant in [t;, t5].
Hence ¢@{17..30} is invariant in [t1,t5]. O (Claim 4.12.5)

By Claim 4.12.5, p captures ¢q at time 5.

Now, Claims 4.12.4 and 4.12.5 immediately imply that ¢ is executing invocation I, at
time t9; the fact that p sets capture[q] = v before ¢ is capture qualified implies ¢ is not
yet capture qualified at time ¢5; and Lemma 4.11 implies that p is requesting session s.
These facts and the preceding discussion imply that p requests session s and captures q
while ¢ is executing invocation I, before ¢ is capture qualified. [J
Lemma 4.13: If a process p captures a process ¢ then (1) ¢ S-doorway-precedes p, and
(2) p is not mutex qualified.

Proof: Assume that p captures q.

(1): Let ¢; be the time when p executes line 5 for iteration j = ¢, and ¢y be the
time when p executes line 26 for iteration j = ¢ (i.e., to is the time when p captures
q). q@{17..30} is invariant in [¢1,?9], by definition of capture. This implies ¢ executes
line 16 before t;. Clearly p executes line 7 after time ¢;, and so ¢ executes line 16 before
p executes line 7. Hence ¢ S-doorway-precedes p.

(2): Suppose, by way of contradiction, that p is mutex qualified. By (1), ¢
[-doorway-precedes p. By A’s FCFS property, p becomes mutex qualified after ¢ has
executed MUTEXEXIT() or MUTEXABORT(), and so p executes line 26 (for j = ¢) after
¢q@{17..30}, contradicting that p captures ¢q. OJ

In the above lemma, we assume that the invocation each process is executing is its
“current” invocation. However, in what follows we will make use of the above lemma
in situations where processes execute an invocation that is not necessarily the current
invocation. This does not change the correctness of the lemma, as long as the invocation

being executed is made explicit. For example, we can say that if a process p executing

CHAPTER 4. FAIR LOCAL-SPIN GME 54

invocation I, captures a process ¢ executing invocation I,, then ¢ (in invocation 1)
B-doorway-precedes p (in invocation I,,).

We now want to show that if a process ¢ is capture qualified, then there exists a
process 7, requesting the same session as ¢, such that r is conflict-free qualified before ¢
is capture qualified, and ¢ B-doorway-precedes r. This fact will be important in the proof
of mutual exclusion. To show that process r exists, we start by considering how ¢ becomes
capture qualified. By Lemma 4.12, there is a process p that captures ¢ in ¢’s current
invocation before ¢ is capture qualified, and by Lemma 4.13, ¢ S-doorway-precedes p. If
p is conflict-free qualified, then we are done. However, it is possible that p is also capture
qualified, in which case we consider how p comes to be so. We continue in this manner,
working backwards, in order to discover the sequence of captures that leads to ¢ being
capture qualified. It turns out that at some point in this backwards progression we will
find the process r previously described. The following is a detailed proof of this.

We start by formalizing the concept of “the sequence of captures that leads to ¢
being capture qualified”. Assume that ¢ executes some invocation I, of the algorithm.
A sequence of (¢,I,)-captures is a sequence (qo, Iy), (¢1, Lg,)s (@2, Lgy)s -y (Gk, Iy,) Of
process and invocation pairs such that (a) (go, I,) = (g,1,), and (b) Vi: 0 < i <k, gi41,

while in invocation [,

11> captures g;, while in invocation I, before ¢; is critical-section

qualified. A maximal sequence of (g, I,)-captures is a sequence of (g, I,)-captures
that is not a proper prefix of any sequence of (g, I,)-captures.

Lemma 4.14: Suppose g executes some invocation I, of the algorithm, and let S, =
(90, Igo), (g1, 1g1)5 (@2, Igy), -, (i, Iy,) denote a sequence of (g, I;)-captures. Vi,j: 0 < i<
J <k,

1. g; is critical-section qualified (in invocation Iq].) before ¢; is critical-section qualified

(in invocation Ij,).

2. ¢; (in invocation I,;) B-doorway-precedes g; (in invocation I,).

CHAPTER 4. FAIR LOCAL-SPIN GME 95
3. ¢; (in invocation I,,) requests the same session as ¢; (in invocation I,).

Proof: We prove the result by induction on the value [= j — i. For convenience in
this proof, rather than explicitly specify which invocation a process executes, we assume
that a process executes the invocation with which that process is paired in the sequence
Sq-

In the base case, [= 1 (i.e., j =i+ 1), and so (g;, I;) and (gj, I,;) are adjacent in
Sg- According to the definition of a sequence of (g, I;)-captures, ¢; captures g; before g;

is critical-section qualified. Hence:

1. In order for g; to capture g¢;, ¢; must be critical-section qualified, and so g; is

critical-section qualified before ¢; is critical-section qualified.
2. By Lemma 4.13, g; 8-doorway-precedes g;.

3. By Lemma 4.11, g; requests the same session as g;.

For the induction step, assume that the lemma holds for all values smaller than [. We
now prove the result for [> 1.

Consider the element (giy1, g,

) of S;. The following must hold by the induction

hypothesis:
1. g; is critical-section qualified before g;;; is critical-section qualified.
2. gi41 p-doorway-precedes g;.
3. ¢i41 requests the same session as g;.
Hence, the following results hold:

1. Since g; is critical-section qualified before g;;; is critical-section qualified, and g;;1
is critical-section qualified before g; is critical-section qualified, it follows that g; is

critical-section qualified before ¢; is critical-section qualified.

CHAPTER 4. FAIR LOCAL-SPIN GME 56

2. Since ¢; B-doorway-precedes ¢;;1 and ¢;, S-doorway-precedes g;, it follows that g;

B-doorway-precedes g;.

3. Since g; requests the same session as g;;1, and g;11 requests the same session as g,

it follows that g; requests the same session as ¢;. [

Lemma 4.15: Suppose g executes some invocation I, of the algorithm. A maximal
sequence of (g, I;)-captures has at most N elements.

Proof: Suppose, by way of contradiction, that the maximal sequence has more than
N elements. Then some process r appears at least twice in the sequence. Let I; be
the invocation 7 is paired with the first time it appears in the sequence, and I, be the
invocation r is paired with the second time in appears in the sequence. By Lemma 4.14, r
(in invocation I) is critical-section qualified before r (in invocation I) is critical section
qualified, and r (in invocation I;) -doorway-precedes r (in invocation I5). The first fact
implies that r executes invocation I, before invocation I;, but the second implies that r
executes invocation I; before I,. This is a contradiction. [
Lemma 4.16: Suppose ¢ is capture qualified in some invocation I, of the algorithm.
Then a maximal sequence of (g, I,)-captures has at least 2 elements.

Proof: Follows immediately from Lemma 4.12 and the definition of a maximal se-
quence of (g, I,)-captures. O
Lemma 4.17: Suppose ¢ executes some invocation I, of the algorithm, and let S, =
(90, 140) (01, 141), (G2, 14y)s -y (Gk, Iy,) denote a maximal sequence of (g, I,)-captures that
has at least 2 elements. Then g is conflict-free qualified in invocation I, .

Proof: Suppose, by way of contradiction, that ¢; is not conflict-free qualified in in-
vocation I, . By the definition of a sequence of (g, I,)-captures, gx, during its execution

of invocation 1,

q captures ggy_; while gx_; is executing invocation I, , before gz_; is

critical-section qualified. From this and Lemma 4.13 it follows that ¢, is not mutex qual-

ified. Hence gy, is either conflict-free qualified or capture qualified. By our assumption, g

CHAPTER 4. FAIR LOCAL-SPIN GME 57

cannot be conflict-free qualified, and so it must be capture qualified. But this and Lemma
4.12 imply that S, is not a maximal sequence of (g, I;)-captures, which contradicts the
assumption that it is such a sequence. []

Lemma 4.18: If ¢ requests a session s and is capture qualified, then there exists some
process 7, also requesting session s, such that r is conflict-free qualified before ¢ is capture
qualified, and ¢ S-doorway-precedes 7.

Proof: Assume that ¢ is capture qualified and requests a session s in some
invocation I,. Now, consider the maximal sequence of (g,1,)-captures, S, =
(90, Igo), (@1, 1g1)5 (@2, 1), -y (Gk, Iy,)- By Lemma 4.16, S, has at least 2 elements, and
thus, by Lemma 4.17, the process gy is conflict-free qualified in invocation I, . Moreover,

by Lemma 4.14, the following three facts hold:

1. g is conflict-free qualified (in invocation I,) before ¢ is capture qualified (in invo-

cation I,).
2. ¢ (in invocation I,) B-doorway-precedes g, (in invocation I,).

3. ¢ (in invocation I,) requests the same session as g (in invocation I,).

Thus ¢ is the process » whose existence we sought to prove. [

Lemma 4.19: Suppose a process p assigns true to barricade[p][q] at time ¢;. Let t5 be
a time such that ty > ¢;. If statusCS[q] # (0, —1) is invariant in the interval [¢, t5], then
barricade[p]|q] = true is invariant in (¢, t5].

Proof: Assume that statusCS[q] # (0,—1) is invariant in the interval [t;,f5]. Then
clearly ¢@{8..30} is invariant in the interval [¢;, 5], and so ¢ executes no part of its exit
protocol in [t1,?5]. Since the only place where false can be assigned to barricade[p][q|
is in ¢’s exit protocol, at line 32, it must be the case that false is never assigned to
barricade[p]|q] in [t1,?s]. Hence, because true is assigned to barricade[p][q] at time ¢y, it

follows that barricade[p]|q] = true is invariant in [¢1,t5]. O

CHAPTER 4. FAIR LOCAL-SPIN GME 58

Corollary 4.20: Suppose a process p, requesting session s,, assigns true to
barricade[p]lq] at line 11 at time t;. Let ¢3 be a time such that t, > #;. If
statusCS]q].session & {0, s,} is invariant in the interval [¢;,], then p cannot be conflict-
free qualified in the interval [ty t5].

Proof: Assume that statusCS[q|.session & {0, s,} is invariant in the interval [¢y,ts).
Suppose, by way of contradiction, that p is conflict-free qualified at some point in the
interval [t1,%;]. Thus p finishes executing the method CONFLICT-FREE() by time t,.
Now, by our assumption that statusCS[q].session ¢ {0,s,} is invariant in the interval
[t1,t2], p evaluates the condition at line 12 to be true and thus adds ¢ to p.conflict_set
at line 13, for iteration j = ¢. Thus p busy-waits in the method CONFLICT-FREE() until
barricade[p]lq] = false. By Lemma 4.19, however, barricade[p][q] = true is invariant in
[t1,t2]. Hence the method CONFLICT-FREE() cannot finish by time ¢, which contradicts

the fact it does finish by time ¢5. [

Mutual Exclusion

To prove that the algorithm satisfies the mutual exclusion property, we prove a slightly
stronger fact which will also be useful later in the proof that the algorithm satisfies the
FIFE property.
Lemma 4.21: If a process p requests some session s,, and a process ¢ requests some
session s, # S,, then p and ¢ cannot be simultaneously enabled to execute lines 24..30.
Proof: Assume that a process p requests some session s, and a process ¢ requests
some session s, # s,. Suppose, by way of contradiction, that p and ¢ are simultaneously
enabled to execute lines 24..30 at some time ¢.
For a process to be enabled to execute lines 24..30, it must be either mutex qualified,
capture qualified, or conflict-free qualified. We now consider the different ways in which
p and ¢ can be enabled to execute lines 24..30, and show that a contradiction arises in

each case.

CHAPTER 4. FAIR LOCAL-SPIN GME 59

Case 1: Both processes are mutex qualified.

Due to the mutual exclusion property of A, at most one process can be mutex qualified
at a time. Hence this case is impossible.
Case 2: One process is capture qualified.

Without loss of generality, assume that ¢ is capture qualified. By Lemma 4.18, there
exists a process r, requesting session s, such that r is conflict-free qualified before g is
capture qualified, and g 3-doorway-precedes 7.

Claim 4.21.1: Process r executes line 9 before p executes line 7.

Proof: Suppose, by way of contradiction, that the claim is false. Let ¢, be the time
when r sets barricade[r][p] = true at line 11. By the assumption that p executes line 7
before 7 executes line 9, statusCS[p].session & {0, s,} in [t,,t]. Thus, by Corollary 4.20,
r cannot be conflict-free qualified in the interval [t,,t]. From this and the fact that ¢
is capture qualified after r is conflict-free qualified, it follows that ¢ cannot be capture
qualified in the interval [t,,?]. This contradicts the fact that ¢ is capture qualified at
time t. O (Claim 4.21.1)

Claim 4.21.2: g S-doorway-precedes p.

Proof: Process g S-doorway-precedes r, and so g executes line 16 before r executes
line 7. This implies g executes line 16 before r executes line 9. Moreover, by Claim 4.21.1,
r executes line 9 before p executes line 7. Hence, g executes line 16 before p executes
line 7, and so ¢ S-doorway-precedes p. O] (Claim 4.21.2)

Now consider the different ways in which p can be enabled to execute lines 24..30:
Case 2.1: Process p is mutex qualified.

By Claim 4.21.2, ¢ finishes executing the method MUTEXDOORWAY() at line 8 before
p starts executing the method MUTEXDOORWAY/() at line 8. Thus, by the FCF'S property
of A, p is mutex qualified after ¢ executes the method MUTEXABORT() at line 37. This
implies p is mutex qualified after ¢ is no longer enabled to execute lines 24..30. This

contradicts the assumption that p and ¢ are simultaneously enabled to execute lines

CHAPTER 4. FAIR LOCAL-SPIN GME 60

24..30 at time t.
Case 2.2: Process p is conflict-free qualified.

Let t, be the time when p sets barricade[p][q] = true at line 11. Claim 4.21.2 implies
that ¢ executes line 16 before p executes line 7, and so ¢ executes line 16 before time %,.
Hence statusCS|q|.session & {0, s,} is invariant in [t,, ¢]. By this fact and Corollary 4.20,
p cannot be conflict-free qualified in the interval [¢,,], which contradicts the assumption
that p is conflict-free qualified at time t.

Case 2.3: Process p is capture qualified.

By Claim 4.21.2, ¢ S-doorway-precedes p. Since p and ¢ are both capture qualified,
symmetrically, p S-doorway-precedes g. This is a contradiction.

Case 3: One process is conflict-free qualified, and the other is not capture qualified.

Without loss of generality, assume that ¢ is conflict-free qualified.

Claim 4.21.3: Process g starts executing the loop at line 10 before p executes line 7.

Proof: Suppose, by way of contradiction, that the claim is false. Let ¢; be the time
when ¢ writes true to barricade[q][p] at line 11. By assumption, p executes line 7 before
time ¢;, and so statusCS[p].session & {0, s,} is invariant during the interval [t,t]. Thus,
by Corollary 4.20, ¢ cannot be conflict-free qualified in the interval [t1,], contradicting
the fact that ¢ is conflict-free qualified at time ¢. [0 (Claim 4.21.3)

Now consider the different ways in which p can be enabled to execute lines 24..30:
Case 3.1: Process p is mutex qualified.

By Claim 4.21.3, ¢ will finish executing the method MUTEXDOORWAY() at line 8
before p starts executing the method MUTEXDOORWAY() at line 8. Hence, due to the
FCFS property of A, p cannot become mutex qualified until ¢ executes the method
MUTEXABORT() at line 37. This contradicts the assumption that p and ¢ are simulta-
neously enabled to execute lines 24..30 at time ¢.

Case 3.2: Process p is conflict-free qualified.

By Claim 4.21.3, ¢ starts executing the loop at line 10 before p executes line 7, and so ¢

CHAPTER 4. FAIR LOCAL-SPIN GME 61

executes line 7 before p does. Since p and q are both conflict-free qualified, symmetrically,
p executes line 7 before ¢ does. This is a contradiction.

Since each case leads to a contradiction, it follows that the lemma holds. [J
Theorem 4.22: The algorithm in Figure 4.7 satisfies the mutual exclusion property.

Proof: Follows immediately from Lemma 4.21. [J

Strong Concurrent Entering

Theorem 4.23: The algorithm in Figure 4.7 satisfies the strong concurrent entering
property.

Proof: Let p be a process requesting session s, that is in its GME waiting room at
time ¢;. Assume that at £; every active process that doorway-precedes or is doorway-
concurrent with p requests session s,. Now, let to be the time when p starts its next
invocation, if it exists. If there is no next invocation, then t, = co. We want to show
that p will enter the CS in its current invocation in a bounded number of its own steps.
For this it suffices to show that Vj € p.conflict_set, barricade[p][j] = false during the
interval [t1,t2). Suppose that g € p.conflict_set. Then at line 12 at some time t, < t1, p
read statusCS[q|.session & {0, s,}. This implies that at time t,, ¢@{8..30}. This, in turn,
implies that ¢ doorway-precedes or is doorway-concurrent with p. By assumption, q is
not active at time ¢;, and so at some time in (¢, 1), ¢ will execute the loop at line 31,
assigning false to barricade|p|[q]. Now, the only process that can set barricade[p][q] to
true is process p. Process p’s last assignment of ¢rue to barricade[p][q] occurred before t,,
and its next assignment occurs after ¢5. It follows that barricade[p][q] = false in [t1,ts),

as required. [J

Lockout Freedom

Theorem 4.24: The algorithm in Figure 4.7 satisfies the lockout freedom property.

Proof: Suppose, by way of contradiction, that the algorithm does not satisfy the

CHAPTER 4. FAIR LOCAL-SPIN GME 62

lockout freedom property. This means that there is an execution in which some process
gets stuck forever in the GME waiting room when it tries to enter the CS. The following
claim proves that this is impossible.

Claim 4.24.1: No process can be stuck forever in the method
MuTEXWAITINGROOM().

Proof: A is an abortable mutual exclusion algorithm that satisfies the lock-
out freedom property. Hence the only way for a process to get stuck forever in
MuTEXWAITINGROOM() is if some other process becomes mutex qualified and then
does not execute the method MUTEXEXIT(); or, if some process starts executing
MuTEXWAITINGROOM(), aborts execution of it, but then does not execute the method
MUTEXABORT(). If a process becomes mutex qualified, then we see by examining
the algorithm that it will eventually execute the method MUTEXEXIT(). Further-
more, the only way a process will abort execution of MUTEXWAITINGROOM() once
started is if the process becomes conflict-free qualified or capture qualified. In this case,
again by examining the algorithm, we see that such a process will eventually execute
the method MUTEXABORT(). Hence no process can be stuck forever in the method
MUuTEXWAITINGROOM(). O (Claim 4.24.1)

Claim 4.24.1 contradicts the fact that there is an execution in which some process is

stuck forever in the GME waiting room. [J

FCFS

Theorem 4.25: The algorithm in Figure 4.7 satisfies the FCFS property.

Proof: Assume that p requests session s,, ¢ requests session s;, s, # S5, and p
doorway-precedes q. We must prove that ¢ does not enter the CS before p enters the CS.
Suppose, by way of contradiction, that it does. There are three cases, depending on how
q enters the CS.

Case 1: Process ¢ enters the CS mutex qualified before p.

CHAPTER 4. FAIR LOCAL-SPIN GME 63

Since p doorway-precedes ¢, p finishes executing the method MUTEXDOORWAY() at
line 8 before ¢ begins executing the method MUTEXDOORWAY() at line 8. Hence, by the
FCFS property of A, ¢ cannot be mutex qualified until p executes one of MUTEXEXIT() or
MUuTEXABORT(). This contradicts the assumption that ¢ enters the CS mutex qualified

before p.
Case 2: Process ¢ enters the CS conflict-free qualified before p.

Let t, be the time when ¢ assigns true to barricade[q|[p] at line 11, and let
t, be the time when p enters the CS. Since p doorway-precedes g, it follows that
statusCS[p].session & {0, s,} is invariant in the interval [t,,,]. So, by Corollary 4.20, ¢
cannot be conflict-free qualified in the interval [¢,,?,]. This implies that ¢ cannot enter

the CS conflict-free qualified before p, which contradicts the assumption that it does.
Case 3: Process q enters the CS capture qualified before p.

By Lemma 4.18, there exists a process r, requesting session s4, such that r is conflict-
free qualified before ¢ is capture qualified, and ¢ S-doorway-precedes r. By definition of
[B-doorway-precedes, g executes line 16 before r executes line 7. Moreover, p doorway-
precedes ¢, so p executes line 16 before ¢ executes line 3. Hence p executes line 16 before

r executes line 7.

Let t; be the time when 7 sets barricade[r|[p] = true at line 11, and let ¢, be the time
when p enters the CS. Since p executes line 16 before r executes line 7, it must be the
case that p executes line 16 before time ¢;. From this it follows that statusCS[p].session ¢
{0, 54} is invariant in [t1, ¢5]. Thus, by Corollary 4.20, r cannot be conflict-free qualified in
[t1,t2]. From this and the fact that g is capture qualified after r is conflict-free qualified,
it follows that ¢ is capture qualified after 5. Since t, is the time when p enters the CS,
it must be the case that ¢ is capture qualified after p enters the CS. This contradicts the

assumption that ¢ enters the CS capture qualified before p. (J

CHAPTER 4. FAIR LOCAL-SPIN GME 64

FIFE

Theorem 4.26: The algorithm in Figure 4.7 satisfies the FIFE property.

Proof: Assume that p and ¢ request session s, p doorway-precedes ¢, and ¢ enters the
CS while p is in the GME waiting room. We refer to the invocation of p in which the
preceding is true as p’s current invocation.

Our goal is to show that p enters the CS in a bounded number of its own steps. We
first observe that if p does not detect conflict in the doorway (i.e., p.conflict_set = ()), then
p will complete the method CONFLICT-FREE() and enter the CS in a bounded number
of its own steps, and we are done. So, in the following, we assume that p does detect
conflict (i.e., p.conflict_set # ().

We will next show that ¢ captures p before ¢ enters the CS (Claim 4.26.1). This
implies that ¢ sets capture[p] = p.passage before g enters the CS. We further show that
no process can change the value of capture[p] between the time when ¢ writes to capture[p]
and the time when p enters the CS (Claim 4.26.2). These two claims imply that p is able
to finish the method AWAIT-CAPTURE() and enter the CS in a bounded number of its
own steps.

Claim 4.26.1: Process ¢ captures p prior to g entering the CS.

Proof: Let ¢; be the time when ¢ sets [_status[p] = statusCS[p] at line 5, and let t3 be
the time when ¢ enters the CS.

Sub-Claim 4.26.1.1: p@{17..28} is invariant in [t;, t3].

Proof: Since p doorway-precedes ¢, it follows that p enters the GME waiting room
before g executes line 3. This implies that p enters the GME waiting room before time
t1. Moreover, by assumption, p is still in the GME waiting room when ¢ enters the CS at
time t3. Hence p is in the GME waiting room during the interval [t{, t3]. Thus, it must
be the case that p@{17..28} is invariant in [t1,t3]. O (Sub-Claim 4.26.1.1)

Since p@{17..28} at time t;, it must be the case that for some v # —1, ¢ sets

q.l_status[p] = (s,v) at time ¢;. This and Sub-Claim 4.26.1.1 imply that ¢ evaluates

CHAPTER 4. FAIR LOCAL-SPIN GME 65

the condition at line 25 (for j = p) to be true. Hence g executes line 26 (for j = p) before
entering the CS. Let ¢, be the time when ¢ executes line 26 (for j = p). Now, to show
that g captures p prior to g entering the CS we must show that p@{17..30} is invariant
in [t1,t2]. This follows from Sub-Claim 4.26.1.1 and the fact that ¢5 € [¢;,t3]. O (Claim
4.26.1)

Let t, be the time when ¢ captures p, and let ¢, be the time when p enters the CS.
The next claim guarantees p is able to enter the CS in a bounded number of its own
steps.

Claim 4.26.2: capture[p] = p.passage is invariant in [t,, t,].

Proof: Suppose, by way of contradiction, that the claim is false. By Lemma 4.10 and
the fact that ¢ captures p at time t,, p.passage = q.l_status[p].passage at time t,. This
implies that ¢ sets capture[p] = p.passage at time t,. Let v be the value of p.passage
at this time. Clearly p.passage = v is invariant in [t,,%,]. So, by the assumption that
capture[q] = p.passage is not invariant in [t,, t,], and the fact that operations on capture[p]
are atomic, it must be the case that some process r sets capture[p] = v', where v' # v,
at some time ¢! € (t,,t,]- The only place in the algorithm where r can do this is at
line 26. Clearly the value of r.l_status|p|.passage at this time must be v'. This implies
that r previously set r.l_status[p].passage = v' when r executed line 5 for iteration j = p.

Let ¢, be the time when this happens.

Sub-Claim 4.26.2.1: At time t,, p is executing an invocation that precedes its

current invocation.

Proof: Suppose, by way of contradiction, that the claim is false. Then, at time t,,
p is either executing its current invocation, or an invocation that follows its current
invocation. In the former case, where p is executing its current invocation, it must be the
case that v' = v, which contradicts that v’ # v. In the latter case, where p is executing
an invocation that follows its current invocation, it must be the case that ¢, > t,, which

contradicts the fact that ¢, < ¢ < t,. O (Sub-Claim 4.26.2.1)

CHAPTER 4. FAIR LOCAL-SPIN GME 66

Hence, by Sub-Claim 4.26.2.1, at time ¢,, p is executing some invocation I, that
occurs prior to its current invocation. Let ¢, be the time when r evaluates the condition
at line 25 prior to time ¢]. Process r must evaluate the condition at line 25 to be true,
and so p must still be executing invocation I, at time ¢,..

To obtain a contradiction, we now show that ¢ cannot be mutex qualified, conflict-free
qualified, or capture qualified at time ¢,.

Sub-Claim 4.26.2.2: t, € (t.,1").

Proof: Process p is executing its earlier invocation I, at time ¢., and clearly p is
executing its current invocation at time t,. So ¢, < t,. This, together with the fact that
t! € (tq,tp], implies that ¢, € (¢.,¢"). O (Sub-Claim 4.26.2.2)

Sub-Claim 4.26.2.3: Process r requests session s.

Proof: By Sub-Claim 4.26.2.2, t, € (¢/,t!). That is, ¢ and r are simultaneously
enabled to execute line 26. By Lemma 4.21, r requests the same session as ¢ (i.e., session
s). O (Sub-Claim 4.26.2.3)

By assumption, when p is in the GME waiting room in its current invocation,
p.conflict_set # (. Let u be a process in p.conflict_set. It must be the case that at
some time ¢, when p executes line 12 (for j = u), p sees statusCS[u|.session & {0, s}.
Clearly u@{8..30} at time ¢,, and u requests some session s’ # s.

Sub-Claim 4.26.2.4: t, € (t.,").

Proof: Since t, is a time when p is executing its current invocation, and ¢] is a time
when p is executing its earlier invocation I,, it follows that t, > t¢.. Furthermore, p
doorway-precedes ¢, and so t, < t,. Since t, < t!, it follows that ¢, < ?/. Hence
ty € (t.,t7). O (Sub-Claim 4.26.2.4)

Sub-Claim 4.26.2.5: Process u is not mutex qualified, conflict-free qualified, or
capture qualified at any point in [t,,t).

Proof: Suppose, by way of contradiction, that the claim is false. ©u@{8..30} at time ,.

So, by the assumption that u is either mutex qualified, conflict-free qualified, or capture

CHAPTER 4. FAIR LOCAL-SPIN GME 67

qualified at some point in [t,,t)), it follows that ©@{24..30} at some point in [t,,?,).
This and Sub-Claim 4.26.2.4 imply that ©@{24..30} at some point in (¢,¢”). In turn,
this, the fact that u requests a session s’ # s, and the fact that r requests session s (true
by Sub-Claim 4.26.2.3), imply that there are two processes requesting different sessions

enabled to execute in lines 24..30 at the same time. This contradicts Lemma 4.21. O

(Sub-Claim 4.26.2.5)

Sub-Claim 4.26.2.6: v@{8..23} is invariant in [t,,1)).

Proof: u@{8..30} is true at time t,, and by Sub-Claim 4.26.2.5, u is not mutex quali-
fied, conflict-free qualified, or capture qualified at any point in [t,,?). Hence u@{8..23}
is invariant in [t,,t!). O (Sub-Claim 4.26.2.6)

Sub-Claim 4.26.2.7: If p, in its current invocation, S-doorway-precedes some pro-
cess z, requesting session s, then z is not conflict-free qualified at any point in (¢, t!').

Proof: Assume that process p, in its current invocation, S-doorway-precedes some
process z, requesting session s. Suppose, by way of contradiction, that z is conflict-free
qualified at some point in (¢,,¢’). Let t; be the time when z sets barricade[z][u] =
true at line 11. Time ¢, is when p sees statusCS[u].session ¢ {0, s} at line 12, and p
[-doorway-precedes z, so it must be the case that ¢, < t;. Moreover, by the assumption
that z is conflict-free qualified in (2],t)), ¢4 < t/. So it must be the case that ¢; €
(ty,). Now, by Sub-Claim 4.26.2.6, ©@{8..23} is invariant in [¢,,t"), and so u@{8..23}
is invariant in [t1,¢). This implies statusCS[u].session ¢ {0, s} is invariant in [t1,t)).
Hence, by Corollary 4.20, z cannot be conflict-free qualified in [t1,¢”). This contradicts

the assumption that z is conflict-free qualified in (¢, ¢!). O (Sub-Claim 4.26.2.7)

YT

Sub-Claim 4.26.2.8: Process ¢ is not conflict-free qualified at any point in (¢],t).

Proof: Process p, in its current invocation, doorway-precedes ¢, and so p S-doorway-
-precedes q. Also, by assumption, ¢ requests session s. Hence, by Sub-Claim 4.26.2.7, ¢

is not conflict-free qualified at any point in (¢/,¢)). O (Sub-Claim 4.26.2.8)

rUr

Sub-Claim 4.26.2.9: Process ¢ is not capture qualified at any point in (¢],]).

CHAPTER 4. FAIR LOCAL-SPIN GME 68

Proof: Suppose, by way of contradiction, that the claim is false. By Lemma 4.18,
there exists a process z, requesting session s, such that z is conflict-free qualified before ¢

is capture qualified, and ¢ S-doorway-precedes z. We will prove the following three facts:

1. p (in its current invocation) B-doorway-precedes z.
2. z is conflict-free qualified after .

3. zis conflict-free qualified before ¢!

By (1), the fact that 2z requests s, and Sub-Claim 4.26.2.7, it follows that z is not conflict-
free qualified during (¢/,¢). This contradicts (2) and (3). So it remains to prove (1)-(3).

T oT

(1) follows from the facts that p doorway-precedes ¢ and that ¢ S-doorway-precedes

(2) follows from (1), the fact that p executes line 16 after ¢, and that ¢, is after ¢,
(Sub-Claim 4.26.2.4).

(3) follows from the fact that z is conflict-free qualified before ¢ is capture qualified
and the assumption that ¢ is capture qualified during (¢/,¢). O (Sub-Claim 4.26.2.9)

rolr

Sub-Claim 4.26.2.10: Process ¢ is not mutex qualified at any point in (¢, t!').

Proof: Suppose, by way of contradiction, that the claim is false. Then ¢ can enter the
CS mutex qualified. Process p doorway-precedes ¢, and so p finishes executing the method
MUTEXDOORWAY () at line 8 before ¢ starts executing the method MUTEXDOORWAY ()
at line 8. By the FCFS property of A, ¢ can be mutex qualified only after p executes
either MUTEXEXIT() or MUTEXABORT() after line 34. But this implies that p enters
the CS before ¢, which contradicts the assumption that p is in the GME waiting room
when ¢ enters the CS. O (Sub-Claim 4.26.2.10)

By Sub-Claim 4.26.2.2, ¢ captures p at time t, € (¢,t). Hence ¢ must be mu-

TYT

tex qualified, conflict-free qualified, or capture qualified at some point in (¢,¢”), which

contradicts Sub-Claims 4.26.2.8, 4.26.2.9, and 4.26.2.10 O (Claim 4.26.2)

CHAPTER 4. FAIR LOCAL-SPIN GME 69

By Claim 4.26.2, capture[p| = p.passage is invariant in [t,,?,]. Hence, p is able to
finish the method AWAIT-CAPTURE() and enter the CS in a bounded number of its own

steps in [tg,t,]. O

Bounded Exit

Theorem 4.27: The algorithm in Figure 4.7 satisfies the bounded exit property.
Proof: Since the underlying FCFS abortable ME algorithm satisfies the bounded exit
property, it is evident by inspection of the algorithm that there are no unbounded loops

in the exit protocol. This implies that the bounded exit property holds. [J

4.3.4 RMR Complexity

Theorem 4.28: The algorithm in Figure 4.7 has RMR complexity O(N) under the DSM
model.

Proof: Each of the loops at lines 4, 10, 24, and 31 makes exactly N — 1 remote
memory references. Also, there exists a FCFS abortable mutual exclusion algorithm that
has RMR complexity O(min(k,log N)) [9], where k is the point contention. Outside
of the said loops and the FCFS abortable mutual exclusion algorithm, there are no
remote memory references. Hence the resulting algorithm makes O(N) remote memory

references. O

Chapter 5

High Concurrency Local-Spin GME

A drawback of the algorithms in the preceding chapter can be illustrated by the following
scenario: Let S be a set of processes, and p be a process that is not in S. Suppose that the
processes in S U {p} all leave the NCS at the same time, and every process in S requests
a session s, while p requests a session s’ # s. Further suppose that p declares the session
it is requesting (i.e., p sets the session[p] variable at line 3 in Figure 4.4, or p sets the
statusCS[p].session variable at line 7 in Figure 4.7) before any process in S goes through
the loop in the doorway that checks for processes requesting a conflicting session. This
means that every process in S will detect conflict and cannot be conflict-free qualified
until after p leaves the CS. Moreover, assume that no process in .S -doorway-precedes
another process in S, so that there is no opportunity for any process in S to be capture
qualified. Now, suppose that the processes in SU{p} execute through the GME doorway
and GME waiting room in such a way so that all processes in S become mutex qualified
before p. This means that all the processes in S execute through the CS sequentially,
despite the opportunity for concurrency in this scenario: all processes in S could be
granted access to the CS simultaneously. However, the algorithms from the preceding

chapter operate in a way that prevents this from happening.

In this chapter we present algorithms that address this drawback. They all use a

70

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 71

capturing mechanism to increase concurrency during periods of contention and avoid the
scenario just described. (A capturing mechanism allows one process to capture another
process requesting the same session to “help” it enter the CS. Informally, we say that a
process ¢ captures a process p if it modifies the shared variables in such a way that p
can enter the CS in a bounded number of its own steps.) The increased concurrency is
achieved at the expense of the stronger fairness properties (FCFS, FIFE, strong concur-
rent entering) that were satisfied by the algorithms in the preceding chapter.

The first algorithm we present makes use of COMPARE_AND_SWAP to implement the
capturing mechanism; the second uses only reads and writes, but unbounded registers;
and the third, and final, uses only reads and writes, but bounded registers. Moreover, all
three algorithms in this chapter have RMR complexity O(N). In view of Corollary 3.2,

this is the best possible RMR complexity (within a constant factor).

5.1 An Algorithm That Uses Compare-And-Swap

The algorithm we present in this section, in Figure 5.2, uses COMPARE_AND_SWAP to
implement the capturing mechanism. A process p requesting session s, that invokes
the capturing mechanism (lines 25..29) scans all processes to see if anyone is currently
requesting entry into the CS for the same session. It detects this by checking whether
a process j has its statusCS[j] variable set to (REQ,sp). If p finds such a process, it
uses COMPARE_AND_SWAP to change statusCS[j] to (IN,s,). A captured process j that
is stuck in its GME waiting room at lines 12..18 will be able to exit the waiting room by
completing the method AWAIT-CAPTURE(), which simply waits for statusCS[j] to become
(IN, j.mysession).

For a process to invoke the capturing mechanism, it needs to be mutex qualified.
This prevents the capturing mechanism from being invoked by processes that have been

previously captured. Without this condition, there exists an execution scenario as follows:

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 72

a process p; captures a process ps, p1 exits and re-enters the trying protocol, ps captures
p1, po exits and re-enters the trying protocol, p; captures po, etc. This capturing cycle

can continue ad infinitum, starving processes requesting sessions different from p; and

Da.

This capturing mechanism differs from the one used in the algorithm in Figure 4.7.
In that algorithm, a process was restricted to capture only those processes that

[B-doorway-preceded it. In the algorithm presented here, there is no such restriction.

We proceed as follows: we give some definitions relative to the algorithm, provide a
line by line commentary of the algorithm, present a proof of correctness, and then supply

a proof for why the algorithm has RMR complexity O(V).

5.1.1 Definitions

GME Doorway: The doorway consists of lines 3..11. Even though this algorithm is not
FCF'S, we define as the doorway an initial portion of the trying protocol that a process

completes in a bounded number of its own steps.
GME Waiting Room: The waiting room consists of lines 12..29

GME Exit Protocol: The exit protocol consists of lines 31..39

Figure 5.1 Header for Algorithm in Figure 5.2

shared variables:
statusCS: array[1..N] of {(OUT,0), (IN, integer), (REQ, integer)} init (OUT,0)
barricade: array[1..N][1..N] of boolean init true

/* statusCS[p], barricade[p][j] stored in process p’s memory, for each j. */

private variables:

mysession: integer /* Session that p wants to attend */
conflict_set: set of integer

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 73

Figure 5.2 An Algorithm That Uses Compare-And-Swap; Process p € {1..N}
1: loop
2: NCS
3: statusCS[p] := (REQ, mysession);
4: MUTEXDOORWAY();
5. conflict_set := {);
6: for j=1to N do
7.
8

barricade[p][j] := true;
: if statusCS[j] & {(OUT,0), (REQ, mysession), (IN, mysession)} then
9: conflict_set := conflict_setU {j};

10: end if

11: end for

12: cobegin

13: MUTEXWAITINGROOM();

14: [l

15: CONFLICT-FREE(); /* defined in Figure 5.3 */
16: |

17: AWAIT-CAPTURE(); /* defined in Figure 5.4 */

18: coend /* when one co-routine terminates, go to the next line */
19: for j=1to N do

20: barricade[p][j] := true;

21: if 3s # mysession : statusCS[j] = (IN, s) then
22: await —barricade[p][j];

23: end if

24: end for

25: if mutex qualified then

26: for j € {1.N}\ {p} do

27: COMPARE_AND_SWAP (statusCS[j],(REQ, mysession),(IN, mysession));
28: end for

29: end if

30 CS

31: statusCS[p] := (OUT,0);
32: forj=1to N do

33: barricade[j][p] := folse;
34: end for

35: if mutex qualified then
36: MUTEXEXIT();

37 else

38: MUTEXABORT();

39: end if

40: end loop

Figure 5.3 Method CONFLICT-FREE() for Algorithm in Figures 5.2, 5.6, 5.9
1: for each j € conflict_set do

2: await —barricade[p][j];
3: end for

Figure 5.4 Method AWAIT-CAPTURE() for Algorithm in Figure 5.2

1: await statusCS[p] = (IN, mysession);

As with previous algorithms we occasionally use definitions in which, to be strictly

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 74

correct, we would need to refer to the invocations that the processes are executing.
However, for simplicity, we assume that the invocations in question are the “current”
(i.e., the latest) ones with respect to some point in a given run. This comment applies
to the following definitions.

Mutex Qualified Process: Process p is mutex qualified iff p@{19..35} and p reached
line 19 because it completed execution of the method MUTEXWAITINGROOM().
Conflict-free Qualified Process: Process p is conflict-free qualified iff p@{19..31}
and p reached line 19 because it completed execution of the method CONFLICT-FREE().
Capture Qualified Process: Process p is capture qualified iff p@{19..31} and p
reached line 19 because it completed execution of the method AWAIT-CAPTURE().
Critical-Section Qualified Process: Process p is critical-section qualified iff
p@{25..30}. Intuitively, if a process p is critical-section qualified then it can enter the
CS in a bounded number of its own steps.

Capture: We say that a process p captures another process ¢ iff p’s
COMPARE_AND_SWAP at line 27 succeeds for iteration j = q.

Captured State: Process p, requesting session s, is in a captured state iff

statusCS[p] = (IN, s).

5.1.2 Line by Line Commentary of the Algorithm

Line 3: Process p declares that it is requesting session mysession.

Line 4: Process p executes the method MUTEXDOORWAY() of the underlying FCFS
abortable mutual exclusion algorithm.

Line 5..11: Process p scans all processes to check if there are any other processes
requesting a different session than p. If there is, p will add the identifiers of these
processes to its conflict_set. When the method CONFLICT-FREE() executes, for each
J € conflict_set, p will attempt to wait on the variable barricade[p][j] .

Line 12..18: Process p waits until it completes one of the co-routines contained within

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 75

these lines. After completing one of the co-routines p is either mutex qualified, conflict-
free qualified, or capture qualified, and proceeds to line 19.

Line 19..24: Process p checks if there are any previously captured processes, requesting
a session different from itself, still inside the CS. If there are, then p waits until they exit.
Line 25..29: If process p, requesting session s,, is mutex qualified, then it will attempt to
capture any process j requesting the same session as p. The use of COMPARE_AND_SWAP
at line 27 is necessary to ensure that when p checks if j is requesting s,, the assignment
of (IN, s,) to statusCS[j] occurs atomically with the check.!

Line 30: Process p executes the CS.

Line 31: Process p declares that it has left the CS.

Line 32..34: There may be other processes waiting for p to leave the CS. By assigning
false to barricade[j][p] for each process j, p ensures that any process j waiting for p does
not have to wait for p any longer.

Line 35..39: If p is mutex qualified, then p executes the method MuTEXEXIT() before
returning to the NCS. Otherwise, if p is not mutex qualified, then p previously aborted
execution of the method MUTEXWAITINGROOM() at line 13. For this reason p executes

the method MUTEXABORT() before returning to the NCS.

5.1.3 Proof of Correctness

We begin with an elementary lemma and two corollaries that are used repeatedly in the
proof of the algorithm’s correctness.

Lemma 5.1: Suppose process p assigns true to barricade[p][q] at time ;. Let t5 be a
time such that to > ¢1. If statusCS[q] # (OUT,0) is invariant in the interval [t1, t5], then
barricade[p]lq] = true is invariant in interval [t1, to].

Proof: Assume statusCS[q] # (OUT, 0) is invariant in the interval [¢1, 5]. Then clearly

'If p were to separate the check from the assignment, due to the asynchrony of processes, when p
performs the assignment, j may have already returned to the NCS. This would lead to an incorrect
algorithm.

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 76

¢@{4..31} is invariant in the interval [t1, t5], and so ¢ executes no part of its exit protocol
in [t1,?]. Since the only place where false can be assigned to barricade[p][q] is in ¢’s exit
protocol, at line 33, it must be the case that false is never assigned to barricade[p][q|
in [t;,t5]. Hence, because true is assigned to barricade[p|[q] at time t;, it follows that
barricade[p]q] = true is invariant in [¢1,t5]. O

The following corollary gives a necessary condition for a process to become conflict-

free qualified in a certain time interval.

Corollary 5.2: Suppose process p, requesting session s,, assigns true to barricade[p][q]
at line 7 at time ¢;. Let ¢y be a time such that ¢, > ¢;. If statusCSlq] ¢
{(0OUT,0), (REQ, sp), (IN,s,)} is invariant in the interval [t;,?,], then p cannot be
conflict-free qualified in the interval [t1, Z5].

Proof: Assume statusCS[q] ¢ {(OUT,0),(REQ,sp), (IN,sp,)} is invariant in the in-
terval [t1,%5]. Suppose, by way of contradiction, that p is conflict-free qualified at some
point in the interval [t1, ¢;]. Thus p finishes executing the method CONFLICT-FREE() by
time to. Now, by our assumption that statusCS[q] ¢ {(OUT,0),(REQ,s,), (IN,s,)}
is invariant in the interval [ti,%5], p evaluates the condition at line 8 to true and
thus adds ¢ to p.conflict_set at line 9, for iteration j = ¢. Thus p busy-waits on
barricade[p][q] in the method CONFLICT-FREE() until it equals false. By Lemma 5.1, how-
ever, barricade|p|[q] = true is invariant in [t;,?5]. Hence the method CONFLICT-FREE()
cannot finish by time ¢, which contradicts the fact it does finish by time ¢5. [

The following corollary gives a necessary condition for a process to be able to enter
the CS in a certain time interval.

Corollary 5.3: Suppose process p, requesting session s,, assigns true to barricade[p][q]
at line 20 at time ¢;. Let ¢, be a time such that 7, > ¢;, and let s, be a session such
that s, # sp. If statusCS[q] = (IN, s,) is invariant in the interval [t1, %], then p cannot

be critical-section qualified in the interval [¢;,t5].

Proof: Assume statusCS[q] = (IN,s,) is invariant in the interval [ti,t5]. Suppose,

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 77

by way of contradiction, that p is critical-section qualified at some point in the interval
[t1,%2]. Thus p reaches line 25 by t,. Now, by our assumption that statusCS[q] = (IN, s,)
is invariant in the interval [¢1,%5], p evaluates the condition at line 21 to true, and thus
busy-waits on barricade[p][q] at line 22 until it equals false, for iteration j = ¢. By
Lemma 5.1, however, barricade[p]lq] = true is invariant in [t1,t2]. Thus p cannot reach

line 25 by ¢9, which contradicts the fact it does reach line 25 by t,. [

Mutual Exclusion

Theorem 5.4: The algorithm in Figure 5.2 satisfies the mutual exclusion property.

Proof: Let p be a process that requests session s, and ¢ be a process that requests
session s,, where s, # s,. Suppose, by way of contradiction, that p and ¢ are in the CS
simultaneously at time t.

For a process to enter the CS it must become either mutex qualified, capture qualified,
or conflict-free qualified. We now consider the different ways in which p and ¢ could have
entered the CS, and show that a contradiction arises in each case.

Case 1: Both processes are mutex qualified.

Due to the mutual exclusion property of A, at most one process can be mutex qualified
at a time. Hence this case is impossible.
Case 2: One process is capture qualified.

Without loss of generality, assume ¢ is capture qualified.

Claim 5.4.1: Process p starts executing the loop at line 19 before ¢ is captured.

Proof: Let time ¢; be the time when p assigns true to barricade[p]q] at line 20.
Suppose, by way of contradiction, that when p starts executing the loop at line 19, ¢
has already been captured. Thus statusCS[q] = (IN, s,) is invariant in [¢,¢]. Hence by
Corollary 5.3, p cannot be critical-section qualified in the interval [t;,?], contradicting
the fact that p is in the CS at time ¢. OO (Claim 5.4.1)

Let r be the first process to capture ¢ during ¢’s current invocation. (Because pro-

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 78

cesses that capture g are mutex qualified, the ME property of A ensures that they capture
¢q sequentially, so 7 is well defined.) So r is a mutex qualified process that requests sg;
moreover, by the choice of r, ¢ cannot become capture qualified before being captured
by r.

Now consider the different ways p could have entered the CS:

Case 2.1: Process p is mutex qualified.

Either p became mutex qualified before r became mutex qualified, or vice-versa. In
the former case, r cannot become mutex qualified until after p exits the CS. Since ¢
cannot enter the CS before r captures it, and r cannot capture g before r becomes mutex
qualified, it follows p will exit the CS before ¢ enters it. This contradicts our assumption
that p and ¢ are in the CS together at time ¢.

In the latter case, p becomes mutex qualified after r leaves the CS. Since r captures
q before it leaves the CS, when p becomes mutex qualified and starts executing the loop
at line 19, ¢ will have been captured. This contradicts Claim 5.4.1.

Case 2.2: Process p is conflict-free qualified.

Claim 5.4.2: Process p starts executing the loop at line 6 before r writes (REQ, s,)
into statusCS[r] at line 3.

Proof: Let t; be the time when p writes true to barricade[p][r] at line 7, and let ¢, be
the time when r exits the CS. Since r captures g before it exits the CS, it follows that if
ty < t; then at the time when p reaches line 19, ¢ will already have been captured. This
would contradict Claim 5.4.1. Thus it must be the case t, > t;. Now, suppose, by way of
contradiction, that the claim is false. Hence statusCS[r| ¢ {(OUT,0), (REQ, s,), (IN, s,)}
is invariant in [t1, £5]. By Corollary 5.2, p cannot be conflict-free qualified in [¢;,t5]. Since
p is conflict-free qualified at time ¢ by assumption, it must be the case that p is conflict-
free qualified and reaches line 19 after time ¢5. But this implies that ¢ will have been
captured when p reaches line 19, contradicting Claim 5.4.1. 00 (Claim 5.4.2)

Claim 5.4.2 implies that p finishes executing the method MUTEXDOORWAY () at line 4

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 79

before r begins executing the method MUTEXDOORWAY () at line 4. Hence, by the FCFS
property of A, r becomes mutex qualified after p executes the method MUTEXABORT()
at line 38. This and the facts that r captures ¢ after becoming mutex qualified, and ¢
enters the CS after being captured by r, imply that ¢ enters the CS after p executes the
method MUTEXABORT() at line 38. This contradicts the assumption that p and ¢ are
in the CS simultaneously at time t.

Case 2.3: Process p is capture qualified.

By Claim 5.4.1, p starts executing the loop at line 19 before ¢. Since p and ¢ are both
capture qualified, symmetrically, ¢ starts executing the loop at line 19 before p. This is
a contradiction.

Case 3: One process is conflict-free qualified, and the other is not capture qualified.

Without loss of generality, assume ¢ is conflict-free qualified.

Claim 5.4.3: Process ¢ starts executing the loop at line 6 before p writes (REQ, s,) into
statusCS[p] at line 3.

Proof: Let t; be the time when ¢ writes true to barricade[q]|[p] at line 7.
Suppose, by way of contradiction, that the claim is false. Hence statusCS[p| ¢
{(0UT,0), (REQ, sq), (IN, s,)} is invariant during the interval [¢;,¢]. By Corollary 5.2, ¢
cannot be conflict-free qualified in the interval [¢,t], contradicting the fact that ¢ is in
the CS conflict-free qualified at time ¢. O (Claim 5.4.3)

Now consider the different ways p could have entered the CS:
Case 3.1: Process p is mutex qualified.

By Claim 5.4.3, ¢ starts executing the loop at line 6 before p executes line 3, and so ¢
will finish executing the method MUTEXDOORWAY() at line 4 before p starts executing
the method MUTEXDOORWAY() at line 4. Hence, due to the FCFS property of A, p
cannot become mutex qualified until ¢ executes the method MUTEXABORT() at line 38,
contradicting the assumption that p and ¢ are in the CS simultaneously at time .

Case 3.2: Process p is conflict-free qualified.

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME R0

By Claim 5.4.3, ¢ starts executing the loop at line 6 before p executes line 3, and so ¢
executes line 3 before p does. Since p and ¢ are both conflict-free qualified, symmetrically,
p executes line 3 before ¢ does. This is a contradiction.

Since each case leads to a contradiction, it follows that mutual exclusion holds. [J

Lockout Freedom

Lemma 5.5: If process ¢ is in a captured state then no process requesting a different
session than ¢ can be in a captured state at the same time.

Proof: Assume, by way of contradiction, that ¢ and ¢’ are requesting sessions s and ',
respectively, where s # s’, and both are in a captured state at the same time. Since ¢ and
¢' are in captured states, there must be mutex qualified processes u and u' that captured
g and ¢, respectively, in their current invocations. Since processes that capture other
processes are mutex qualified, and, by the mutual exclusion property of A, at most one
process can be mutex qualified at a time, it must be the case that one can totally order
the times when some process captures another process. Because of this ability to totally
order when processes capture other processes, we assume, without loss of generality, that
u and u' are the first processes to capture ¢ and ¢' in their current invocations. This
implies ¢ and ¢’ cannot be in captured states in their current invocations before they are
captured by u and u'. Now, by the mutual exclusion property of A, at most one of u and
u' can be mutex qualified at a time. Hence, it must be the case that either u is mutex
qualified before u', or vice-versa. Without loss of generality, assume u is mutex qualified
before u'.

We will now prove that v’ will “notice” the captured process ¢ and will not be able
to become critical-section qualified until ¢ has left the CS. So, v’ will not capture ¢’ at
line 27 until after ¢ has left the CS, contradicting that ¢ and ¢’ are in a captured state
simultaneously.

More precisely, we define the following times: ¢; is the time when u captures q; ty

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 81

is the time when u’ becomes mutex qualified; ¢3 is the time when u' writes true to
barricade[u'][q] at line 20; ¢4 is the time when u' captures ¢'; and t5 is the time when ¢

and ¢’ are simultaneously in a captured state.

Clearly t; <ty < t3 < t4 < t5. Hence statusCS[q] = (IN, s) during the interval [t3, 4],
since statusCS[q] = (IN, s) during the interval [¢;,¢5]. It follows by Corollary 5.3 that u'
cannot be critical-section qualified in the interval [ts, ¢4]. This means that «'@{25..30}
is false in the interval [t3,%4]. Since u' must reach line 25 to perform any capturing, it
must be the case that u' cannot capture ¢’ at time ¢,. This contradicts the fact that '

captures ¢’ at time ¢,. [
Lemma 5.6: No process can wait forever at line 22.

Proof: Suppose, by way of contradiction, that p waits forever at line 22 on
barricade[p][q]. Let s, be the session that p is requesting and ¢; be the time when
p writes true to barricade[p]q| at line 20. At some time t, > t;, p must have read
statusCS[q] = (IN,s,) at line 21, where s, # s,. This implies that ¢ is in a cap-
tured state and that ¢@{4..31} at time ¢,. Because statusCS|q] = (IN,s,), the method

AWAIT-CAPTURE() will eventually terminate, and so g cannot block forever at lines 12..18.
Claim 5.6.1: Process ¢ cannot wait forever at line 22.

Proof: Suppose, by way of contradiction, that ¢ waits forever at line 22 on
barricade[q][q']. Let ¢ be the time when ¢ writes true to barricade]q][q'] at line 20.
At some time t, > t7, ¢ must have read statusCS[q']| = (IN, sy) at line 21, where sy # s,.
This implies that ¢' is in a captured state and ¢'@{4..31} at time ¢,. For ¢ to block
forever on barricade|q][q'] after t}, it must be the case that false is never assigned to
barricade[q][q'] after t]. Now, it is evident from examining the algorithm, that if ¢
reaches line 25 at or after ¢, it will eventually execute its GME exit protocol in its en-
tirety, and thus assign false to barricade[q][q']. Hence, to avoid contradiction, ¢'@{4..24}
must be invariant after and including time ¢,. That is, ¢’ will be forever in a captured

state requesting session sy after and including t5. But we also know, by assumption, that

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 82

g will be forever in a captured state requesting session s, at some time after ¢,. It follows
¢ and ¢', requesting different sessions, will be in a captured state at the same time. This
contradicts Lemma 5.5. O (Claim 5.6.1)

By the preceding discussion, and Claim 5.6.1, ¢ will not block forever on lines 12..18
or line 22. This, and the fact that ¢@{4..31} at time ¢5, imply that ¢ will eventually
execute its GME exit protocol at some time ¢ > ¢ > t;. That is, false will be assigned to
barricade[p]|q] after time ¢;. But this contradicts the fact that for p to be stuck forever

at line 22, no process can write false to barricade[p][q] after time t;. OJ
Theorem 5.7: The algorithm in Figure 5.2 satisfies the lockout freedom property.
Proof: Suppose by way of contradiction that some set S of processes get stuck forever
in their trying protocol. If they manage to reach line 19, then, by Lemma 5.6, they will
eventually enter the CS. Hence they must be stuck forever at lines 12..18.
Claim 5.7.1: No process in S can be stuck forever in the method

MuTEXWAITINGROOM().

Proof: A is an abortable mutual exclusion algorithm that satisfies the lockout
freedom property. Hence, the only way for processes in S to get stuck forever
in MUTEXWAITINGROOM() is if some process becomes mutex qualified and then
does not execute the method MUTEXEXIT(); or, if some process starts executing
MuTEXWAITINGROOM(), aborts execution of it, but then does not execute the method
MUTEXABORT(). If a process becomes mutex qualified, then we know by Lemma 5.6
and by examining the algorithm it will eventually execute the method MUTEXEXIT().
Furthermore, the only way a process will abort execution of MUTEXWAITINGROOM()
once started is if the process becomes conflict-free qualified or capture qualified. In this
case, again by Lemma 5.6 and by examining the algorithm we see that such processes will
eventually execute the method MUTEXABORT(). Hence no process in S can be stuck

forever in the method MuTEXWAITINGROOM(). O (Claim 5.7.1)

Claim 5.7.1 contradicts that processes in S are stuck forever at lines 12..18. Hence

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 83

lockout freedom holds. I

Concurrent Entering

Theorem 5.8: The algorithm in Figure 5.2 satisfies the concurrent entering property.

Proof: Let p be a process requesting session s, that is in its GME waiting room at
time t;, and t3 be the time when p enters the CS. We show that if there is no active
process that is requesting a different session in the interval [t1, 3], then p enters the CS
in a bounded number of its own steps. There are two places in the GME waiting room
where p can be waiting (i.e., executing a section of code that potentially could require
an unbounded number of steps): p@{12..18} and p@22. In each case we will show that
p actually completes the corresponding section of code in a bounded number of steps
during [t1, t3]:

Case 1: p@{12..18}.

In this case we will show that p completes the CONFLICT-FREE() method (and there-
fore the cobegin-coend statement in lines 12..18) in a bounded number of its own steps.
Let t5 be the time when p first reaches line 19. It suffices to prove that Vq € p.conflict_set,
barricade[p]lq] = false during the interval [t1,%s]. Suppose ¢ € p.conflict_set. Then at
line 8 at some time ¢, < t1, p read statusCS[q| ¢ {(OUT,0), (REQ,sp), (IN, sp)}. This
implies that at time ¢,, ¢@{4..31}. Since there are no active processes requesting a
session other than s, at time ¢;, it follows that ¢ executes its exit protocol and thus
assigns false to barricade[p][q] in the interval (¢,,%1). Now, the only process that can set
barricade[p]|q] to true is process p. Process p’s last assignment of true to barricade[p][q]
occurred at a time ¢ < ¢, and its next assignment occurs at a time ¢t > t5. Therefore,
barricade[p]|q] = false during [t1,ts], as required.

Case 2: p@22
It suffices to prove that for any ¢ such that p@22 in iteration ; = ¢ of the loop

starting at line 19, barricade[p]|q] = false during [t1, t3]. So, assume for some ¢ that p@22

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME &4

in iteration j = ¢. It follows that at some time ¢, < t1, p read statusCS[q] = (IN, s,) at
line 21, where s, # s,. This implies that at time ¢,, ¢@{4..31}. Since there can be no
active processes requesting a session other than s, at time ¢;, it follows that ¢ executes
its exit protocol and thus assigns false to barricade[p][q] in the interval (¢,,¢1). The only
process that can set barricade[p][q| to true is process p. Process p’s last assignment of
true to barricade[p][q] occurred at a time ¢ < ¢,, and its next assignment cannot occur

until a time ¢ > t3. Therefore, barricade[p][q] = false during [t1, t3], as required. O

Bounded Exit

Theorem 5.9: The algorithm in Figure 5.2 satisfies the bounded exit property.

Proof: Since the underlying FCFS abortable ME algorithm satisfies the bounded exit
property, it is evident by inspection of the algorithm that there are no unbounded loops

in the exit protocol. This implies that the bounded exit property holds. [J

5.1.4 RMR Complexity

Theorem 5.10: The algorithm in Figure 5.2 has RMR complexity O(N) under the DSM

model.

Proof: Each of the loops at lines 6, 19, 26, and 32 makes exactly N — 1 remote
memory references. Also, there exists a FCFS abortable mutual exclusion algorithm that
has RMR complexity O(min(k,log N)) [9], where £ is the point contention. Outside
of the said loops and the FCFS abortable mutual exclusion algorithm, there are no
remote memory references. Hence the resulting algorithm makes O(N) remote memory

references. O

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 85

5.2 An Algorithm With Only Read/Write Opera-

tions

An undesirable property of the algorithm in the preceding section is that it makes use of
COMPARE_AND_SWAP in the capturing mechanism. The need for this type of instruction
can be illustrated by considering the implementation of the capturing mechanism at an
abstract level, as follows. Clearly a process that executes the capturing mechanism must
only capture processes requesting the same session as itself. This means that a process
p that is attempting to decide whether to capture a process ¢ must first read the session
that ¢ is requesting. If ¢ requests the same session as p, p will subsequently capture q.
However, if the read and the capture are not one atomic operation, then process ¢ has
the opportunity to return to the NCS — or possibly proceed to another invocation of the
algorithm — between the time when p reads ¢’s session and the time when p captures
g. Unless the capturing mechanism takes this into account, the algorithm may fail to

satisfy any number of the GME properties.

Figure 5.5 Header for Algorithm in Figure 5.6

type
SessionNode = record session: integer; passage: integer end

shared variables:
statusCS: array[1..N] of SessionNode init (0,0)

capture: array[l..N] of integer init 0
barricade: array[1..N][1..N] of boolean

/* capture[p], barricade[p][j] is stored in process p’s memory, for each j. */

private variables:

mysession: integer /* Session that p wants to attend */
conflict_set: set of integer

passage: integer init 0

I_status: SessionNode/* for storing statusCS[j] locally */
I_capture: integer /* for storing capture[j] locally */

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 86

Figure 5.6 An Algorithm With Only Read/Write Operations; Process p € {1..N}
1: loop
2: NCS
3: passage := passage + 1;
4 statusCS[p] := (mysession, passage);
5. MUTEXDOORWAY();
6: conflict_set := {);
7.
8

for j=1to N do
: barricade[p][j] := true;
9: if statusCS[j].session ¢ {0, mysession} then

10: conflict_set := conflict_setU {j};

11: end if

12: end for

13: cobegin

14: MuTEXWAITINGROOM();

15: |

16: CONFLICT-FREE(); /* defined in Figure 5.3 */
17: |

18: AWAIT-CAPTURE(); /* defined in Figure 5.7 */

19: coend /* when one co-routine terminates, go to the next line */
20: for j=1to N do

21: barricade[p][j] := true;

22: I_capture := capture[j];

23: if 3s ¢ {0, mysession} : statusCS[j] = (s, l_capture) then
24: await —barricade[p][j];

25: end if

26: end for

27: if mutex qualified then

28: for j € {1.N}\ {p} do

29: I_status := statusCS[j];

30: if [_status.session = mysession then
31: capture[j] := l_status.passage;

32: end if

33: end for

34: end if

35: CS

36: statusCS[p] := (0,0);
37: for j=1to N do

38: barricade[j][p] := false;
39: end for

40: if muter qualified then
41: MUTEXEXIT();

42: else

43: MUTEXABORT();

44: end if

45: end loop

Figure 5.7 Method AWAIT-CAPTURE() for Algorithm in Figures 5.6, 5.9
1: await capture[p] = passage;

The use of COMPARE_AND_SWAP makes the read of ¢’s session and p’s capture of

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 87

g atomic, thus avoiding the above problem. However, the preceding discussion also
suggests an alternative way for implementing the capturing mechanism without using
strong synchronization primitives: if, when p reads ¢’s session, it also reads a unique id
associated with the current invocation that ¢ is executing, then when p captures g, it
can also inform ¢ that it is being captured for a particular invocation. This allows ¢ to
decide whether it was captured by p in the current invocation or in a prior invocation,
and behave accordingly.

Process ¢ can keep track of the unique id by making use of an unbounded variable
that is incremented at the start of each invocation. We refer to this unique id as the
“passage”.

The algorithm in Figure 5.6 makes use of the preceding mechanism. We do not
analyze this algorithm in any depth, since it turns out that by embellishing the captur-
ing mechanism slightly more, we can eliminate the need for unbounded variables. The

resulting algorithm is described and analyzed in detail in the next section.

5.3 An Algorithm With Bounded Variables

The algorithm we describe in this section (shown in Figure 5.9) is a subtle modification
of the algorithm in the preceding section. The modification allows for the use of bounded
instead of unbounded variables in the capturing mechanism. A more detailed description
of this mechanism is given below.

The capturing mechanism is at lines 29..36 of the algorithm. A process p that executes
the capturing mechanism scans all processes to see if anyone is currently requesting entry
into the CS for the same session it requests. Process p does this by reading statusCSJ[j|
into a private variable, [_status, for each process j # p, and then checking to see if
I_status.session = s,. If p finds such a process, it assigns to the variable capture[j] the

value of [_status.passage. That is, p assigns to capture[j] the value of statusCS[j].passage

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 88

that p reads prior to checking whether j requests the same session. This is the point at
which we consider the “capture” to take place. Now, if a process j is stuck in its GME
waiting room at lines 14..20 when all of this happens, then j can complete the method
AWAIT-CAPTURE() (see Figure 5.7), because the value that p assigns to capture[j] is equal

to the value of j.passage.

There are two conditions that must hold for p to invoke the capturing mechanism
(see the conjunction at line 29). The first condition requires that p is mutex qualified.
This condition was necessary in the preceding two algorithms to prevent starvation (as
described in Section 5.1, page 71), and is necessary here for the same reason. The second
condition requires that there be conflict. The presence of conflict ensures that when a
process p; is about to capture a process ps, p2 cannot execute an unbounded number of

invocations. This allows our capturing mechanism to use only bounded variables.

It is not immediately obvious that the algorithm behaves in the manner just described,
due to the complex nature of what “capturing” means. The formal definition of what it

means for one process to “capture” another is stated below.

The RMR complexity of this algorithm under the DSM model is O(N).

Figure 5.8 Header for Algorithm in Figure 5.9

type
SessionNode = record session: integer; passage: {0,1} end

shared variables:
statusCS: array[1..N] of SessionNode init (0,0)
capture: array[1..N] of {-1,0,1} init -1
barricade: array[1..N][1..N] of boolean

/* capture[p], barricade[p][j] are stored in process p’s memory, for each j. */

private variables:

mysession: integer /* Session that p wants to attend */
conflict_set: set of integer

passage: {0,1} init 0 /* passage flag */

I_status: SessionNode/* for storing statusCS[j] locally */
I_capture: {-1,0,1} /* for storing capture[j] locally */

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME

89

Figure 5.9 An Algorithm With Bounded Variables; Process p € {1..N}

1: loop
2: NCS
3: passage := passage;
4: capture[p] := —1;
5: statusCS[p] := (mysession, passage);
6: MUTEXDOORWAY();
7: conflict_set := {);
8 for j=1to N do
9: barricade[p][j] := true;
10: if statusCS[j].session ¢ {0, mysession} then
11: conflict_set := conflict_set U {j};
12: end if
13: end for
14: cobegin
15: MUTEXWAITINGROOM();
16: |
17: CONFLICT-FREE(); /* defined in Figure 5.3 */
18: |
19: AWAIT-CAPTURE(); /* defined in Figure 5.7 */
20: coend /* when one co-routine terminates, go to the next line */
21: for j=1to N do
22: barricade[p][j] := true;
23: I_status := statusCS[j];
24: I_capture :== capture[j];
25: if 3s & {0, mysession} : statusCS[j] = l_status = (s, l_capture) then
26: await —barricade[p][j];
27: end if
28: end for
29: if mutex qualified A 3j : statusCS[j].session ¢ {0, mysession} then
30: for j € {1.N}\ {p} do
31: I_status := statusCS[j];
32: if [_status.session = mysession then
33: capture[j] := l_status.passage;
34: end if
35: end for
36: end if
37 CS
38: statusCS[p] := (0,0);
39: forj=1to N do
40: barricade[j][p] := false;
41: end for
42: if mutex qualified then
43: MUTEXEXIT();
44: else
45: MUTEXABORT();
46: end if
47: end loop

We proceed as follows: we give some notation and definitions relative to the algorithm,

provide a line by line commentary of the algorithm, present a proof of correctness, and

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 90

then supply a proof for why the algorithm has RMR complexity O(N).

5.3.1 Definitions and Notation

When dealing with values of type SessionNode in the algorithm, we sometimes use the
notation (a,b), where a is the value of the session field, and b is the value of the passage
field.

To refer to the fields of SessionNode variables separately, we use dot notation. That
is, if v is a variable of type SessionNode, then v.session refers to the value of the session
field, and v.passage refers to the value of the passage field.

GME Doorway: The doorway consists of lines 3..13. Even though this algorithm
is not FCFS, we define as the doorway an initial portion of the trying protocol that a
process completes in a bounded number of its own steps.

GME Waiting Room: The waiting room consists of lines 14..36
GME Exit Protocol: The exit protocol consists of lines 38..46

As with previous algorithms we occasionally use definitions in which, to be strictly
correct, we would need to refer to the invocations that the processes are executing.
However, for simplicity, we assume that the invocations in question are the “current”
(i.e., the latest) ones with respect to some point in a given run. This comment applies
to the following definitions.

Mutex Qualified Process: Process p is mutex qualified iff p@{21..42} and p reached
line 21 because it completed execution of the method MUTEXWAITINGROOM().
Conflict-free Qualified Process: Process p is conflict-free qualified iff p@{21..38}
and p reached line 21 because it completed execution of the method CONFLICT-FREE().
Capture Qualified Process: Process p is capture qualified iff p@{21..38} and p
reached line 21 because it completed execution of the method AWAIT-CAPTURE().
Critical-Section Qualified Process: Process p is critical-section qualified iff

p@{29..37}. Intuitively, if a process p is critical-section qualified then it can enter the

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 91

CS in a bounded number of its own steps.

Capture: Suppose a mutex qualified process p executes line 33 at time t for iteration
j = q. Let time ¢’ be the time when p last executed line 31 before ¢. We say that process

p captures process ¢ at time ¢ iff ¢@{6..38} is invariant in [¢/, ¢].

We also define a different notion of capture, called S-capture. The reason for defining
two separate notions of capture is because it turns out that a crucial lemma is easier
to prove using the notion of S-capture. This will be explained in more detail when the

correctness of the algorithm is proven below.

p-Capture: Suppose a mutex qualified process p executes line 33 at time ¢ for iteration
j = q. We say that process p S-captures process ¢ at time t iff the following conditions

hold at time ¢: (1) ¢@{5..38}, and (2) p.l_status.passage = q.passage.

To see the difference between [-capture and regular capture, consider the following:
suppose a process p executes line 31 at some time ¢', and p then S-captures a process ¢ at
some time ¢ > t'. Then ¢@{5..38} and p.l_status.passage = q.passage must be true at time
t, but ¢ may have executed any even number of invocations of the algorithm between time
t" and ¢. (The number of invocations must be even since p.l_status.passage = q.passage
and g complements its passage in each iteration.) However, if p captures ¢ at time ¢, then
¢@{6..38} must be invariant in [t',], and so ¢ must still be in the same invocation at time ¢
as it was at time t'. It is also true in this case that at time ¢, p.l_status.passage = q.passage,
but it is not part of the formal definition of capture because it follows from the fact that

¢@{6..38} is invariant in [¢', ¢].

Captured State: Process p is in a captured state at time ¢ iff there exists a mutex
qualified process ¢ that captures p at some time ¢’ < ¢, and p@{6..38} is invariant in
the interval [t',¢]. Intuitively, if p is in a captured state in some invocation I, of the
algorithm, then there is a mutex qualified process ¢ that captures p while p is executing

invocation I,,.

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 92

5.3.2 Line by Line Commentary of the Algorithm

Line 3: Process p toggles the value of its private variable passage upon leaving the NCS.
Line 4: Process p resets capture[p] to —1 to indicate that no other process has captured
j 2

Line 5: Process p declares that it is requesting session mysession, and sets
statusCS[p].passage to the current value of passage.

Line 6: Process p executes the method MUTEXDOORWAY() of the underlying mutual
exclusion algorithm.

Line 7..13: Process p scans all processes to check if there are any processes requesting
a different session. If there are then p will add the identifiers of these processes to its
conflict_set. When p executes the method CONFLICT-FREE(), p will attempt to wait on
the variable barricade|p][j] for each j € conflict_set.

Line 14..20: Process p waits until it completes one of the co-routines contained within
these lines. After completing one of the co-routines, p is either mutex qualified, conflict-
free qualified, or capture qualified, and proceeds to line 21.

Line 21..28: Process p checks if there are any previously captured processes, requesting
a session different from itself, still inside the CS. If there are, then p waits until they exit.
Line 29..36: If process p, requesting session s,, is mutex qualified, and there is conflict,
then p will attempt to capture any process j also requesting session s,.

Line 37: Process p executes the CS.

Line 38: Process p declares that it has left the CS.

Line 39..41: There may be other processes waiting for p to leave the CS. By assigning
false to barricade[j][p] for each process j, p ensures that any process j waiting for p does
not have to wait for p any longer.

Line 42..46: If p is mutex qualified, then p executes the method MUTEXEXIT() before
returning to the NCS. Otherwise, if p is not mutex qualified, then p previously aborted

execution of the method MUTEXWAITINGROOM() at line 15. For this reason p executes

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 93

the method MUTEXABORT() before returning to the NCS.

5.3.3 Proof of Correctness

Before proving the four GME properties (mutual exclusion, lockout freedom, concurrent

entering, and bounded exit), we need to prove the following essential facts:

1. While a process ¢ is captured, any process requesting a session different from ¢ will

not be able to enter the CS.

2. If a process ¢ is capture qualified in some invocation I, then there exists a mutex
qualified process p requesting the same session as ¢ that captures ¢ while ¢ is

executing invocation I, and before ¢ is capture qualified.

3. If a process p evaluates the condition at line 25 to be true for some invocation j = ¢,

and p subsequently blocks at line 26, then ¢ is in a captured state.

The first two facts are used in our proof of mutual exclusion, and the third fact is used
in our proof of both lockout freedom and concurrent entering. The first fact is formally
stated and proven in two parts, in Lemma 5.12 and Corollary 5.15. It turns out the
second fact is quite difficult to prove directly. We prove it in two steps. The first step
involves proving a variant of Fact 2 where the word “capture” is replaced by “S-capture”.
This is done in Lemma 5.16. For the second step we prove that if a process p S-captures
a process ¢, then p captures ¢g. This is formally stated and proven in Lemma 5.17. Fact
3 is formally stated and proven in Lemma, 5.20.

We start by proving an elementary Lemma that will be useful later.

Lemma 5.11: For any t, if p@{6..38} at time ¢, then statusCS[p].passage = p.passage
at time t.
Proof: Assume p@{6..38} at time t. Let v be the value p assigns to p.passage

when it executes line 3. Clearly p assigns v to statusCS[p|.passage when p executes

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 94

line 5, and furthermore, p.passage remains unchanged after p executes line 3. Since
neither statusCS[p|.passage or p.passage is updated in lines 6..37, it follows that both
statusCS[p].passage = v and p.passage = v at time ¢, and so statusCS[p].passage =

p.passage at time t. [J

The next lemma says that between the time a process becomes captured and the time
it leaves the CS, the passage flag of its statusCS variable is fixed and equal to its capture
flag. (Note that while statusCS[q| is exclusively under the control of g, capture[q] is also

under the control of processes that capture ¢ — see line 33.)

Lemma 5.12: If a process p captures a process g, requesting a session s, at some time
t1, and ¢’s next execution of line 38 after ¢; occurs at some time o, then statusCS[q| =

(sq, capture[q]) is invariant during [¢q,t2).

Proof: Assume a process p captures a process g, requesting a session sq, at time ;.
Further assume that ¢’s next execution of line 38 occurs at time t, > t;. Let ¢5 be the

last time p executes line 31 prior to t;.
Claim 5.12.1: ¢@{6..38} is invariant in [t, t2).

Proof: Process p captures ¢ at time ¢;, and so ¢@{6..38} is invariant in [ty,#], by
definition. Process ¢ next executes line 38 after time ¢; at time %5, by assumption. The

result follows. O (Claim 5.12.1)
Claim 5.12.2: statusCS[q|.session = s, is invariant in [ty, t2).

Proof: statusCS[q|.session can be updated only by ¢ in line 5. This observation and

Claim 5.12.1 imply the result. O (Claim 5.12.2)
Let k£ be the value g assigned to q.passage when ¢ last executed line 3 prior to .
Claim 5.12.3: statusCS[q|.passage = k is invariant in [tg, t2).

Proof: statusCS|q].passage can be updated only by ¢ in line 5. This and Claim 5.12.1

imply the result. O (Claim 5.12.3)

Claim 5.12.4: capture]q] = k at time ;.

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 95

Proof: Process p captures ¢ at time ¢;, and so p assigns to capture[q] the value
of p.l_status.passage at time ti. p.l_status.passage was previously assigned the value of
statusCS[q|.passage at time ty. By Claim 5.12.3, this value is k. Hence the value p assigns
to capture[q] at time ¢, is k. O (Claim 5.12.4)

Claim 5.12.5: capture[q] = k is invariant in [t1, to).

Proof: Suppose, by way of contradiction, that capture[q] = k is not invariant in the
interval [t1, t3). By Claim 5.12.4, capture|q] = k at time ¢;, and so there must be a mutex
qualified process r that updates capture[q] to some value other than & in (t1,t2). We know
that p is mutex qualified, so, by the mutual exclusion property of A, either r is mutex
qualified before p, or after. In the former case, r will update capture[q] before time 1,
which contradicts that it updates capturelq] in (¢1,t2). Hence r is mutex qualified after
p, which means r is mutex qualified after ¢;. Also, to update capture[q| in (¢1,t3), r must
execute line 33 before t5. It follows that r’s execution of lines 31..33 occurs entirely within
(t1,t2). From this and Claim 5.12.3, it must be the case that r sets r.l_status.passage = k
when r executes line 31. This implies r sets capture[q] = k when r executes line 33.
This contradicts the fact that » updates capture[q] to a value different than k. O (Claim
5.12.5)

Claims 5.12.2, 5.12.3, and 5.12.5 imply that statusCS[q] = (s,, capture|q]) is invariant
in [t1,). O

The next lemma gives a sufficient condition for when barricade[p][q] = true. Two
corollaries to this lemma give us sufficient conditions for when a process cannot be
conflict-free qualified or critical-section qualified.

Lemma 5.13: Suppose a process p assigns true to barricade[p][q] at time ¢;. Let ¢, be
a time such that t5 > ¢1. If statusCS[q] # (0,0) is invariant in the interval [¢;,?s], then
barricade[p]lq] = true is invariant in interval [t1, Zo].

Proof: Assume statusCS[q] # (0,0) is invariant in the interval [¢;,5]. Then clearly

¢@{6..38} is invariant in the interval [t1, t5], and so ¢ executes no part of its exit protocol

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 96

in [t1,t5]. Since the only place where false can be assigned to barricade[p][q] is in ¢’s exit
protocol, at line 40, it must be the case that false is never assigned to barricade[p][q]
in [t;,t5]. Hence, because true is assigned to barricade[p|[q] at time t;, it follows that

barricade[p]q] = true is invariant in [¢1,t5]. O

Corollary 5.14: Suppose a process p, requesting session s,, assigns true to
barricade[p]lq] at line 9 at time ¢;. Let ty be a time such that ¢, > ¢;. If
statusCS]q].session & {0, s,} is invariant in the interval [t;,], then p cannot be conflict-

free qualified in the interval [¢y, ts].

Proof: Assume statusCS[q|.session & {0, s,} is invariant in the interval [t1,t2]. Sup-
pose, by way of contradiction, that p is conflict-free qualified at some point in the interval
[t1,t2]. Thus p finishes executing the method CONFLICT-FREE() by time ¢,. Now, by
our assumption that statusCS[q].session ¢ {0,s,} is invariant in the interval [ti,%s],
p evaluates the condition at line 10 to be true and thus adds g to p.conflict_set at
line 11, for iteration j = ¢. Thus p busy-waits in the method CONFLICT-FREE() un-
til barricade|p][q] = false. By Lemma 5.13, however, barricade[p][q] = true is invariant in
[t1,t2]. Hence the method CONFLICT-FREE() cannot finish by time ¢, which contradicts

the fact it does finish by time 5. [

Corollary 5.15: Suppose a process p, requesting session s,, assigns true to
barricade[p][q] at line 22 at time ¢;. Let ¢, be a time such that ¢, > ¢;, and let s,
be a session such that s, & {0, s,}. If statusCS[q] = (sq, capture[q]) is invariant in the

interval [t1, 5], then p cannot be critical-section qualified in the interval [t1, to].

Proof: Assume statusCS[q] = (sq, capture]q]) is invariant in the interval [¢;,?5]. Sup-
pose, by way of contradiction, that p is critical-section qualified at some point in the
interval [t1,ts]. Thus p reaches line 29 by ¢,. Now, by our assumption that statusCS[q] =
(84, capture[q]) is invariant in the interval [t,?s], p evaluates the condition at line 25 to
be true, and thus busy-waits at line 26 until barricade[p]q] = false, for iteration j = gq.

By Lemma 5.13, however, barricade|[p|[q] = true is invariant in [¢;,t3]. Thus p cannot

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 97

reach line 29 by ¢5, which contradicts the fact it does reach line 29 by t,. [

The following lemma shows that for a process to be capture qualified there must be
some other process that S-captures it.

Lemma 5.16: If a process ¢ is capture qualified during some invocation I, then there
exists a process p that S-captures g before ¢ is capture qualified and while ¢ is executing
invocation I,.

Proof: Assume ¢ is capture qualified during some invocation I,. Then g reaches
line 21 when the method AWAIT-CAPTURE() terminates. For this to happen, it must
be the case that ¢ reads capture[q] = g.passage sometime during the execution of the
method AWAIT-CAPTURE(). Since ¢ assigns capture[q] = —1 at line 4, and g¢.passage €
{0,1}, it follows that there must be some process that sets capture[q] = g.passage after
q executes line 4 but before ¢ is capture qualified. That is, there is a process p that sets
capture[q] = q.passage when ¢@{5..20}. The only place in the algorithm where p can set
capture[q] = q.passage is at line 33. It follows that p B-captures g before ¢ is capture
qualified and while ¢ is executing invocation /,. [

Consider an arbitrary execution of the algorithm. Since only one process can be
mutex qualified at a given time, by the mutual exclusion property of A, we can totally
order the times in this execution when processes are mutex qualified. Furthermore, for a
process p to B-capture another process, p must be mutex qualified. Hence, we can also
totally order the times when some process -captures another process. This allows us to
prove our next lemma.

Lemma 5.17: If a process p [-captures a process ¢ at a time ¢, then p captures ¢ at
time t.

Proof: Suppose, by way of contradiction, that the lemma is false. Thus, there is a
run « where the precondition of the lemma holds but the consequent is violated.

By the discussion preceding the lemma, we can totally order the times in o when

[B-captures occur. Let t; < t3 < t3 < ... be this ordering, and let £ be the smallest

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 98

positive integer such that a capture does not occur at time ;. Let p be the process that
performs the S-capture at time t;, and let ¢ be the process that is S-captured at time 2.

(That is, p S-captures ¢ at time t;.) By definition of k, p does not capture g at time t.
Since process p [-captures process g at time t;, it follows that p executes line 33
at time t;, by definition of S-capture. Let v be the value of p.l_status.passage that p
assigns to capture[q] at this time. Note that v is also the value of g.passage at time ¢y,
by definition of S-capture.
Let ¢’ be the last time prior to ¢; when p executes line 31.

Claim 5.17.1: ¢@{6..38} is true at time ¢'.

Proof: Suppose the claim is false. Then statusCS[q] = (0,0) when p executes line 31,
and so [_status.session = 0 when p evaluates the condition at line 32. Since no process
sets mysession = 0, it follows that p will evaluate the condition at line 32 to be false.
Hence p does not execute line 33 at time t;, which contradicts that p does execute line 33
at time t;. O (Claim 5.17.1)

To reach a contradiction, and hence complete the proof of the lemma, we show, with
the following claim, that p does in fact capture ¢ at time .

Claim 5.17.2: ¢@{6..38} is invariant in [t', #x].

Proof: Suppose, by way of contradiction, that the claim is false. By Claim 5.17.1,
q@{6..38} is true at time ¢, and we know ¢@{5..38} is true at time t;, by definition
of B-capture. So, by the assumption that ¢@{6..38} is not invariant in [t',], it must
be the case that ¢ executes different invocations at time ¢’ and time ¢;. We denote the
invocation ¢ executes at time ¢’ by Iy, and the invocation ¢ executes at time ¢, by I;.
Now, the value that p assigns to [_status.passage at time ¢’ must be v; if not, then p will
not set capture[q] = v at time ¢, which contradicts the assumption that it does. Hence
statusCS[q|.passage = v at time ', and so by Lemma 5.11, g.passage = v at time ¢'. Now,
by examining the algorithm, we see that at the start of every invocation of the algorithm,

at line 3, passage is changed to passage. We further note that line 3 is the only place in

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 99

the algorithm where passage is changed. This, and the fact that g.passage = v at time
t' and time f;, imply that there exists an invocation of ¢, I; 4, that occurs after Iy but
before I;. There are three cases, depending on how ¢ is qualified to enter the CS in I; ,,4-

We show that a contradiction arises in each case.
Case 1: Process ¢ executes through the CS in I; ;¢ mutex qualified.

The mutual exclusion property of A and the fact that p is mutex qualified during
[t', tx] imply that ¢ cannot be mutex qualified in [¢', t;]. From this and the fact that I} 4
is contained entirely in the interval (¢, tx), it follows that ¢ cannot execute through the

CS in I; ;g mutex qualified. This contradicts the assumption that it does.
Case 2: Process q executes through the CS in [; ;4 capture qualified.

By Lemma 5.16, there exists a process u that [-captures ¢ while ¢ is executing

invocation I; ,,;4, but before ¢ is capture qualified.

First, we note that u cannot be p. This is because for p to [-capture ¢ while g
is executing I; 4, p must execute line 33 at some point in the interval (¢#,t). But p
executes line 31 at time ¢’ and next executes line 33 at time ¢z, which makes the preceding

impossible.

Now, for u to fB-capture ¢, v must be mutex qualified, and so u is mutex qualified
during I;_miq- Since p is mutex qualified during [t',], it follows that v cannot be mutex
qualified in [t',t;]. But Ij g occurs entirely during (¢,¢;), and so u cannot be mutex

qualified during I; ,,;4- This contradicts the fact that it is.
Case 3: Process ¢ executes through the CS in I ,,;q conflict-free qualified.

First, assume that process p requests a session s, in the invocation in which it
[B-captures q.
Now, we know p evaluates the condition at line 29 to be true. So there must be

some process r, requesting a session s, # s,, such that r@{6..38} when p checks if

statusCS[r].session & {0, s,}. Let t” be the time when p does this check.

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 100

We will prove that during invocation I; ;4 that r is outside of the NCS and that
q requests a session that conflicts with the session that process r requests. We will
further prove that ¢ “notices” this fact, and thus does not become conflict-free qualified,

providing us with the desired contradiction.
Sub-Claim 5.17.2.1: Process p executes line 5 before r executes line 7.

Proof: Suppose the claim is false. Then p starts the method MUTEXDOORWAY() at
line 6 after r finishes the method MUTEXDOORWAY() at line 6. By the FCFS property
of A, p is mutex qualified after r executes MUTEXEXIT() or MUTEXABORT(). This
implies that 7@{6..38} is not true when p is mutex qualified. This contradicts the fact

r@{6..38} at time ¢", a time when p is mutex qualified. O (Sub-Claim 5.17.2.1)
Sub-Claim 5.17.2.2: Process r is not mutex qualified at any point in [¢t”, ¢x].

Proof: Since p is mutex qualified during [¢t”,#x], it follows from the mutual exclusion
property of A that r cannot be mutex qualified at any point in [¢t",t;]. O (Sub-Claim
5.17.2.2) O

Sub-Claim 5.17.2.3: Process r is not conflict-free qualified at any point in [t", tx].

Proof: Suppose, by way of contradiction, that r is conflict-free qualified at some point
in [t",t;]. Let t, be the time when r executes line 9 for iteration j = p. By our assumption
that r is conflict-free qualified at some point in [t",t;], t, < tx. From this and Sub-Claim
5.17.2.1, p@{6..38} is true in [ty,tx]. This implies statusCS[p].session ¢ {0, s,} during
[tq,te]. It then follows by Corollary 5.14 that r cannot be conflict-free qualified in [t,,],

and so r cannot be conflict-free qualified in [t”, #x]. O (Sub-Claim 5.17.2.3)
Sub-Claim 5.17.2.4: Process r is not capture qualified at any point in [t #z].

Proof: Suppose, by way of contradiction, that r is capture qualified at some point in
[t" tx]. By Lemma 5.16, there is some mutex qualified process u that S-captures r in r’s
current invocation before r is capture qualified. Either u is mutex qualified before p, or

after p.

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 101

In the latter case, where u is mutex qualified after p, it follows that u is mutex qualified
at some time after t;, and so the time when u [-captures r is after ¢5. Since r is capture
qualified after u [S-captures r, it follows that r is not capture qualified in [t”,t;]. This

contradicts the assumption that r is capture qualified in [t”, #;].

Now consider the former case, where u is mutex qualified before p. Let ¢, be the
time when u [-captures r, and let ¢, be the time when p executes line 22 for iteration
j = r. Since u is mutex qualified before p, u S-captures r before p is mutex qualified.
From this, and the fact that p executes line 22 after p is mutex qualified, it follows that
t, < t,. Also, it is clear that ¢, < t”, since p evaluates the condition at line 29 after it
executes line 22. As well, t” < 1, since p executes line 33 after it evaluates the condition

at line 29. Hence ¢, < t, < t" <.

Recall our assumption that %k is the smallest positive integer such that the k"
[B-capture in « occurs at some time %, and yet a capture does not occur at time 7.

Either k =1or k > 1.

Consider the case where £ = 1. Process u cannot -capture r at time t,, since t,, < t;
and t; is the first time in a some process S-captures another process. This contradicts

that u S-captures r at time t,,.

Consider the case where £ > 1. Since ¢, < ti, it follows that for some positive m < k,
t, is the m*™ time in o some process B-captures another process. So, by the minimality
of k, it follows that u captures r at time ¢,. Now, r@{6..38} at time ¢”, and so r has
yet to execute line 38 at time #”. From this and Lemma 5.12, it must be the case that
statusCS[r] = (s, capture[r]) is invariant in [t,,t"]. Since t, € [t,,t"], it must also be the
case that statusCS[r| = (s,, capture[r]) is invariant in [t,,¢"]. Hence, by Corollary 5.15, p
cannot be critical-section qualified in [t,, t"]. This contradicts the fact that p is at line 29

at time t”. O (Sub-Claim 5.17.2.4)

Sub-Claim 5.17.2.5: Process ¢ requests session s, during invocation I} miq-

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 102

Proof: Suppose, by way of contradiction, that ¢ requests some session s, # s, during
Ii mia- Let t, be the time ¢ executes line 9 in invocation I; ;4 for iteration 7 = p.
Since invocation I ;4 occurs entirely in (¢, %), it must be the case that ¢, € (¢,).
From this and the fact that statusCS[p].session ¢ {0, s,} during [, t;], it follows that
statusCS[p].session & {0, s, } during [t,, tx]. Thus, by Corollary 5.14, ¢ cannot be conflict-
free qualified in [t,, tx]. This contradicts the fact that ¢ must execute through the CS as

a conflict-free qualified process in invocation I; 4. O (Sub-Claim 5.17.2.5)

The fact that 7@{6..38} is true at time ", coupled with Sub-Claims 5.17.2.2, 5.17.2.3,
and 5.17.2.4 implies that 7@{6..20} in [t",?x]. Now, let ¢, be the time g executes line 9
in invocation I; ,,;q for iteration j = r. Since invocation I;,,;4 occurs entirely during
(', tg), it must be the case that ¢, € (#',1). From this and the fact that r@Q{6..20} in
[t",tk], it follows that r@{6..20} in [t,,?x]. This, and the fact that s, # s,, imply that
statusCS[r].session ¢ {0, s,} during [t,, t]. From this, Sub-Claim 5.17.2.5, and Corollary
5.14, it follows that ¢ cannot be conflict-free qualified in [t,,t;]. This contradicts that g

executes through the CS in [; ,,;4 as a conflict-free qualified process.
Cases 1, 2, and 3 all lead to a contradiction, and so the claim holds. O (Claim 5.17.2)

By Claim 5.17.2, p captures ¢ at time ¢;. This contradicts the fact that p does not

capture g at time t;. [J

Lemma 5.18: If a process p, requesting session s,, captures another process g, requesting

session s,, then s, = s, (i.e., p requests the same session as q).

Proof: Assume p captures another process ¢q. Let ¢; be the time when p executes
line 31, and ¢, be the time when p executes line 33. That is, £, is the time when p
captures ¢q. ¢@{6..38} is invariant in [t{, 5], by definition of capture. From this and
the fact that p evaluates the condition at line 32 to be true, statusCS[q].session = s, is

invariant in [t1, to]. But statusCS[q].session is the session ¢ is requesting, and so s, = s,.

g

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 103

Lemma 5.19: If a process g, requesting session s, is capture qualified during some
invocation I, then there exists a process p, also requesting session s, that captures g
before ¢ is capture qualified and while ¢ is executing invocation 1.

Proof: Assume a process ¢ is capture qualified during some invocation I,. By Lemma
5.16, there exists a process p that S-captures ¢ at some time ¢ before ¢ is capture qualified
and while g is executing invocation /,. By Lemma 5.17, p captures ¢ at time ¢, and by
Lemma 5.18, p and q request the same session. The result follows. [

Lemma 5.20: If a process p evaluates the condition at line 25 to be true at some time ¢
for iteration j = ¢, and barricade[p][q] = true at time ¢, then ¢ is in a captured state at
time ¢.

Proof: Assume process p evaluates the condition at line 25 to be true at some time
t for iteration j = ¢, and barricade|p][q] = true at time ¢. Let ¢; be the time p executes
22, ty be the time p executes line 23, and ¢3 be the time p executes line 24. Clearly
t <ty <it3 <t

Claim 5.20.1: ¢@{6..38} is invariant in [to, ¢].

Proof: Suppose, by way of contradiction, that the claim is false. Now, since p evaluates
the condition at line 25 to be true at time ¢, it must be the case that ¢@{6..38} is true
at time ty. For the same reason, ¢@{6..38} is true at time t. From these facts, and
the assumption that ¢@{6..38} is not invariant in [t9,¢], it must be the case that ¢
executes the exit protocol in its entirety at least once in (¢9,t). This implies ¢ will set
barricade[p]q] = false at some time in (fo,t). Since barricade[p][q] = true at time ¢, by
assumption, there is a process that sets barricade[p][q] = true at some time in (¢, t) after
q sets barricade[p]|q] = false. But the only process that can set barricade|p][q] = true is
process p, and p cannot set barricade[p][q] = true at any point in [y, t]. This contradicts
the fact that some process sets barricade[p][q] = true in (to,t). O (Claim 5.20.1)

Let ¢’ be the last time prior to ¢, when ¢ executes line 4.

Claim 5.20.2: ¢@{5..38} is invariant in (¢, ¢].

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 104

Proof: Time ¢’ is the last time prior to ¢ when ¢ executes line 4, by assumption.
Furthermore, by Claim 5.20.1, ¢@{6..38} is invariant in [¢9,¢]. Thus ¢@{5..38} is invariant

in (#,¢]. O (Claim 5.20.2)

Let v be the value p reads into [_capture from capture[q] at time t3. By the assump-
tion that p evaluates the condition at line 25 to be true at time t, and the fact that
statusCS[q|.passage € {0,1} is invariant throughout the algorithm’s execution, it follows
that v € {0,1}. From this and the fact that ¢ sets capture[q] = —1 at time ¢, it follows
that there must exist a process r that sets capture[q] = v by executing line 33 at some

time ¢ € (¢',13).
Claim 5.20.3: ¢@{5..38} at time ¢".

Proof: Since t" € (t',t3), clearly " € (t',t]. The result follows from this and Claim

5.20.2. O (Claim 5.20.3)
Claim 5.20.4: ¢.passage = v at time t".

Proof: By Claim 5.20.1, ¢@{6..38} at time t;, and so, by Lemma 5.11,
statusCS[q|.passage = q.passage at time ty. Since p assigns p.l_status.passage the value
of statusCS[q|.passage at time ty, and p evaluates the condition at line 25 to be true at
time ¢, it follows that ¢.passage = v at time t,. Furthermore, g.passage is invariant as
long as ¢@{5..38}, and so, by Claim 5.20.2 and the fact that ¢, € (¢, t], ¢.passage = v in

(¢',t]. Since t" € (¢, 1], it follows that ¢.passage = v at time ¢”. [J (Claim 5.20.4)

Process r sets capture[q] = v at time ¢, by assumption. That is, r.l_status.passage = v
at time ¢”. This and Claim 5.20.4 imply that r.l_status.passage = q.passage at time t".
From this, and Claim 5.20.3, it follows that r S-captures ¢ at time ¢”. By Lemma 5.17,
r captures ¢ at time ¢”. Hence ¢@{6..38} at time ¢”, by definition of capture. From this,
Claim 5.20.2, and the fact that ¢ € (¢,], it follows that ¢@{6..38} is invariant in [t", ¢].

Hence ¢ is in a captured state at time ¢. [J

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 105

Mutual Exclusion

Theorem 5.21: The algorithm in Figure 5.9 satisfies the mutual exclusion property.

Proof: Let p be a process that requests a session s, and ¢ be a process that requests
a session s,, where s, # s,. Suppose, by way of contradiction, that p and ¢ are in the
CS simultaneously at time ¢.

For a process to enter the CS, it must be either mutex qualified, capture qualified, or
conflict-free qualified. We now consider the different ways in which p and ¢ could have
entered the CS, and show that a contradiction arises in each case.

Case 1: Both processes are mutex qualified.

Due to the mutual exclusion property of A, at most one process can be mutex qualified
at a time. Hence this case is impossible.
Case 2: One process is capture qualified.

Without loss of generality, assume ¢ is capture qualified. By Lemma 5.19, there
exists a mutex qualified process r, requesting session s;, that captures ¢ before ¢ is
capture qualified and while ¢ is executing its current invocation. Let time ¢, be the time
when 7 captures ¢. By Lemma 5.12, statusCS[q| = (s,, capture[q]) is invariant in [¢,,].

Claim 5.21.1: Process p starts executing the loop at line 21 before ¢ is captured by

Proof: Suppose, by way of contradiction, that when p starts executing the loop at
line 21, ¢ has already been captured by r. Let time ¢; be the time when p assigns true
to barricade[p][q] at line 22. By assumption, ¢ is captured before ¢, and so ¢; € [t,,1].
From this and the fact that statusCS[q| = (s,, capture[q]) is invariant in [t,,¢], it follows
that statusCS[q] = (s,, capture[q]) is invariant in [t1,¢]. Thus by Corollary 5.15, p cannot
be critical-section qualified in the interval [ti,t], contradicting the fact that p is in the
CS at time t. O (Claim 5.21.1)

Now consider the different ways p enters the CS:

Case 2.1: Process p is mutex qualified.

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 106

Either p is mutex qualified before r, or after. In the former case, r is mutex qualified
after p exits the CS. Now, we know ¢ enters the CS after ¢ is capture qualified, and g is
capture qualified after r captures ¢. So ¢ enters the CS after r captures ¢. This, together
with the fact that r captures ¢ after r is mutex qualified, implies that ¢ enters the CS
after r is mutex qualified. This, in turn, implies that ¢ enters the CS after p exits the

CS. This contradicts our assumption that p and ¢ are in the CS together at time t.

In the latter case, p is mutex qualified after r leaves the CS. Since r captures g before
r leaves the CS, when p is mutex qualified and executes the loop at line 21, ¢ will have

been captured. This contradicts Claim 5.21.1.
Case 2.2: Process p is conflict-free qualified.

Claim 5.21.2: Process p starts executing the loop at line 8 before r executes line 5

of the invocation of r in which r captures q.

Proof: Suppose, by way of contradiction, that the claim is false. Let ¢; be the time
when p writes true to barricade[p][r] at line 9, and let t5 be the time when r exits the CS.
Since r captures g before it exits the CS, it follows that if 5 < ¢; then at the time when p
reaches line 21, ¢ will already have been captured, which contradicts Claim 5.21.1. Thus
it must be the case t, > t;. Also, by the assumption that r executes line 5 before p starts
executing the loop at line 8, and the fact that r requests session s, # s,, it follows that
statusCS[r|.session ¢ {0, s,} is invariant in [t1, t5]. Hence, by Corollary 5.14, p cannot be
conflict-free qualified in [t1, t5]. Since p is conflict-free qualified at time ¢ by assumption,
it must be the case that p is conflict-free qualified and reaches line 21 after time ¢,. But
this implies that ¢ is captured when p reaches line 21, contradicting Claim 5.21.1. [
(Claim 5.21.2)

Claim 5.21.2 implies that p finishes executing the method MUTEXDOORWAY() at
line 6 before r begins executing the method MUTEXDOORWAY () at line 6. Hence, by the
FCFS property of A, r is mutex qualified after p executes the method MUTEXABORT()

at line 45. Now, we know ¢ enters the CS after ¢ is capture qualified, and ¢ is capture

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 107

qualified after r captures q. We also know that r captures ¢ after r is mutex qualified.
This implies ¢ enters the CS after r is mutex qualified. But r is mutex qualified after
p executes line 45, and so ¢ enters the CS after p leaves the CS. This contradicts the
assumption that p and ¢ are in the CS simultaneously at time £.

Case 2.3: Process p is capture qualified.

By Claim 5.21.1, p starts executing the loop at line 21 before ¢q. Since p and ¢ are
both capture qualified, symmetrically, ¢ starts executing the loop at line 21 before p.
This is a contradiction.

Case 3: One process is conflict-free qualified, and the other is not capture qualified.

Without loss of generality, assume ¢ is conflict-free qualified.

Claim 5.21.3: Process ¢ starts executing the loop at line 8 before p executes line 5 of
its current invocation.

Proof: Suppose, by way of contradiction, that the claim is false. Let ¢; be the time
when ¢ writes true to barricade[q][p] at line 9. By assumption, p executes line 5 before
t1, and so statusCS[p].session & {0, s,} is invariant during the interval [t;,¢]. Thus, by
Corollary 5.14, ¢ cannot be conflict-free qualified in the interval [¢,], contradicting the
fact that ¢ is in the CS conflict-free qualified at time ¢. O (Claim 5.21.3)

Now consider the different ways p enters the CS:
Case 3.1: Process p is mutex qualified.

By Claim 5.21.3, ¢ starts executing the loop at line 8 before p executes line 5, and so ¢
will finish executing the method MUTEXDOORWAY() at line 6 before p starts executing
the method MUTEXDOORWAY() at line 6. Hence, due to the FCFS property of A, p
cannot become mutex qualified until ¢ executes the method MUTEXABORT() at line 45,
contradicting the assumption that p and ¢ are in the CS simultaneously at time .
Case 3.2: Process p is conflict-free qualified.

By Claim 5.21.3, ¢ starts executing the loop at line 8 before p executes line 5, and so ¢

executes line 5 before p does. Since p and q are both conflict-free qualified, symmetrically,

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 108

p executes line 5 before ¢ does. This is a contradiction.

Since each case leads to a contradiction, it follows that mutual exclusion holds. [J

Lockout Freedom

To prove the lockout freedom property we first prove some elementary lemmas. The first
of these states that processes in a captured state cannot block in the AWAIT-CAPTURE()
method.

Lemma 5.22: If a process ¢ is in a captured state during some invocation I,, then ¢
cannot block forever in the method AWAIT-CAPTURE() during invocation I,.

Proof: Assume ¢ is in a captured state during some invocation I, at some time t.
Suppose, by way of contradiction, that g blocks forever in the method AWAIT-CAPTURE()
during invocation I,. By the assumption that ¢ is in a captured state at time ¢, there
exists a process p that captured ¢ while ¢ was executing invocation /, at some time ¢; < ¢.
By the assumption that ¢ blocks forever in the method AWAIT-CAPTURE(), the time
when ¢ next executes line 38 after time ¢; is co. Thus, by Lemma 5.12, statusCS[q] =
(sq, capture[q]) is invariant during [t;,00). Now, ¢@{6..38} at time ¢; by definition of
capture, and so, because of the fact that ¢ never executes line 38 after ¢, it follows that
¢@{6..38} is invariant in [t;,00). By this fact and Lemma 5.11, statusCS|q].passage =
g-passage is invariant in [t;,0c0). This, and the fact that statusCS[q|.passage = capture[q|
is invariant in [t;,00), imply that capture[q] = g.passage is invariant in [t;,00). But
the method AWAIT-CAPTURE() terminates when capture[q] = q.passage, and so ¢ cannot
block forever in the method AWAIT-CAPTURE() during invocation [,. This contradicts
the assumption that ¢ does block forever in the method AWAIT-CAPTURE(). O

We will next show that all processes that are simultaneously in a captured state
request, the same session.

Lemma 5.23: If process ¢ is in a captured state then no process requesting a different

session than ¢ can be in a captured state at the same time.

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 109

Proof: Assume, by way of contradiction, that ¢ and ¢’ are requesting sessions s and ',
respectively, where s # s', and both are in a captured state at the same time. Since ¢ and
¢' are in captured states, there must be mutex qualified processes v and u' that captured
g and ¢', respectively, in their current invocations. Since processes that capture other
processes are mutex qualified, and, by the mutual exclusion property of A, at most one
process can be mutex qualified at a time, it must be the case that one can totally order
the times when some process captures another process. Because of this ability to totally
order when processes capture other processes, we assume, without loss of generality, that
u and u' are the first processes to capture ¢ and ¢’ in their current invocations. This
implies ¢ and ¢’ cannot be in captured states in their current invocations before they are
captured by u and u’. Now, by the mutual exclusion property of A, at most one of u and
u' can be mutex qualified at a time. Hence, it must be the case that either u is mutex
qualified before u', or vice-versa. Without loss of generality, assume u is mutex qualified

before u'.

We will now prove that v’ will “notice” the captured process ¢ and will not be able
to become critical-section qualified until ¢ has left the CS. So, v’ will not capture ¢’ at
line 33 until after ¢ has left the CS, contradicting that ¢ and ¢’ are in a captured state

simultaneously.

More precisely, we define the following times: ¢; is the time when u captures q; t»
is the time when u’ becomes mutex qualified; ¢3 is the time when u' writes true to
barricade[u'][q] at line 22; ¢, is the time when u' captures ¢'; and ¢5 is the time when ¢

and ¢’ are simultaneously in a captured state.

Clearly t; < ty < t3 < t4 < t5, and ¢@{6..38} is invariant in [t;,?5]. By Lemma
5.12, statusCS[q] = (s, capture[q]) is invariant in the interval [¢;,%5], and thus in the
interval [ts, t4]. Now, by Lemma 5.18, v’ requests session s’ # s. From this, the fact that
statusCS[q| = (s, capture|q]) in [t3,t4], and Corollary 5.15, it follows that u' cannot be

critical-section qualified at any point in [t3,%4]. This means that v'@{29..37} is false in

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 110

the interval [t3, ¢4]. Since v’ must reach line 29 to perform any capturing, it must be the
case that u' cannot capture ¢’ at time ¢4. This contradicts the fact that «’ captures ¢' at
time t,. O

Lemma 5.24: If, for some process p, p@26 at some time ¢ for iteration ;7 = ¢, and
barricade[p]lq] = true at time ¢, then p evaluated the condition at line 25 to be true at
some time ¢’ < t and barricade[p][q] = true at time ¢'.

Proof: Assume p@26 at some time ¢, for j = ¢, and barricade[p]lq] = true at
time ¢. Then clearly p evaluated the condition at line 25 to be true at some time
t'" < t. Now, suppose, by way of contradiction, that barricade[p][q] = false at time
t'. Since barricade|p|[q] = true at time ¢t by assumption, there is some process that sets
barricade[p]|q] = true at some time in the interval (',¢]. The only process that can do
this, however, is process p, and p has no opportunity to set barricade[p][q] = true in lines
25..26. This contradicts the fact that some process sets barricade[p|[q] = true in (¢',t¢]. O
Lemma 5.25: No process can wait forever at line 26.

Proof: Suppose, by way of contradiction, that p waits forever at line 26 on
barricade[p][q]. Let s, be the session that p is requesting and ¢; be the time when p
writes true to barricade[p][q] at line 22.

We will show that eventually ¢ will execute its exit protocol, setting barricade[p][q] =
false, at some time after ¢;, and thus contradict that p waits forever on barricade[p][q] at
line 26.

By Lemma 5.24 and the assumption that p waits forever at line 26, at some time £, >
t1, p evaluates the condition at line 25 to be true for iteration j = ¢, and barricade[p][q] =
true at time t5. Thus, by Lemma 5.20, ¢ is in a captured state at tp, and so ¢@{6..38} at
to. By Lemma 5.22 and the fact that ¢ is in a captured state at t5, ¢ cannot block forever
in the method AWAIT-CAPTURE(). So ¢ cannot block forever at lines 14..20.

Claim 5.25.1: Process ¢ does not wait forever at line 26.

Proof: Suppose, by way of contradiction, that ¢ waits forever at line 26 on

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 111

barricade[q][q']- Let t} be the time when g writes true to barricade[q][¢'] at line 22. By
Lemma 5.24 and the assumption that g waits forever at line 26, at some time t, > t, ¢
evaluates the condition at line 25 to be true for iteration j = ¢/, and barricade[q][¢'] = true
at time ¢,. Thus, by Lemma 5.20, ¢’ is in a captured state at time ¢, and so ¢'@{6..38}
at time t,. For ¢ to block forever on barricade[q][q'] after t,, it must be the case
that false is never assigned to barricade[q|[q'] after t|. This is because only ¢ can set
barricade|q][q'] = true, and it does not do so anywhere in lines 23..26. Now, it is evident
from examining the algorithm that if ¢’ reaches line 29 at or after ¢, it will eventually
execute its GME exit protocol in its entirety, and thus assign false to barricade[q][¢']-
Hence, to avoid contradiction, ¢'@{6..28} must be invariant from time ¢, and on. That
is, ¢’ will be forever in a captured state requesting session s, from time t, and on. But
we also know, by assumption, that ¢ will be forever in a captured state requesting session
s, at some time after t5. It follows that ¢ and ¢/, requesting different sessions, will be in
a captured state at the same time. This contradicts Lemma 5.23. O (Claim 5.25.1)

By the preceding discussion, and Claim 5.25.1, ¢ will not block forever at lines 14..20
or line 26. This, together with the fact that ¢@{6..38} at time t,, implies that ¢ will
eventually execute its GME exit protocol at some time ¢ > t, > t;. That is, false will
be assigned to barricade[p][q| after time ¢;. But this contradicts the fact that for p to be

stuck forever at line 26, no process can write false to barricade[p][q] after time t;. OJ
Theorem 5.26: The algorithm in Figure 5.9 satisfies the lockout freedom property.

Proof: Suppose, by way of contradiction, that some set S of processes get stuck
forever in their trying protocol. If they manage to reach line 21, then by Lemma 5.25

they will eventually enter the CS. Hence they must be stuck forever at lines 14..20.

Claim 5.26.1: No process in S can be stuck forever in the method

MuTEXWAITINGROOM().

Proof: A is an abortable mutual exclusion algorithm that satisfies the lockout

freedom property. Hence the only way for processes in S to get stuck forever

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 112

in MUTEXWAITINGROOM() is if some process becomes mutex qualified and then
does not execute the method MUTEXEXIT(); or, if some process starts executing
MuTEXWAITINGROOM(), aborts execution of it, but then does not execute the method
MUTEXABORT(). If a process becomes mutex qualified, then we know by Lemma 5.25
and by examining the algorithm it will eventually execute the method MUTEXEXIT().
Furthermore, the only way a process will abort execution of MUTEXWAITINGROOM()
once started is if the process becomes conflict-free qualified or capture qualified. In this
case, again by Lemma 5.25 and by examining the algorithm we see that such processes
will eventually execute the method MUTEXABORT(). Hence no process in S can be stuck
forever in the method MuTEXWAITINGROOM(). O (Claim 5.26.1)

Claim 5.26.1 contradicts that processes in S are stuck forever at lines 14..20. Hence

lockout freedom holds. I

Concurrent Entering

Theorem 5.27: The algorithm in Figure 5.9 satisfies the concurrent entering property.
Proof: Let p be a process requesting session s, that is in its GME waiting room at
time t;, and t3 be the time when p enters the CS. We show that if there is no active
process that is requesting a different session in the interval [t1,¢3], then p enters the CS
in a bounded number of its own steps. There are two places in the GME waiting room
where p can be waiting (i.e., executing a section of code that potentially could require
an unbounded number of steps): p@{14..20} and p@26. In each case we will show that
p actually completes the corresponding section of code in a bounded number of steps
during [t1, t3].
Case 1: p@{14..20}.
In this case we will show that p completes the CONFLICT-FREE() method (and there-
fore the cobegin-coend statement in lines 14..20) in a bounded number of its own steps.

Let t5 be the time when p first reaches line 21. It suffices to prove that Vq € p.conflict_set,

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 113

barricade[p]lq] = false during the interval [t1,%s]. Suppose ¢ € p.conflict_set. Then at
line 10 at some time ¢, < t1, p read statusCS[q|.session & {0, s,}. This implies that at
time ¢,, ¢@{6..38}. Since there can be no active processes requesting a session other
than s, at time ?;, it follows that ¢ executes its exit protocol and thus assigns false to
barricade[p][q] in the interval (¢,,t1). Now, the only process that can set barricade[p][q] to
true is process p. Process p’s last assignment of true to barricade[p][q] occurred at a time
t < t,, and its next assignment occurs at a time ¢ > to. Therefore, barricade[p][q] = false
during [t1, ts], as required.
Case 2: p@26

It suffices to prove that for any process ¢ such that p@26 in iteration j = ¢ of the
loop starting at line 21, barricade[p][q| = false during [t;,t3]. So, assume for some ¢ that
p@26 in iteration j = ¢. It follows that at some time ¢, < t;, p evaluated the condition
at line 25 to be true. We claim that barricade[p][q] = false at some time during [t,,11).
This is obvious if barricade[p][q] = false at time ¢,. If not, by Lemma 5.20, ¢ is in a
captured state at time ¢,. This means that ¢@{6..38} at time ¢,. Since there can be no
active processes requesting a session other than s, at time ¢;, it follows that ¢ executes
the exit protocol in its entirety and thus assigns false to barricade[p][q] in the interval
(tg: 1)

Hence barricade[p][q] = false at some time in the interval [t,,¢;). Now, the only
process that can set barricade[p][q] = true is process p. Process p’s last assignment of
true to barricade[p][q] occurs before t,, and its next assignment cannot occur until after

ts. Therefore barricade[p|[q] = false during [t1, 3], as required. [

Bounded Exit

Theorem 5.28: The algorithm in Figure 5.9 satisfies the bounded exit property.
Proof: Since the underlying FCFS abortable ME algorithm satisfies the bounded exit

property, it is evident by inspection of the algorithm that there are no unbounded loops

CHAPTER 5. HicH CONCURRENCY LOCAL-SPIN GME 114

in the exit protocol. This implies that the bounded exit property holds. [J

5.3.4 RMR Complexity

Theorem 5.29: The algorithm in Figure 5.9 has RMR complexity O(N) under the DSM
model.

Proof: Each of the loops at lines 8, 21, 30, and 39 makes exactly N — 1 remote
memory references. Also, there exists a FCFS abortable mutual exclusion algorithm that
has RMR complexity O(min(k,log N)) [9], where £ is the point contention. Outside
of the said loops and the FCFS abortable mutual exclusion algorithm, there are no
remote memory references. Hence the resulting algorithm makes O(N) remote memory

references. O

Chapter 6

Local-Spin GME Under The CC
Model

Up until this point we have only considered the group mutual exclusion problem under
the DSM model. In this chapter, we explore the group mutual exclusion problem under
the CC model. In particular, we are interested in whether the algorithms in the preceding
chapters, all of which have RMR complexity O(N) under the DSM model, are optimal
with respect to RMR complexity under the CC model. It turns out that this is not the
case, because, as we will show, there is an M-session group mutual exclusion algorithm

that has RMR complexity o(/N) under the CC model for certain values of M.

Recall that in the CC model each process has a (local) cache associated with it and
there is a global store that is remote to all processes. Whenever a process accesses the
global store, the process makes a remote memory reference. In particular, whenever a
process reads a variable that is not in its cache or reads a variable that is invalid (i.e., a
variable for which there exists a newer copy in the global store), it must copy the variable
from the global store to its cache. Whenever a process reads a variable that it has already
cached, and the variable is not invalid, the process simply reads the variable from the

cache. Furthermore, whenever a process writes a variable, it updates both its cache and

115

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 116

the global store, and, as a side-effect of this update, it invalidates the variable in other
processes’ caches. (This is the only means by which a variable in a process’s cache can

become invalid.)

The algorithms that we develop in this chapter make use of the read-modify-write
primitives COMPARE_AND_SWAP, ATOMIC_ADD, and FETCH_AND_ADD. We make the
assumption that a failed COMPARE_AND_SWAP (i.e., a COMPARE_AND_SWAP in which
the shared variable being read is not modified) does not result in any variables being
invalidated. This assumption is only needed when reasoning about the RMR complexity

results in this chapter. The correctness of the algorithms does not depend on it.

In this chapter we develop an M-session GME algorithm under the CC Model that
is in the form of a reduction to a FCFS abortable mutual exclusion algorithm, A. We
develop this algorithm in two steps. In the first step we develop a 2-session GME algo-
rithm, and show that the RMR complexity of this algorithm is O(f(N)), where f(N)
is the RMR complexity of A. Since there exists a FCFS abortable mutual exclusion
algorithm with RMR complexity O(min(k,log N)) [9], where k is the point contention,
it follows that there exists a 2-session GME algorithm that also has RMR complexity
O(min(k,log N)). This result beats the Q(/N) RMR lower bound for 2-session GME

under the DSM model proven in Theorem 3.1.

In the second step we create an arbitration tree of height |log M| that uses the 2-
session algorithm as a building block. The “tree” is actually presented in the form of a
recursive algorithm. This results in an M-session GME algorithm with RMR complexity

O(log M - f(N)).!

! This two-step approach is similar to the one taken by Yang and Anderson [18] in developing their
N-process mutual exclusion algorithm. (Yang and Anderson use as a building block a 2-process ME
algorithm with O(1) RMR complexity and then create an arbitration tree of height |log N|, so that
their resulting N-process algorithm has RMR complexity O(log N).)

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 117

6.1 2-Session GME With Low RMR Complexity

Figure 6.1 2-Session GME Algorithm; Process p € {1..N}

type
GateNode= record tag: {0..N}; state: {OPEN,CLOSED} end

shared variables:

gate: array[l..2] of GateNode init (0, CLOSED)
active: array[l..2] of integer init 0

private variables:

l_active: array[1..2] of integer /* private version of the active variable */
I_gate: GateNode [* private version of the gate[mysession] variable */
mysession: {1,2} /* Session that p wants to attend */

1

2: NCS

3: ATOMIC_ADD(active[mysession],1);

4: 1 gate := gate[mysession;

5: if I_gate # (0, CLOSED) then

6: COMPARE_AND_SWAP(gate[mysession],l_gate,(0, CLOSED));

7 end if

8: COMPARE_AND_SWAP(gate[mysession|,(0, OPEN),(0, CLOSED));
9: MUTEXDOORWAY();

10: Lactive[mysession] := FETCH_AND_ADD(active[mysession], N + 1);

11: cobegin

12: MUTEXWAITINGROOM();

13: |

14: CONFLICT-FREE(); /* defined in Figure 6.2 */
15: coend kwhen one coroutine terminates, go to the next line

16: ATOMIC_ADD(active[mysession],—(N + 1));

17: CS

18: lactive[mysession] := FETCH_AND_ADD (active[mysession], —1);

19: if Lactivelmysession] mod (N + 1) = 1 A Lactive[mysession] > (N + 1) then

20: gate[mysession] := (p, CLOSED);

21: if active[mysession] mod (N + 1) =0 then
22: COMPARE_AND_SWAP (gate[mysession],(p, CLOSED),(0, OPEN));
23: end if

24: end if

25: if mutex qualified then

26: MUTEXEXIT();

27: else

28: MUTEXABORT();

29: end if

30: end loop

Figure 6.2 Method CONFLICT-FREE() for Algorithm in Figure 6.1
1: if lactivelmysession] mod (N + 1) > 0 then
2: await gate[mysession] = (0, OPEN);
3: end if

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 118

6.1.1 Introduction

In this section we develop a 2-session GME algorithm. It will be used later (in Section 6.2)
to construct the M-session GME algorithm. Our 2-session GME algorithm uses as a
building block an arbitrary FCFS abortable mutual exclusion algorithm, A. The 2-
session algorithm uses only O(1) RMRs in addition to those used by A. Thus if A has
RMR complexity O(f(V)), so does our 2-session GME algorithm.

The algorithm is presented in Figure 6.1. It satisfies mutual exclusion, lockout free-
dom, concurrent entering, bounded exit, and FCFS, under the condition that processes
request only session 1 or 2. It does not satisfy either FIFE or strong concurrent entering.

We assume that each process sets mysession to either 1 or 2 before leaving the NCS.

We proceed as follows: we give some definitions and notation relative to the 2-session
algorithm; we provide an informal description of how the algorithm works, followed by a
line by line commentary of the algorithm; finally, we present a proof of correctness, and

then analyze the RMR complexity of algorithm.

6.1.2 Definitions and Notation

GME Doorway: The doorway consists of lines 3..10.
GME Waiting Room: The waiting room consists of lines 11..16
GME Trying Protocol: The trying protocol consists of lines 3..16
GME Exit Protocol: The exit protocol consists of lines 18..29

As with previous algorithms we occasionally use definitions in which, to be strictly
correct, we would need to refer to the invocations that the processes are executing.
However, for simplicity, we assume that the invocations in question are the “current”
(i.e., the latest) ones with respect to some point in a given run. This comment applies
to the following definitions.

Mutex Qualified Process: Process p is mutex qualified iff p@{16..25} and p reached

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 119

line 16 because it completed execution of the method MUTEXWAITINGROOM().
Conflict-free Qualified Process: Process p is conflict-free qualified iff p@{16..18}
and p reached line 16 because it completed execution of the method CONFLICT-FREE().

If s € {1,2} is one of the sessions, 5 denotes the other session; more precisely, § =

3—3s.2

6.1.3 Informal Description of the Algorithm

In this section we provide a very high-level overview of the algorithm. We start by
describing the shared variables used in the algorithm, and then describe how they are
used.

Associated with each session s € {1, 2} are two shared variables: a counter, active|s],
and a spin-lock, gate[s]. Each process increments by one the counter of the session it
is requesting when it enters the trying protocol (at line 3), and atomically reads and
decrements that counter by one when it leaves the CS (at line 18). In addition, each
process atomically reads and increments by N + 1 the counter of the other session when
it enters the GME waiting room (at line 10), and decrements that counter by the same
amount when it leaves the GME waiting room (at line 16). Thus, if active[s] = a(N +
1) + b, where 0 < b < N, then there are exactly b processes requesting s in lines 4..18,
and exactly a processes requesting s in lines 11..16. We will later see in more detail how
this variable is used, but it is clear that by reading this variable a process can get some
idea of how many active processes request each of the sessions.

To enter the CS, a process executes the doorway of the underlying FCFS abortable
ME algorithm (at line 9) and then executes as co-routines the GME waiting room of
that algorithm and the CONFLICT-FREE() procedure (lines 11..15). The latter allows a

process to enter the CS if it detects that there are no active processes requesting the

2This is analogous to the use of the notation 3 in previous chapters, except that there this notation
was used for s € {0,1} (rather than s € {1,2}) and so 5 was defined as 1 — s (rather than 3 — s).

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 120

other session. We now discuss how CONFLICT-FREE() works. As alluded to earlier, a
process requesting s can detect that there are no active processes currently requesting s
by checking that active[s] mod (N + 1) = 0. Unfortunately, a mechanism for detecting
absence of conflicting requests that spins on the value of active[s] does not give us the

desired complexity of only O(1) RMR in the CC model.

For this reason we need a different mechanism for processes to detect the absence
of conflicting requests. The shared variable gate[s] provides this mechanism. At a high
level, the idea behind this mechanism is that as soon as a process requesting s leaves the
NCS, it “closes” gate[s] by setting gate[s] = (0, CLOSED) (lines 4..8), thereby preventing
processes requesting s from entering the CS through the co-routine CONFLICT-FREE().
We refer to this as the “gate closing” phase of the trying protocol. The subsequent
opening of gate[s] is accomplished as follows: As each process requesting s leaves the CS,
it checks whether (a) it is the last such process to do so, and (b) there are active processes
requesting the other session that are in the GME waiting room. Process p, requesting
session 3, does this by looking at the old value v of active[s] when it decremented it (at
line 19): If v mod (N + 1) = 1, then p is the last one requesting 3 to leave the CS; if
v > (N + 1) then there are active processes requesting s that are in the GME waiting

room. If both of these conditions are satisfied, p attempts to “open” gate[s] (lines 20..23).

We now examine the reasons why the preceding conditions need to be satisfied before
p opens gate[s]. The need for the first condition, that p is the last process that leaves
the CS, is fairly obvious: if p weren’t the last process requesting 5 to leave the CS, then
opening gate[s| is premature and could result in the violation of the mutual exclusion
property. The second condition, that a process requesting session s is in the GME waiting
room, has to do with the fact that we want our algorithm to make O(1) RMRs outside of
the FCFS abortable ME algorithm. (In fact, removing the check of the second condition
does not break any of the correctness properties of the algorithm; it only affects the

RMR complexity.) So as not to digress too much from our high-level description of the

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 121

algorithm, we will return to this point later.

Process p should not “open” gate[s] by using a simple assignment statement to set
gate[s] = (0, OPEN). If p were to do this, then there is the possibility that between the
time when p reads active[s] (at line 18) and the time when it writes gate[s] = (0, OPEN),
some other process p’ requesting session s executes through the trying protocol and goes
into the GME waiting room. Process p then sets gate[s] = (0, OPEN), and returns
to the NCS. We now have a situation where gate[s] is open, and a process requesting
session 5 (i.e., p') has gotten past the “gate closing” phase of the algorithm (lines 4..8)
without ensuring that gate[s| is closed. This is a dangerous situation; after p’ enters the
CS, since gate[s] is open, processes requesting session s can also enter the CS via the

CONFLICT-FREE() method, thus violating the mutual exclusion property.

The preceding could be avoided if p, when it leaves the CS, could somehow do the
following atomically: read and decrement the variable active[s], check if the value read
meets the appropriate conditions, and if it does, set gate[s] = (0, OPEN). This would
ensure that other processes requesting session s (e.g., p' as described above) could not
race into the GME waiting room before p has the opportunity to set gate[s] = (0, OPEN).
However, there exist no realistic synchronization primitives that would allow p to perform
all the required operations on active[s] and gate[s] atomically, which leads us to explore

whether there are other mechanisms that achieve an equivalent effect.

There is in fact such a mechanism. It is located in lines 20..23. The first thing that p
does in this fragment of the algorithm is to set gate[s] = (p, CLOSED). This essentially
“tags” the gate[s| variable with p’s identifier. Using this tag, p, at some later point, can
determine if anyone else has written to gate[s] since p last wrote to it. Process p then
repeats the check of whether it is the last active process to leave the CS (line 21). If the
recheck fails, then p knows that it should not continue trying to open gate[s| to processes
requesting session s (i.e., p should not set gate[s] = (0, OPEN)). If, however, the check

succeeds, then p is still responsible for opening gate[s]. This is what p does in line 22.

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 122

Again, however, p cannot use a simple assignment statement to set gate[s] = (0, OPEN)
because of the danger of some other process requesting session s racing out of the NCS
and into the GME waiting room. Instead, p makes use of the fact that it can safely assign
(0, OPEN) to gate[s] as long as no one wrote to gate[s] since the time p performed the
recheck. Specifically, by using COMPARE_AND_SWAP, p atomically checks that its tag is

still in gate[s] (which it set before the recheck) and, if it is, it sets gate[s] = (0, OPEN).

We consider the initial part of the exit protocol, which is responsible for checking the
necessary conditions on the counter and performing the opening of the gate, as the “gate
opening” phase of the exit protocol (lines 18..24). After a process completes the “gate
opening” phase, the process finishes the exit protocol by executing one of MUTEXEXIT()
or MUTEXABORT(), whichever is appropriate based on whether it entered the CS by

finishing the method MUTEXWAITINGROOM() or CONFLICT-FREE().

We now return to the question why, in order to open the gate, a process leaving
the CS needs to ensure that there is a process requesting the other session in the GME
waiting room (see the second clause in the conditional of line 19). This check is necessary
to ensure the nice RMR complexity property of our algorithm. To see this, consider the
following scenario illustrating how the algorithm would operate if the condition were
not present: one at a time, a succession of processes all requesting session s leave the
NCS, execute conflict-free through the CS, and end up at line 20 of the exit protocol.
The next process in this succession does not leave the NCS until the preceding one has
reached line 20. Since there is no bound on the number of processes that can do this,
the algorithm effectively allows processes requesting session § to “accumulate” at line 20.
After this, a process requesting session s leaves the NCS concurrently with some process
requesting session 3, and both end up busy-waiting in the CONFLICT-FREE() method.
The processes requesting session s that have accumulated at line 20 then execute that
line one at a time, each time invalidating gate[s], causing the process requesting session s

that is stuck in the GME waiting room to make w(1) RMRs. This scenario is prevented

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 123

by ensuring that there is a process requesting session s in the GME waiting room when
a process requesting session § leaves the CS; essentially, a process requesting session s in
the GME waiting room acts as a “barricade” to processes requesting session s, preventing
them from racing through the CS and accumulating in the exit protocol. (This has to do
with the FCFS property of the algorithm, the details of which are handled in the formal

proof.)

6.1.4 Line by Line Commentary of the Algorithm

Line 3: Process p, requesting session s, increments the counter active[s].

Line 4..8: Process p, requesting session s, attempts to set gate[s] = (0, CLOSED).
The purpose of this is to ensure that any processes requesting session s that are still in
the early stages of executing the trying protocol don’t end up prematurely conflict-free
qualified.

Line 9: Process p executes MUTEXDOORWAY() of the underlying abortable FCFS ME
algorithm.

Line 10: Process p, requesting session s, atomically reads the value of active[s] and adds
a value of (IV 4 1) to it. This has two purposes: the read is intended to check whether
there are any active processes requesting session s that have yet to exit the CS, so that
p knows whether to block on gate[s| in the method CONFLICT-FREE(); and the addition
of (N +1) to active[s] is intended to inform any processes requesting session s that there
is now a process requesting session s in the GME waiting room.

Line 12: One coroutine that p executes is MUTEXWAITINGROOM(), which is the waiting
room of the underlying abortable FCFS ME algorithm.

Line 14: The other coroutine that p executes is CONFLICT-FREE(). The purpose of
CONFLICT-FREE() is to allow process p, requesting session s, to enter the CS concurrently
with other processes requesting session s when there are no processes requesting session

S.

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 124

Line 16: Process p, requesting session s, atomically subtracts (N + 1) from active[s].
The purpose of this is to inform processes requesting session § that there is one less
process requesting session s in the GME waiting room.

Line 17: Process p enters the CS.

Line 18: Process p, requesting session s, atomically reads the value of active[s| and
subtracts a value of 1 from it. This has several purposes. The read is intended to check
whether p is the only process requesting session s active in lines 4..18, and also to check
whether there are any processes requesting session s in the GME waiting room. If both
of these conditions are true, then p may be able to set gate[s] = (0, OPEN), so that
processes requesting session § may proceed into the CS. Also, the subtraction of 1 from
active[s] is intended to indicate to any processes requesting session s that have yet to
enter the GME waiting room that there is one less process requesting session s that is
active in lines 4..18.

Line 19: Process p, requesting session s, checks whether the following conditions hold
when p executes the read at line 18: p is the only process requesting session s active in
lines 4..18, and there is a process requesting session s that is in the GME waiting room.
Line 20: Process p sets gate[s| = (p, CLOSED). If anyone overwrites gate[s] before p
gets a chance to execute the COMPARE_AND_SWAP at line 22, p’'s COMPARE_AND_SWAP
at line 22 will fail.

Line 21: Process p, requesting session s, ensures that no other process requesting session
s has become active between the time p executes line 18 and the time p executes this
line. If some process requesting session s is active in lines 4..18, then p must not attempt
to set gate[s] = (0, OPEN).

Line 22: Process p, requesting session s, attempts to set gate[s] = (0, OPEN), and will
succeed provided that no process has overwritten gate[s] since p set it to (p, CLOSED)
at line 20.

Line 25..29: Process p executes one of MUTEXEXIT() or MUTEXABORT(), depending

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 125

on whether p is mutex qualified or conflict-free qualified.

6.1.5 Proof of Correctness

We start by proving some elementary lemmas that will be useful in proving that the
algorithm in Figure 6.1 satisfies the stated properties.

The first lemma formalizes the intuition about the counter active[s] that we provided
in the informal description. It says that active[s] = a(N + 1) + b, where 0 < b < N, if
and only if there are a processes requesting 5 in the GME waiting room, and there are
b processes requesting s that have executed at least the first line of the trying protocol
but have yet to start executing the exit protocol.

Lemma 6.1: active[s| = a(N + 1) + b, where 0 < b < N, iff there are a processes p that
request session § such that p@{11..16} and there are b processes ¢ that request session s
such that ¢@{4..18}.

Proof: The proof is by induction on the number of steps in the execution of the
algorithm. (Recall that in the formal model an execution is an alternating sequence of
global states and process identifiers, where, intuitively, the process identifier indicates
which process takes a step at that particular point in the execution. Moreover, recall
that every time a process takes a step, it involves executing an operation on zero or
one shared variables.) Since active[s] = 0 initially, the statement is obviously true in
the base case where zero steps have taken place. Let k£ be any positive integer. For
the induction hypothesis, assume that the statement is true for any number of steps
less than k. We now prove the statement true after exactly k steps have taken place.
Assume that active[s] = a(N + 1) + b, where 0 < b < N, after the k™ step of the
algorithm. Further assume that after the k™ step there are a’ processes p that request
session 3 such that p@{11..16} and there are b’ processes ¢ that request session s such
that ¢@{4..18}. (Clearly, since there are at most N processes in the system, 0 < ¥ < N.)

We now show that ¢ = @’ and b = b'. By the Division Theorem, it suffices to show that

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 126

active[s] = a'(N + 1) + b’ after the k™ step.

Either the k' step involved writing active[s] or it did not. Consider the latter case
first. The only ways active[s] can be written to is if a process requesting session s executes
line 3 or line 18, or a process requesting session s executes line 10 or line 16. This, and
our assumption that the k' step did not involve writing active[s|, imply that the k"
step did not involve a process requesting session s executing line 3 or line 18, and it did
not involve a process requesting session s executing line 10 or line 16. It follows that
after the k — 1" step (just before the k™ step), there are a’ processes p that request
session 5 such that p@{11..16} and there are b’ processes ¢ that request session s such
that ¢@{4..18}. By the induction hypothesis, active[s] = a/(N + 1) + V' after the k — 1%
step. Furthermore, by the assumption that active[s] is not written in the k** step, after

the k* step, active[s] = a'(N + 1) + b', as wanted.

Now consider the case where the k" step did involve writing active[s]. The following
are the possible operations that could have been executed during the k™ step: a process
requesting session s incremented (decremented) active[s] by one when it executed line 3
(line 18); or a process requesting session § incremented (decremented) active[s| by N + 1

when it executed line 10 (line 16). Consider each of these possibilities in turn:

Case 1: A process requesting session s incremented (decremented) active[s| by one when

it executed line 3 (line 18) during the k" step.

The assumption that a process requesting session s executed line 3 (line 18) during
the k' step implies that just before the k' step there was one less (additional) process

1% step, there are a’ processes

requesting session s in lines 4..18. That is, after the k —
p that request session § such that p@{11..16}, and there are &' — 1 (¥’ + 1) processes
g that request session s such that ¢@{4..18}. By the induction hypothesis, active[s] =
d(N+1)+ (b —1) (active[s] = a'(N +1) + (' +1)) after the k — 1™ step. Furthermore,

by the assumption that active[s] is incremented (decremented) by one in the k' step,

active[s] =ad' (N+1)+ (' =1)+1=d'(N+1)+¥ (active]s] =a'(N+1)+ (V' +1)—-1=

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 127

a'(N +1) + V) after the k™ step, as wanted.

Case 2: A process requesting session S incremented (decremented) active[s| by N + 1

when it executed line 10 (line 16) during the k™ step.

The assumption that a process requesting session s executed line 10 (line 16) during
the k™ step implies that just before the k' step there was one less (additional) process
requesting session 3 in lines 11..16. That is, after the k — 1?* step, there are a' —1 (a' +1)
processes p that request session s such that p@{11..16}, and there are b’ processes g
that request session s such that ¢@{4..18}. By the induction hypothesis, active[s] =
(@ —1)(N +1)+V (active[s] = (@' +1)(N +1) + ') after the k — 1" step. Furthermore,
by the assumption that active[s] is incremented (decremented) by N + 1 in the k™ step,
active[s] = (@' = 1)(N+ 1)+ 0+ (N+1) =d (N+1)+ b (active[s] = (' +1)(N +1) +
V¥ —(N+1)=d(N+1)+b) after the k** step, as wanted. O

The next corollary says that a process p requesting session s will attempt to busy-
wait in the method CONFLICT-FREE() if there is a process requesting session 3 that has
executed at least one line of the trying protocol but not yet started the exit protocol.
Corollary 6.2: A process p requesting session s evaluates the condition at the start of
the method CONFLICT-FREE() to be true iff at the time when p executes line 10 there is
a process ¢ requesting session $ such that ¢@{4..18}.

Proof: Suppose a process p, requesting some session s, evaluates the condition at the
start of the method CONFLICT-FREE() to be true. Hence [_active[s] mod (N + 1) >
0. Now, Lactive[s] is the value of active[s| p reads when it executes line 10. Hence
active[s] mod (N +1) > 0 when p executes line 10. It then follows from Lemma 6.1 that
there must be a process ¢, requesting session s, such that ¢@{4..18}, when p executes
line 10.

Conversely, suppose that when p executes line 10 there is a process ¢ requesting session
5 such that ¢@{4..18}. So, by Lemma 6.1, active[s] mod (N + 1) > 0 when p executes

line 10. So p reads into [_active[s] a value such that [_active[s] mod (N + 1) > 0. This

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 128

means that p will evaluate the condition at the start of the method CONFLICT-FREE()

to be true. O

Intuitively, the corollary below states that a process p requesting session s will attempt
to open gate[S] upon leaving the CS if and only if when p leaves the CS it is the last
process requesting s to do so, and there is a process requesting session s that is in the

GME waiting room.

Corollary 6.3: A process p requesting session s evaluates the condition at line 19 to be
true iff at the time when p executes line 18 there is no process ¢ # p requesting session s

such that ¢@{4..18} and there is a process r requesting session s such that r@{11..16}.

Proof: Assume that a process p requesting session s evaluates the condition at line 19
to be true. Then [_active[s] mod (N + 1) = 1 A lactive[s] > (N + 1). Now, lactive|s]
is the value of active[s| p reads when it executes line 18. So active[s] mod (N + 1) =
1 A active[s] > (N + 1) is true when p starts executing line 18. So, by Lemma 6.1, when
p executes line 18, there is a process r requesting session 5 such that r@{11..16}. Now,
suppose, by way of contradiction, that there is a process ¢ # p requesting session s such
that ¢@{4..18} when p executes line 18. Then just before p executes line 18, there are at
least two processes u such that u@{4..18}, namely p and g. Therefore, by Lemma 6.1, just
before p executes line 18, active[s] mod (N + 1) > 2. Therefore the value of [_active|s]
immediately after p executes line 18 is such that Lactive[s] mod (N + 1) > 2. Therefore
p evaluates the condition at line 19 to be false, contradicting the assumption that p

evaluates the condition at that line to be true.

Conversely, assume that when p executes line 18 there is no process ¢ # p requesting
session s such that ¢@{4..18} and there is a process r requesting session § such that
r@{11..16}. Now, we consider p@18 to be true when p starts executing line 18, and
so by Lemma 6.1, at the time p starts executing line 18, active[s] mod (N + 1) =
1 A active[s] > (N + 1). Hence, p will read into l_active[s| at line 18 a value such that

Lactives] mod (N + 1) = 1 A Lactive[s] > (N + 1), and thus evaluate the condition at

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 129

line 19 to be true. [

The next lemma says that while a process requesting session s is enabled to execute
lines 9..18, gate[s| is not open, and so, as we will prove in a corollary to this lemma
(Corollary 6.5), processes requesting session s cannot enter the CS conflict-free qualified.
Lemma 6.4: If there exists a process p requesting session s, such that p@{9..18} is
invariant in some time interval [t,, tp], then gate[s].state = CLOSED is invariant in [t,, t;].

Proof: Assume there exists a process p requesting session s, such that p@{9..18} is in-
variant in the time interval [t,, 5]. Suppose, by way of contradiction, that gate[s].state =
CLOSED is not invariant in [t,,). Then there exists a time t4 € [t,, 1] when gate[s| =
(0, OPEN). But gate[s] = (0, CLOSED) initially. Hence it must be the case there exists
a process T, requesting session S, that sets gate[s] = (0, OPEN) at some time t3 < t4 at
line 22. Due to the atomicity of the COMPARE_AND_SWAP at line 22, if there is more
than one process that sets gate[s] = (0, OPEN) prior to t,, then the times when such
processes execute line 22 can be totally ordered. So, without loss of generality, assume
t3 is the last time prior to ¢4 that some process sets gate[s] = (0, OPEN).

Let t5 be the last time when r executes line 21 prior to 3.

Claim 6.4.1: Process p executes line 3 after time t,.

Proof: Since r executes line 22 at time t3, r must have evaluated the condition at
line 21 to be true at time ¢,. Thus Lemma 6.1 implies that either p executes line 3 after
time ¢y, or p executes line 18 before 5. The second alternative is not possible:

By assumption p@{9..18} is invariant during [t,,?,]. So, if p executes line 18 before
ty, we would have t, < t5. By definition, t, < t3 < t4. Thus ¢, < t4, which contradicts
the fact that ¢4 € [t,,%,). Thus the first alternative, that p executes line 3 after time o,
must hold. O (Claim 6.4.1)

Let ¢; be the last time when r executes line 20 prior to 5.

Claim 6.4.2: No process requesting session s executes line 20 in the interval (¢, ¢3).

Proof: Suppose, by way of contradiction, that the claim is false. It follows that

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 130

when 7 executes the COMPARE_AND_SWAP at line 22 at time t3, it will fail. This contra-
dicts the assumption that r’s execution of COMPARE_AND_SWAP at time t3 succeeds. []

(Claim 6.4.2)

Claim 6.4.3: No process requesting session s that executes line 3 after time ¢, will

execute past line 5 in the interval (to,t3).

Proof: Suppose, by way of contradiction, that the claim is false. Let S be the set of
processes requesting session s that execute line 3 after ¢y and execute at least one line
after line 5 in (%o, £3). By the fact that r sets gate[s] = (r, CLOSED) at time t;, and Claim
6.4.2, it must be the case that at line 4 each process in S reads into its copy of [_gate a
value such that [_gate = (r, CLOSED). Thus all processes in S will evaluate the condition
at line 5 to be true. Since the COMPARE_AND_SWAP at line 6 is atomic, we can totally
order the processes in S by the time when they execute line 6. Hence there must be some
process u € S that is the first to execute line 6 at some time ¢, € (t5,?3). By Claim 6.4.2,
and the fact that u is the first process in S to execute line 6, gate[s| = (r, CLOSED)
is still true at time t,. This, and the fact that u.l_gate = (r, CLOSED), imply that u’s
COMPARE_AND_SWAP at line 6 at time ¢, will be successful. But this implies that r’s
COMPARE_AND_SWAP at t3 will fail, contradicting the assumption that it succeeds. [

(Claim 6.4.3)

By Claim 6.4.1, p executes line 3 after ¢5. It then follows from Claim 6.4.3 that p
cannot execute past line 5 in the interval (¢, ¢3). Hence p will execute line 8 at some time
t € (t3,t,). The only reason the COMPARE_AND_SWAP at this line can fail is if some other
process sets gate[s| # (0, OPEN) at some time ¢’ € (t3,t). By inspection of the algorithm,
every place where a process can set gate[s] # (0, OPEN) has the side effect of setting
gatels].state = CLOSED. Hence, it must be the case that either some process other than
p sets gate[s].state = CLOSED at t' € (t3,t), or p’s execution of COMPARE_AND_SWAP
at line 8 succeeds and p sets gate[s] = (0, CLOSED) at time t € (t3,t,). But, by

assumption, gate[s] = (0, OPEN) at time t; € [t,,tp]. Hence some process must set

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 131

gatel[s] = (0, OPEN) at some time after t3, but before ¢4. This contradicts the fact that
t3 is the last time prior to ¢4 that a process sets gate[s] = (0, OPEN). O

Corollary 6.5: Suppose a process g requests session s and executes line 10 at time t,.
Let t, be a time such that ¢, > ¢,. If there exists a process p, requesting session 3, such
that p@{9..18} is invariant in the interval [¢,,], then ¢ cannot be conflict-free qualified
in [tg, ty]-

Proof: Assume process p requests session s and p@{9..18} is invariant in the interval
[ta,ts]. Now suppose, by way of contradiction, that ¢ is conflict-free qualified in the
interval [t,, t]. Thus ¢ finishes executing the method CONFLICT-FREE() by time ¢;. Since,
by assumption, p@{9..18} is invariant in [t,, t3], Corollary 6.2 implies that ¢ evaluates the
condition at the start of the method CONFLICT-FREE() to be true. Hence ¢ busy-waits
in CONFLICT-FREE() until gate[s] = (0, OPEN). By Lemma 6.4, however, gate[s].state =
CLOSED is invariant in [t,,], and so ¢ cannot finish executing CONFLICT-FREE() by

time t,, which contradicts the fact that it does. (J

Mutual Exclusion

Theorem 6.6: The algorithm in Figure 6.1 satisfies the mutual exclusion property.

Proof: Let p be a process that requests session s and ¢ be a process that requests
session s. Suppose, by way of contradiction, that p and ¢ are in the CS simultaneously at
time ¢. Since at most one process in the CS is mutex qualified, without loss of generality,
assume ¢ is conflict-free qualified.

Let time t, be the time when g executes line 10.

Claim 6.6.1: Process p executes line 8 of its current invocation after time ¢,,.

Proof: Suppose, by way of contradiction, that the claim is false. Thus p@{9..18} is
invariant in the interval [t,, t]. From this and Corollary 6.5 it follows that ¢ cannot be
conflict-free qualified in [t,, t], which contradicts the fact that ¢ is in the CS conflict-free

qualified at time ¢. O (Claim 6.6.1)

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 132

Either p is mutex qualified or conflict-free qualified at time t. We consider each of
these cases in turn:

Case 1: Process p is mutex qualified.

By Claim 6.6.1, p executes line 8 after ¢ executes line 10, and so p starts execut-
ing the method MUTEXDOORWAY() at line 9 after ¢ finishes executing the method
MuTEXDOORWAY() at line 9. Hence, due to the FCFS property of A, p cannot be
mutex qualified until ¢ executes the method MUTEXABORT() at line 28, contradicting
the assumption that p and ¢ are in the CS simultaneously at time ¢.

Case 2: Process p is conflict-free qualified.

By Claim 6.6.1, p executes line 8 after ¢ executes line 10, and so p executes line 10
after ¢ does. Since p and ¢ are both conflict-free qualified, symmetrically, ¢ executes
line 10 after p does. This is a contradiction.

Both cases lead to a contradiction, and hence mutual exclusion holds. []

FCFS

Theorem 6.7: The algorithm in Figure 6.1 satisfies the FCFS property.

Proof: Assume p requests session 3, g requests session s, and p doorway-precedes q.
We must prove that g does not enter the CS before p enters the CS. Suppose, by way of
contradiction, that it does. There are two cases, depending on how ¢ enters the CS.
Case 1: Process ¢ enters the CS mutex qualified before p.

Since p doorway-precedes ¢, p finishes executing the method MUTEXDOORWAY ()
at line 9 before ¢ begins executing the method MUTEXDOORWAY() at line 9. Hence,
by the FCFS property of A, ¢ cannot become mutex qualified until p executes one of
MuTeXEX1IT() or MUTEXABORT(). This contradicts the assumption that ¢ enters the
CS mutex qualified before p.

Case 2: Process q enters the CS conflict-free qualified before p.

Let t, be the time when ¢ executes line 10, and let ¢, be the time when p enters

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 133

the CS. Since p doorway-precedes ¢, p@{9..18} is invariant in the interval [¢,,¢,]. By
Corollary 6.5, ¢ cannot be conflict-free qualified in the interval [t,,t,]. This implies that
g cannot enter the CS conflict-free qualified before p, which contradicts the assumption

that it does. O

Lockout Freedom

Theorem 6.8: The algorithm in Figure 6.1 satisfies the lockout freedom property.

Proof: Suppose, by way of contradiction, that the algorithm does not satisfy the
lockout freedom property. This means that there is an execution in which some process
gets stuck forever in the GME waiting room when it tries to enter the CS. The following

claim proves this is impossible.

Claim 6.8.1: No process can be stuck forever in the method

MUTEXWAITINGROOM().

Proof: A is an abortable mutual exclusion algorithm that satisfies the lock-
out freedom property. Hence the only way for a process to get stuck forever in
MUuTEXWAITINGROOM() is if some other process becomes mutex qualified and then
does not execute the method MUTEXEXIT(); or, if some process starts executing
MuTEXWAITINGROOM(), aborts execution of it, but then does not execute the method
MUTEXABORT(). If a process becomes mutex qualified, then we see by examining the
algorithm it will eventually execute the method MUTEXEXIT(). Furthermore, the only
way a process will abort execution of MUTEXWAITINGROOM() once started is if the pro-
cess becomes conflict-free qualified. In this case, again by examining the algorithm, we
see that such a process will eventually execute the method MUTEXABORT(). Hence no

process can be stuck forever in the method MuTEXxWAITINGROOM(). O (Claim 6.8.1)

Claim 6.8.1 contradicts the fact that there is an execution in which some process is

stuck forever in the GME waiting room. [J

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 134

Concurrent Entering

Theorem 6.9: The algorithm in Figure 6.1 satisfies the concurrent entering property.

Proof: Let p be a process requesting session s that is in the GME waiting room at
time t,, and let ¢, be the time when p enters the CS. Assume there are no active processes
requesting session § in [t,, ts]. We want to show that p enters the CS in a bounded number
of its own steps in [t4, ty].

Now, either p evaluates the condition at the beginning of CONFLICT-FREE() to be
true prior to i, or it does not. In the latter case, it is clear that p will complete the
method CONFLICT-FREE() and will enter the CS in a bounded number of its own steps.

So assume that p evaluates the condition at the beginning of CONFLICT-FREE()
to be true at some time t' < t;. Thus p will busy-wait at line 2 of the method
CONFLICT-FREE(). For p to enter the CS in a bounded number of its own steps in
[ta,ts], it suffices that gate[s] = (0, OPEN) is invariant in [t,,%,]. The rest of the proof
shows this.

From the fact that p evaluates the condition at the beginning of CONFLICT-FREE()
to be true, and Corollary 6.2, it follows there is a process ¢q requesting session 5 such that
q@{4..18} when p executes line 10 at some time ¢ < t'.

Let S = {r| process r requests session s A r@{4..18} at time ¢ }. Clearly ¢ € S, and
so S is non-empty. Since no process in S can be active in [t,,], and the fact that
processes execute line 18 atomically, it follows that some process v € S must be the last
to execute line 18 at some time ¢, € (¢,t,). Clearly p@{11..16} at time t,.

Claim 6.9.1: There is no process u requesting session 3 such that u@{4..18} at any
point in the interval (¢, tp].

Proof: Suppose, by way of contradiction, that there is a process u requesting session
5 such that u@{4..18} at some time in (,,). Now, v is the last process in S to execute
line 18 (at time t,), and so u ¢ S. Hence u must execute line 3 at some point in the

interval (¢,¢,]. This implies that p doorway-precedes u, which, in turn, implies, by the

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 135

FCFS property of the 2-session algorithm, that p must enter the CS before u. Thus u
must be active during [t,,], which contradicts that no process requesting session § is
active during [t,,?5]. O (Claim 6.9.1)

Claim 6.9.2: There is no process u # v requesting session 3 such that u@{4..18} at
time t,.

Proof: Suppose, by way of contradiction, that there is a process u # v requesting
session § such that u@{4..18} at time t,. Since at time ¢, process v executes an atomic
operation at line 18, it must be the case that immediately after time ¢,, u@{4..18} is still
true. Hence u@{4..18} at a point in the interval (¢,,?,], which contradicts Claim 6.9.1.
O (Claim 6.9.2)

As noted before Claim 6.9.1, p@{11..16} at time t,. This, Claim 6.9.2, and Corollary
6.3, imply that v will evaluate the condition at line 19 to be true. In other words, v will
attempt to open gate[s] before it returns to the NCS.

Let ¢, > t, be the time when v executes line 20. By the atomicity of the write
that takes place at line 20, some process z requesting session § (possibly z = wv) is
the last to execute line 20 in [t,t,). It immediately follows from Claim 6.9.1 that
z will evaluate the condition at line 21 to be true, and will successfully execute the
COMPARE_AND_SWAP at line 22. Hence gate[s] = (0, OPEN) at some time ¢, € (t),t,).
The only way gate[s] # (0, OPEN) at any point in [t,, ;] is if some process u requesting
session $ updates gate[s] by executing line 6, line 8, or line 20 in the interval (¢,,t,).
However, by assumption, z is the last process requesting session 5 to execute line 20
prior to t,, and Claim 6.9.1 implies that —u@6 and —u@8 in (t,,¢,). Hence u cannot
execute line 6, line 8, or line 20 in (¢,,t,). It follows that gate[s] = (0, OPEN) in [t4, t),

as required. [

Bounded Exit

Theorem 6.10: The algorithm in Figure 6.1 satisfies the bounded exit property.

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 136

Proof: Since the underlying FCFS abortable ME algorithm satisfies the bounded exit
property, it is evident by inspection of the algorithm that there are no unbounded loops

in the exit protocol. Hence the 2-session algorithm satisfies the bounded exit property.

g

6.1.6 RMR Complexity

We first broadly sketch the proof that the resulting 2-session GME algorithm has RMR
complexity O(f(N)), and then proceed with the details.

Lemma 6.12 shows that at most two processes requesting session s can update gate[s]
in lines 20..22 while a process requesting session s is blocked on gate[s] in the GME waiting
room. From this it follows (Lemma 6.13) that only a constant number of successful
COMPARE_AND_SWAPs can take place at line 6 or line 8 by processes requesting session
5 while a process is blocked on gate[s| in the GME waiting room. Together these two
lemmas imply that while a process is blocked on gate[s] its local copy of that variable can
be invalidated only a constant number of times. From this and the fact that there are
no other loops in the reduction, it follows that the reduction has O(1) RMR complexity,
and so the resulting 2-session GME algorithm has O(f(/N)) RMR complexity, under the
CC model.

The first Lemma we prove here is rather technical and is required in the proof of
Lemma 6.12. This lemma essentially says that if a process ¢ requesting session s finds
that it is responsible for opening gate[s], then processes requesting session s that are
currently in the GME waiting room cannot leave it until ¢ has finished the “gate opening”
phase of the exit protocol.

Lemma 6.11: If a process ¢ requesting a session 5 executes line 18 at some time ¢ and
subsequently evaluates the condition at line 19 to be true, then any process requesting
session s that is in the GME waiting room at time ¢ cannot leave the GME waiting room

before g executes past line 22.

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 137

Proof: Suppose, by way of contradiction, that the lemma is false. Thus, there is a
run « where the precondition of the lemma holds but the consequent is violated.

By the atomicity of operations, there exists a total ordering of the times in a at
which some process requesting a session § executes line 18 and subsequently evaluates
the condition at line 19 to be true. Let t; < t5 < t3 < ... be this ordering, and let
k be the smallest positive integer such that there is a process requesting a session s in
the GME waiting room at time ¢, that leaves the GME waiting room before the process
requesting session 5 that executes line 18 at time t; executes past line 22. Integer k£ is
well-defined because of the assumption that the lemma is false. Let g be the process
requesting session § that executes line 18 at time t;, and let p be a process requesting
session s that is in the GME waiting room at time ¢; and leaves the GME waiting room

before ¢ executes past line 22.

For p to leave the GME waiting room it must be mutex qualified or conflict-free
qualified. Likewise, when g executes through the CS, it must do so as a mutex qualified

or conflict-free qualified process.

We prove some claims and then proceed by considering the different ways ¢ and p

execute through the CS.

Claim 6.11.1: If g executes through the CS mutex qualified, then ¢ starts execution
of MUTEXDOORWAY() at line 9 before p finishes execution of MUTEXDOORWAY() at

line 9.

Proof: Assume that ¢q executes through the CS mutex qualified, and suppose, by way
of contradiction, that ¢ starts execution of MUTEXDOORWAY() at line 9 after p finishes
execution of MUTEXDOORWAY() at line 9. Then, by the FCFS property of A, ¢ cannot
be mutex qualified before p executes one of MUTEXEXIT() or MUTEXABORT(). This

contradicts that ¢ executes line 18 while p is in the GME waiting room. O (Claim 6.11.1)

Claim 6.11.2: If ¢ executes through the CS conflict-free qualified, then ¢ executes

line 10 before p executes line 8.

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 138

Proof: Assume ¢ executes through the CS conflict-free qualified, and let time ¢}, be
the time when ¢ executes line 10. Now, suppose by way of contradiction that ¢ executes
line 10 after p executes line 8. From this and the fact p is in the GME waiting room at
time ¢y, it follows that p@{9..16} is invariant during [¢}, tx]. By Corollary 6.5, ¢ cannot be
conflict-free qualified in the interval [t} ¢x], which implies that ¢ cannot execute through
the CS in the interval [t}, ?x]. This, in turn, implies that ¢ cannot execute line 18 at time
t, which contradicts the assumption that it does. O (Claim 6.11.2)

Claim 6.11.3: Process ¢ executes line 8 before p executes line 10.

Proof: Follows immediately from Claim 6.11.1 and Claim 6.11.2. O (Claim 6.11.3)

We now consider the different ways in which ¢ and p execute through the CS, in each
case reaching a contradiction.
Case 1: Both p and ¢ execute through the CS mutex qualified.

By assumption, p is in the GME waiting room when ¢ is mutex qualified and executes
line 18. Hence, by the mutual exclusion property of A, ¢ must execute MUTEXEXIT()
before p can leave the GME waiting room mutex qualified. From this and the fact that
g must execute past line 22 before it can execute MUTEXEXIT() it follows that ¢ must
execute past line 22 before p can leave the GME waiting room. This contradicts the
assumption that p leaves the GME waiting room mutex qualified before ¢ executes past
line 22.

Case 2: Process p executes through the CS mutex qualified and ¢q executes through the
CS conflict-free qualified.

Claim 6.11.2 implies that ¢ finishes execution of MUTEXDOORWAY () at line 9 before
p begins execution of MUTEXDOORWAY() at line 9. Hence, by the FCFS property of
A p is mutex qualified after ¢ executes MUTEXABORT(). From this and the fact that
g must execute past line 22 before it executes MUTEXABORT(), ¢ must execute past
line 22 before p is mutex qualified. This contradicts the assumption that p leaves the

GME waiting room mutex qualified before g executes past line 22.

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 139

Case 3: Process p executes through the CS conflict-free qualified.

Claim 6.11.3 and the assumption that p is in the GME waiting room when ¢ executes
line 18 imply ¢@{9..18} when p executes line 10. From this and Corollary 6.2, it follows
p will evaluate the condition at the start of CONFLICT-FREE() to be true and will hence
block on gate[s] until it equals (0, OPEN).

Since gate[s] = (0, CLOSED) initially, there must be some process r requesting session
5 that sets gate[s] = (0, OPEN) at line 22 before p leaves the GME waiting room conflict-
free qualified. Due to the atomicity of the operation at line 22, a total order can be placed
on the times when processes requesting session 5 execute this line. So, without loss of
generality, we assume that r is the process that last executes line 22 successfully prior to
p leaving the GME waiting room. Now, r must evaluate the condition at line 19 to be
true prior to executing line 22. Let ¢, be the time when r executes line 18. By Corollary
6.3, at time ¢, there is no process z # r requesting session s such that z@{4..18} and
there is a process u requesting session s such that u@{11..16} (i.e., u is in the GME
waiting room).

Thus either ¢ executes line 3 after ¢, or ¢ executes line 18 before #,.

Case 3.1: Process ¢ executes line 18 before ,.

Process r executes line 18 after g executes line 18, and so, again by Corollary 6.3, r
executes line 3 after ¢ executes line 18. (Recall that g, like 7, evaluates the condition
at line 19 to be true.) By assumption, p is in the GME waiting room when ¢ executes
line 18. Hence p is in the GME waiting room when r executes line 3. This implies that
p doorway-precedes r. Thus by the FCFS property of the 2-session algorithm, p must
enter the CS before r, and so r executes line 22 after p has left the GME waiting room.
This contradicts the fact that r sets gate[s] = (0, OPEN) at line 22 before p leaves the
GME waiting room.

Case 3.2: Process ¢ executes line 3 after ¢,.

Recall that we defined k£ as the smallest positive integer such that there is a process

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 140

requesting a session s in the GME waiting room at time t; that leaves the GME waiting
room before the process requesting session § that executes line 18 at time 7, executes
past line 22.

Either k=1 or k£ > 1.

Consider the case where £ = 1. By assumption ¢ executes line 3 after r executes
line 18, and so ¢ executes line 18 after r executes line 18. This implies that ¢, > t,.
However, also by the assumption that & = 1, #; is the first time in « some process
requesting session s executes line 18 and subsequently evaluates the condition at line 19
to be true. This implies that t; < t,, which contradicts that ¢, > t,.

Now consider the case where k£ > 1.

Claim 6.11.4: Process r must execute line 22 before g executes line 18.

Proof: Recall that there is a process u requesting session s such that u@{11..16}
(i.e., u is in the GME waiting room) at time ¢,.. Since g executes line 3 after ¢,, by
assumption, it follows that v doorway-precedes ¢, and so by the FCFS property of the
2-session algorithm, u must enter the CS before ¢. Also, because ¢ executes line 3 after
t., ¢ must execute line 18 after t,. That is, ¢z > t,, and so, by the minimality of &k, r
must execute line 22 before u leaves the GME waiting room. This implies that r must
execute line 22 before ¢ enters the CS, which, in turn, implies that » must execute line 22
before ¢ executes line 18. O (Claim 6.11.4)

Claim 6.11.5: Process r must execute line 22 at the same time or after ¢ executes
line 18.

Let ¢ be the time when ¢ executes line 8. Clearly ¢@{9..18} in the interval (¢}, %),
and so by Lemma 6.4, gate[s|.state = CLOSED in (t},t;). Now, it follows from Claim
6.11.3 that p enters the GME waiting room after ¢]. From this and the fact that p
must read gate[s] = (0, OPEN) in order to leave the GME waiting room, p must read
gate[s] = (0, OPEN) at some time after ¢. Since gate[s|.state = CLOSED is invariant in

(tf,tx), the earliest p can read gate[s] = (0, OPEN) is at time ¢;. This means that there

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 141

is a process that sets gate[s] = (0, OPEN) at time t; or after. Since, by assumption, r
is the last process to set gate[s] = (0, OPEN) prior to p leaving the GME waiting room,
r must execute line 22 at time ¢, or after. That is, » must execute line 22 at the same

time or after g executes line 18. [0 (Claim 6.11.5)

Claim 6.11.4 and Claim 6.11.5 contradict each other. It follows that the Lemma holds.

The next lemma that we prove is at the heart of the RMR complexity result. It
says that while a process requesting session s is in the GME waiting room, at most two
processes requesting session § can attempt to open gate[s|.

Lemma 6.12: If p is a process requesting session s and it enters the GME waiting room
at some time ¢, and leaves at some time t,, then there are at most two processes requesting
session § that are ever enabled to execute lines 20..22 during the interval (¢4, tp).

Proof: Assume p is a process requesting session s and enters the GME waiting room
at a time t,, and leaves at a time t,. Now, suppose by way of contradiction that there
are three processes, qi, g2, and ¢3, requesting session 5 enabled to execute lines 20..22 at
some times in the interval (Z,,t,). The atomicity of the operation at line 18 allows us
to totally order the times when ¢, g2, and g3 execute line 18. So assume without loss
of generality that ¢; executes line 18 first, g, executes line 18 second, and g3 executes
line 18 third, at some times ¢, to, and t3, respectively. Since ¢, ¢», and g3 are enabled
to execute lines 20..22 in (t,,), it must be the case that ¢, g2, and g3 each evaluate the
condition at line 19 to be true prior to ¢,. From this and Corollary 6.3 it follows that
when each ¢; € {q1,q2, g3} executes line 18, there is no process ¢ # ¢; requesting session
5 such that q@{4..18}. This, and the ordering we placed on ¢, ¢2, and ¢3, imply that ¢

executes line 3 after ¢1, and g3 executes line 3 after ¢,.

We proceed by considering whether p is in the GME waiting room at time %5, reaching

a contradiction in each case.

Case 1: Process p is in the GME waiting room at time %,.

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 142

By the hypothesis of this case and the fact that ¢3 executes line 3 after ¢5, p doorway-
precedes g3. Hence, by the FCFS property of the 2-session algorithm, p must enter the
CS before ¢3. This implies that p leaves the GME waiting room before g3 is enabled to
execute lines 20..22. But this contradicts the assumption p is in the GME waiting room

when g3 is enabled to execute lines 20..22.
Case 2: Process p is not in the GME waiting room at time 5.
Claim 6.12.1: Process p enters the GME waiting room after ¢, executes line 18.

Proof: Suppose, by way of contradiction, that p enters the GME waiting room before
go executes line 18 (i.e., before time t3). By the hypothesis of this case, p must also
leave the GME waiting room before ¢, executes line 18 at time t,. This implies that p
will not be in the GME waiting room when ¢, is enabled to execute lines 20..22, which
contradicts the assumption p is in the GME waiting room when ¢ is enabled to execute
lines 20..22. O (Claim 6.12.1)

By Corollary 6.3 there is some process r requesting session s that is in the GME
waiting room at time ;. Since ¢, executes line 3 after ¢;, it follows that r doorway-
precedes ¢o. Now, by Lemma 6.11, we know that ¢; must execute past line 22 before r
enters the CS; and by the FCFS property of the algorithm, » must enter the CS before ¢,.
Hence ¢; must execute past line 22 before g, enters the CS, and so ¢; must execute past
line 22 before gy executes line 18. From this and Claim 6.12.1, it follows that p enters
the GME waiting room after ¢; executes past line 22. This contradicts the assumption p
is in the GME waiting room when ¢, is enabled to execute lines 20..22.

Each case leads to a contradiction, so the Lemma holds. [

Lemma 6.13: At most five successful COMPARE_AND_SWAPs in lines 6 or 8 are executed
by processes requesting session § while a process requesting session s is in the GME
waiting room.

Proof: = Suppose, by way of contradiction, that there are six successful

COMPARE_AND_SWAPs in line 6 or 8 by processes requesting session 5 while a process

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 143

p requesting session s is in the GME waiting room. Since gate[s] = (0, CLOSED) after
a successful COMPARE_AND_SWAP at line 6 or line 8, and for a COMPARE_AND_SWAP
at line 6 or 8 to be successful it must be that gate[s] # (0, CLOSED), it follows that
gate[s] is assigned a value not equal to (0, CLOSED) in-between any two of the successful
COMPARE_AND_SWAPs in line 6 or 8. The only places where such a value can be assigned
in the algorithm are at lines 20 and 22. Therefore between the first and last of the six
successful COMPARE_AND_SWAPs in line 6 or 8, there are at least five executions of lines
20 and 22. Thus, while p is in the GME waiting room, there are five executions of lines
20 and 22. However, by Lemma 6.12, while p is in the GME waiting room there are at
most two processes requesting session s enabled to execute lines 20..22 and thus at most

four executions of lines 20 and 22. Thus we have reached a contradiction. O

Theorem 6.14: The reduction presented in Figure 6.1 has RMR complexity O(1) (i.e.,

the number of remote memory references outside of A is constant).

Proof: The only loop in the reduction is the busy-wait loop in the method
CONFLICT-FREE(). Outside of this method, it is clear that there are only a constant
number of remote memory references. Now, in the CC model, a process busy-waiting on
some variable v makes a remote memory reference only when some other process invali-
dates v by writing a new value to it. Hence, to show that the reduction has O(1) RMR
complexity, it suffices to show that gate[s] can be invalidated only a constant number of
times while some process p requesting s is blocked on gate[s| in CONFLICT-FREE() (i.e.,

while p is in the waiting room).

The only places in the algorithm where gate[s] can be written to is at lines 6, 8, 20,
and 22 (by a process requesting session 5). By Lemma 6.13, there are at most 5 suc-
cessful COMPARE_AND_SWAPs in lines 6 and 8 that are executed by processes requesting
session § while a process requesting s is in the GME waiting room. (We assume failed
COMPARE_AND_SWAPs do not invalidate variables, as we described at the beginning of

this chapter.) Furthermore, by Lemma 6.12 there are at most 2 processes requesting

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 144

session 5 that are ever enabled to execute lines 20..22 while a process requesting session
s is in the GME waiting room. This implies that there are most 4 times gate[s| can be
invalidated at lines 20 and 22 while a process requesting session s is in the GME waiting
room. Hence, in total, there are at most 9 times that gate[s] can be invalidated while
some process requesting session s is in the waiting room. [J

Theorem 6.15: The 2-session GME algorithm in Figure 6.1 has RMR complexity

O(f(N)), where O(f(N)) is the RMR complexity of A.

Proof: Follows immediately from Theorem 6.14. [J

6.2 M-Session GME With Low RMR Complexity

Figure 6.3 M-Session GME Algorithm; Process p € {1..N}
private variables:

mysession: integer /* Session that p wants to attend; set before p leaves the NCS */
mysession_2S: {1,2} /* Version of mysession for the 2-session GME algorithm */
M: integer /* The number of sessions this GME algorithm can handle */

1: loop
2: NCS
3: if M > 1 then
4: if mysession < |M/2| then
5: TRYING_LEFT(mysession);
6: mysession_2S := 1;
T else
8: TRYING_RIGHT(mysession — | M/2]);
9: mysession_25 = 2;
10: end if
11: TRYING_2S(mysession_25);
12: end if
13: CS
14: if M > 1 then
15: EXIT_2S(mysession_25);
16: if mysession_25 = 1 then
17: EXIT_LEFT(mysession);
18: else
19: EXIT_RIGHT(mysession — | M /2]);
20: end if
21: end if

22: end loop

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 145
6.2.1 Introduction

In this section we present an M-session, N-process GME algorithm with RMR complexity
O(log M - f(N)) under the CC model. The algorithm is constructed recursively on M.
It uses as subroutines three N-process GME algorithms: an |M/2]-session, which we
call the “left” algorithm and denote A;; an [M/2]-session, which we call the “right”
algorithm and denote Ag; and a 2-session algorithm, which we will denote Ay. A; and
Apg are obtained recursively; Ay is the algorithm we presented in Section 6.1.

The base case of the recursion, when M = 1, is trivial: Since there is only one
session (and therefore, no possibility of conflict) each process can enter the CS directly,
without any coordination: That is, the trying and exit protocols are the empty programs!
For M > 1, the M-session algorithm works as follows. A process p requesting session
s € [1..M] invokes the trying protocol of Aj requesting session s, if s is in the first
(“left”) half of the range [1..M], i.e., if s € [1..|M/2]]; and it invokes the trying protocol
of Ag requesting session s — | M/2], if s is in the second (“right”) half of [1..M], i.e., if
s € [[M/2]..M]. Because of the mutual exclusion property of A; and Ag, all processes
that have completed the trying protocol of A; must be requesting the same session, say
sp; and all processes that have completed the trying protocol of Az must be requesting
the same session, say sg. To ensure mutual exclusion of the M-session algorithm, we
must now allow only the group of processes requesting sy, or only the group of processes
requesting sr to gain access to the CS. To achieve this, these two groups of processes
compete for access to the CS by executing the trying protocol of the 2-session GME
algorithm A,. Processes requesting s;, — i.e., those that completed the trying protocol
of Ay — try to enter the CS by first executing the trying protocol of Ay, requesting
session 1. Similarly, processes requesting sg try to enter the CS by first executing the
trying protocol of Ay, requesting session 2. After completing the CS, a process executes
the exit protocols of the algorithms it used in its entry protocol, in reverse order: First

the exit protocol of Ay and then the exit protocol of Ay or Ap (whichever of the two it

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 146

used in its entry protocol).

The algorithm is shown in pseudocode in Figure 6.3, where we use the following
notational conventions. The trying protocol of Ay, Az and Ay are denoted TRYING_LEFT,
TRYING_RIGHT and TRYING_2S, respectively. Similarly for the exit protocols. In our
GME algorithms we have always assumed that before the process leaves the NCS, a
private variable mysession is set to the session that the process is requesting in its attempt
to enter the CS. In the algorithm informally described above, when we use each of Ay, Ag
and A, we want to be able to set the private mysession variable used by that algorithm
appropriately. We indicate the desired value of mysession by “passing” it as a parameter
to the trying or exit protocol of the relevant algorithm. For example, the notation
TRYING_2S(2) means: execute the trying protocol of Ay, having set the private mysession
variable of that algorithm to 2.

We proceed as follows: we give some definitions relative to the algorithm, present a

proof of correctness, and then analyze the RMR complexity of the algorithm.

6.2.2 Definitions

GME Trying Protocol: The trying protocol consists of lines 3..12
GME Waiting Room: The waiting room is the same as the trying protocol.

GME Exit Protocol: The exit protocol consists of lines 14..21

6.2.3 Proof of Correctness

Let Ay; be the M-session GME algorithm depicted in Figure 6.3, and let Ay be the
2-session algorithm in Figure 6.1 (i.e., the algorithm whose trying and exit protocols are
defined by TRYING_2S and EXIT_2S).

We now prove that A;, satisfies each of the required GME properties.
Theorem 6.16: A;; satisfies the following properties: mutual exclusion, lockout free-

dom, concurrent entering, and bounded exit.

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 147

Proof: The proof is by induction on M, the number of sessions the algorithm handles.
In the base case (M = 1) processes are immediately admitted to the CS and immediately
return to the NCS after leaving the CS. Thus the algorithm satisfies lockout freedom,
concurrent entering, and bounded exit in this case. Moreover, since M = 1, there is
no possibility of processes requesting conflicting sessions, and hence the algorithm also
satisfies mutual exclusion in this case. Let k£ be an integer such that £ > 2. For the

induction step, assume that the theorem holds for all values of M such that 1 < M < k.

We now prove the theorem true for M = k. Let A;, be the |k/2]-session algorithm
whose trying and exit protocol is defined by TRYING_LEFT and EXIT_LEFT, respectively.
Furthermore, let Ap be the [k/2]-session algorithm whose trying and exit protocol is
defined by TRYING_RIGHT and EXIT_RIGHT, respectively. By the induction hypothesis,
A; and A both satisfy mutual exclusion, lockout freedom, concurrent entering, and

bounded exit.
We start by proving that mutual exclusion holds when M = k.

Let p be a process that requests session s, and ¢ be a process that requests session
Sq, Where s, # s,. Suppose, by way of contradiction, that p and ¢ are in the CS simul-
taneously at time t. Either p.mysession_2S and q.mysession_2S have the same value, or

different values.
Case 1: p.mysession_25 = q.mysesston_285.

In this case, both p and ¢ must execute TRYING_LEFT, or they both must execute
TRYING_RIGHT. Assume p and ¢ both execute TRYING_LEFT. The mutual exclusion
property of A; implies that at most one of p or ¢ can be enabled to execute lines 11..15
at a given time. This contradicts the assumption p and ¢ are in the CS simultaneously
at time . Now assume p and ¢ both execute TRYING_RIGHT. Then the values p and ¢
pass to the call TRYING_RIGHT are in the range [1, [M/2]], and since s, # s,, the values
passed to TRYING_RIGHT are different. Thus, by the mutual exclusion property of Ay, at

most one of p or ¢ can be enabled to execute lines 11..15 at a given time. This contradicts

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 148

the assumption p and ¢ are in the CS simultaneously at time ¢.
Case 2: p.mysession_25 # q.mysession_25.

In this case, the mutual exclusion property of Ay prevents p and ¢ from being in the
CS simultaneously at time ¢, contradicting the assumption p and ¢ are both in the CS
at time ¢.

This completes our proof that mutual exclusion holds when M = k. We now prove
that lockout freedom holds when M = k.

Suppose, by way of contradiction, that a process p is stuck forever in the trying
protocol. Process p must be stuck in either TRYING_LEFT, TRYING_RIGHT, or TRYING_2S.

Claim 6.16.1: Process p cannot be stuck in TRYING_2S or EXIT_28S.

Proof: The bounded exit property of A, immediately implies that p cannot be stuck
in EXIT_2S. Suppose, by way of contradiction, that p is stuck in TRYING_2S. Then
the lockout freedom property of Ay implies that there is some process ¢ that executed
TRYING_2S but then did not execute EXIT_2S. The only way for this to happen is if ¢
stays in the CS forever; this is impossible. Hence ¢ must execute EXIT_2S, contradicting
the fact that ¢ does not execute ExiT_2S. O (Claim 6.16.1)

Claim 6.16.2: Process p cannot be stuck in TRYING_LEFT or TRYING_RIGHT.

Proof: Suppose, by way of contradiction, that p is stuck in TRYING_LEFT; the ar-
gument, for TRYING_RIGHT is analogous. By the lockout freedom property of Ay, the
assumption that p is stuck in TRYING_LEFT implies that some other process ¢ executed
TRYING_LEFT but then did not execute EXIT_LEFT. The only way for this to happen is if
q is stuck in one of TRYING_2S, EXIT_2S, or the CS. The first two alternatives contradict
Claim 6.16.1, and the third is impossible. O (Claim 6.16.2)

Claim 6.16.1 and Claim 6.16.2 contradict the fact that p is stuck in either
TRYING_LEFT, TRYING_RIGHT, or TRYING_28S.

This completes our proof that lockout freedom holds when M = k. We now prove

that concurrent entering holds when M = k.

CHAPTER 6. LocAL-SPIN GME UNDER THE CC MODEL 149

Let p be a process requesting session s, that is in its waiting room at time ¢;, and ¢, be
the time when p enters the CS. We show that if there is no active process that is requesting
a different session in the interval [t1, t5], then p enters the CS in a bounded number of its
own steps. There are three possible places in the waiting room where p can be waiting
at time £;: TRYING_LEFT, TRYING_RIGHT, or TRYING_2S. If p is in TRYING_LEFT or
TRYING_RIGHT, then the concurrent entering property of A;, and Ag implies that p can
finish executing TRYING_LEFT and TRYING_RIGHT in a bounded number of its own steps.
If pis in TRYING_2S, then the concurrent entering property of A, implies that p will finish
executing TRYING_2S in a bounded number of its own steps.

This completes our proof that concurrent entering holds when M = k. We now prove
that bounded exit holds when M = k.

By the bounded exit property of Ay, a process p can finish EXIT_2S in a bounded
number of its own steps, and by the bounded exit property of Ay, and Ag, p can finish

EXIT_LEFT and EXIT_RIGHT in a bounded number of its own steps. [J

6.2.4 RMR Complexity

Let T(M) be the worst-case RMR, complexity of the M-session GME algorithm in Fig-
ure 6.3, and let f(N) be the worst-case RMR, complexity of the 2-session N-process GME
algorithm in Figure 6.1.

It is clear from the algorithm that T'(M) satisfies the following recurrence:

T(1)=0
T() < f(N)
T(3) < 2/(N)
T(M) < T([M/2]) + f(N), it M > 4

A solution to this recurrence yields T'(M) = O(log M - f(N)). Hence the algorithm
in Figure 6.3 has RMR complexity O(log M - f(N)).

Chapter 7

Conclusion

The major contribution of this thesis is the presentation of a number of local-spin group
mutual exclusion algorithms — each in the form of a reduction to a FCFS abortable
mutual exclusion algorithm — that satisfy the concurrent entering property defined by
Hadzilacos [8]. To our knowledge, there are no other such algorithms currently in exis-
tence. In addition to this, we have proven that the RMR lower bound under the DSM
model for any 2-session group mutual exclusion algorithm (and hence for any GME al-
gorithm) is (). This lower bound holds irrespective of the synchronization primitives

allowed.

Of the GME algorithms we have presented, several are intended to run under the DSM
model, and one is intended to run under the CC model. The algorithms intended to run
under the DSM model have RMR, complexity O(N), and thus, given the lower bound
we proved, are optimal (within a constant factor) with respect to RMR complexity. The
algorithm intended to run under the CC model has RMR complexity O(log M - f(N)),
where M is size of the set from which sessions are requested, and O(f(V)) is the RMR
complexity of the FCFS abortable mutual exclusion algorithm used in the reduction.
It is based on our 2-session GME algorithm that has RMR complexity O(f(N)) under
the CC model. This latter result, together with the O(min(k,log N)) FCFS abortable

150

CHAPTER 7. CONCLUSION 151

ME algorithm of Jayanti [9], shows that our lower bound proof necessarily requires the
assumption that processes run under the DSM model.

We conclude by mentioning several open problems. First, the RMR lower bound
under the CC model is unknown. Moreover, the amortized RMR lower bound under
either the DSM model or the CC model is unknown, although we conjecture that the
amortized RMR lower bound under the DSM model is still Q(N). Finally, our fair local-
spin group mutual exclusion algorithm that satisfies FIFE, strong concurrent entering,
and FCFS, uses an integer that grows without bound. This is not necessarily a practical
limitation given the size of modern-day registers and the fact that, in this algorithm, the
number in the unbounded register grows only linearly with the number of invocations.
However, it is theoretically undesirable, and it is an open problem whether there exists a

GME algorithm that satisfies all the fairness properties and uses only bounded registers.

Bibliography

1]

2]

3]

[4]

[5]

[6]

[7]

J. Anderson and Y.-J. Kim. An improved lower bound for the time complexity of

mutual exclusion. Distributed Computing, 15(4):221-253, December 2002.

J. Anderson, Y.-J. Kim, and T. Herman. Shared-memory mutual exclusion: major

research trends since 1986. Distributed Computing, 16(2-3):75-110, September 2003.

T. Anderson. The performance of spin lock alternatives for shared-memory mul-
tiprocessors. IEEE Transactions on Parallel and Distributed Systems, 1(1):6-16,

January 1990.

R. Cypher. The communication requirements of mutual exclusion. In Proceedings
of the Seventh Annual Symposium on Parallel Algorithms and Architectures, pages

147-156, June 1995.

E.W. Dijkstra. Solution of a problem in concurrent programming control. Commu-

nications of the ACM, 8(9):569, September 1965.

M. Fischer, N. Lynch, J. Burns, and A. Borodin. Resource allocation with immu-
nity to limited process failure. In Proceedings of the 20th Annual Symposium on

Foundations of Computer Science, pages 234-254, 1979.

G. Graunke and S. Thakkar. Synchronization algorithms for shared-memory multi-

processors. IEEE Computer, 23(6):60-69, June 1990.

152

BIBLIOGRAPHY 153

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

V. Hadzilacos. A note on group mutual exclusion. In Proceedings of the 20th Annual

Symposium on Principles of Distributed Computing, pages 100-106, 2001.

P. Jayanti. Adaptive and efficient abortable mutual exclusion. In Proceedings of the

22nd Annual Symposium on Principles of Distributed Computing, July 2003.

P. Jayanti, S. Petrovic, and K. Tan. Fair group mutual exclusion. In Proceedings of

the 22nd Annual Symposium on Principles of Distributed Computing, July 2003.

Y. Joung. Asynchornous group mutual exclusion. Distributed Computing, 13(4):189—
206, November 2000.

P. Keane and M. Moir. A simple local-spin group mutual exclusion algorithm. IEEE

Transactions on Parallel and Distributed Systems, 12(7):673-685, July 2001.

D.E. Knuth. Additional comments on a problem in concurrent programming control.

Communications of the ACM, 9(5):321-322, May 1966.

L. Lamport. A new solution to Dijkstra’s concurrent programming problem. Com-

munications of the ACM, 17(8):453-455, August 1974.

J. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Transactions on Computer Systems, 9(1):21—

65, February 1991.

M. L. Scott. Non-blocking timeout in scalable queue-based spin locks. In Proceedings

of the 21st Annual Symposium on Principles of Distributed Computing, July 2002.

M. L. Scott and W.N. Scherer III. Non-blocking timeout in scalable queue-based
spin locks. In Proceedings of the 8th ACM Symposium on Principles and Practice of

Parallel Programming, June 2001.

J.-H. Yang and J. Anderson. A fast, scalable mutual exclusion algorithm. Distributed

Computing, 9(1):51-60, August 1995.

