
JOURNAL OF PAMI, VOL. ?, NO. ?, JANUARY 20?? 1

Modeling Natural Images Using Gated MRFs
Marc’Aurelio Ranzato, Volodymyr Mnih, Joshua M. Susskind, Geoffrey E. Hinton

Abstract—This paper describes a Markov Random Field for real-valued image modeling that has two sets of latent variables.
One set is used to gate the interactions between all pairs of pixels while the second set determines the mean intensities of each
pixel. This is a powerful model with a conditional distribution over the input that is Gaussian with both mean and covariance
determined by the configuration of latent variables, which is unlike previous models that were restricted to use Gaussians with
either a fixed mean or a diagonal covariance matrix. Thanks to the increased flexibility, this gated MRF can generate more realistic
samples after training on an unconstrained distribution of high-resolution natural images. Furthermore, the latent variables of
the model can be inferred efficiently and can be used as very effective descriptors in recognition tasks. Both generation and
discrimination drastically improve as layers of binary latent variables are added to the model, yielding a hierarchical model called
a Deep Belief Network.

Index Terms—gated MRF, natural images, deep learning, unsupervised learning, density estimation, energy-based model,
Boltzmann machine, factored 3-way model, generative model, object recognition, denoising, facial expression recognition

F

1 INTRODUCTION

T HE study of the statistical properties of natural images
has a long history and has influenced many fields, from

image processing to computational neuroscience [1]. In
computer vision, for instance, ideas and principles derived
from image statistics and from studying the processing
stages of the human visual system have had a significant
impact on the design of descriptors that are useful for
discrimination. A common paradigm has emerged over the
past few years in object and scene recognition systems.
Most methods [2] start by applying some well-engineered
features, like SIFT [3], HoG [4], SURF [5], or PHoG [6], to
describe image patches, and then aggregating these features
at different spatial resolutions and on different parts of the
image to produce a feature vector which is subsequently fed
into a general purpose classifier, such as a Support Vector
Machine (SVM). Although very successful, these methods
rely heavily on human design of good patch descriptors
and ways to aggregate them. Given the large and growing
amount of easily available image data and continued ad-
vances in machine learning, it should be possible to exploit
the statistical properties of natural images more efficiently
by learning better patch descriptors and better ways of
aggregating them. This will be particularly significant for
data where human expertise is limited such as microscopic,
radiographic or hyper-spectral imagery.

In this paper, we focus on probabilistic models of natural
images which are useful not only for extracting represen-
tations that can subsequently be used for discriminative
tasks [7], [8], [9], but also for providing adaptive priors

• M. Ranzato, V. Mnih and G.E. Hinton are with the Department of
Computer Science, University of Toronto, Toronto, ON, M5S 3G4,
CANADA.
E-mail: see http://www.cs.toronto.edu/˜ranzato

• J.M. Susskind is with Machine Perception Laboratory, University of
California San Diego, La Jolla, 92093, U.S.A.

that can be used for image restoration tasks [10], [11],
[12]. Thanks to their generative ability, probabilistic models
can cope more naturally with ambiguities in the sensory
inputs and have the potential to produce more robust
features. Devising good models of natural images, however,
is a challenging task [1], [12], [13], because images are
continuous, high-dimensional and very highly structured.

Recent studies have tried to capture high-order dependen-
cies by using hierarchical models that extract highly non-
linear representations of the input [14], [15]. In particular,
deep learning methods construct hierarchies composed of
multiple layers by greedily training each layer separately
using unsupervised algorithms [8], [16], [17], [18]. These
methods are appealing because 1) they adapt to the input
data; 2) they recursively build hierarchies using unsu-
pervised algorithms, breaking up the difficult problem of
learning hierarchical non-linear systems into a sequence
of simpler learning tasks that use only unlabeled data; 3)
they have demonstrated good performance on a variety
of domains, from generic object recognition to action
recognition in video sequences [17], [18], [19].

In this paper we propose a probabilistic generative
model of images that can be used as the front-end of a
standard deep architecture, called a Deep Belief Network
(DBN) [20]. We test both the generative ability of this
model and the usefulness of the representations that it learns
for applications such as object recognition, facial expression
recognition and image denoising, and we demonstrate state-
of-the-art performance for several different tasks involving
several different types of image.

Our probabilistic model is called a gated Markov Ran-
dom Field (MRF) because it uses one of its two sets of
latent variables to create an image-specific energy function
that models the covariance structure of the pixels by switch-
ing in sets of pairwise interactions. It uses its other set of
latent variables to model the intensities of the pixels [13].
The DBN then uses several further layers of Bernoulli

JOURNAL OF PAMI, VOL. ?, NO. ?, JANUARY 20?? 2

latent variables to model the statistical structure in the
hidden activities of the two sets of latent variables of the
gated MRF. By replicating features in the lower layers it
is possible to learn a very good generative model of high-
resolution images and to use this as a principled framework
for learning adaptive descriptors that turn out to be very
useful for discriminative tasks.

In the reminder of this paper, we first discuss our new
contributions with respect to our previous published work
and then describe the model in detail. In sec. 2 we review
other popular generative models of images and motivate
the need for the model we propose, the gated MRF. In
sec. 3, we describe the learning algorithm as well as the
inference procedure for the gated MRF. In order to capture
the dependencies between the latent variables of the gated
MRF, several other layers of latent variables can be added,
yielding a DBN with many layers, as described in sec. 4.
Such models cannot be scaled in a simple way to deal with
high-resolution images because the number of parameters
scales quadratically with the dimensionality of the input at
each layer. Therefore, in sec. 5 an efficient and effective
weight-sharing scheme is introduced. The key idea is to
replicate parameters across local neighborhoods that do
not overlap in order to accomplish a twofold goal: exploit
stationarity of images while limiting the redundancy of
latent variables encoding features at nearby image locations.
Finally, we present a thorough validation of the model in
sec. 6 with comparisons to other models on a variety of
image types and tasks.

1.1 Contributions
This paper is a coherent synthesis of previously unpublished
results with the authors’ previous work on gated MRFs [21],
[9], [13], [22] that has appeared in several recent conference
papers and is intended to serve as the main reference on the
topic, describing in a more organized and consistent way
the major ideas behind this probabilistic model, clarifying
the relationship between the mPoT and mcRBM models
described below, and providing more details (including
pseudo-code) about the learning algorithms and the exper-
imental evaluations. We have included a subsection on the
relation to other classical probabilistic models that should
help the reader better understand the advantages of the
gated MRF and the similarities to other well-known models.
The paper includes empirical evaluations of the model on
an unusually large variety of tasks, not only on an image
denoising and generation tasks that are standard ways to
evaluate probabilistic generative models of natural images,
but also on three very different recognition tasks (scenes,
generic object recognition, and facial expressions under
occlusion). The paper demonstrates that the gated MRF can
be used for a wide range of different vision tasks, and it
should suggest many other tasks that can benefit from the
generative power of the model.

2 THE GATED MRF
In this section, we first review some of the most popu-
lar probabilistic models of images and discuss how their

x1

x2

PCA

x1

x2

PPCA

x1

x2

FA

x1

x2

SC

x1

x2

PoT

x1

x2

mPoT

Fig. 1. Toy illustration to compare different models. x-axis is the
first pixel, y-axis is the second pixel of two-pixel images. Blue dots
are a dataset of two-pixel images. The red dot is the data point we
want to represent. The green dot is its (mean) reconstruction. The
models are: Principal Component Analysis, Probabilistic PCA, Factor
Analysis, Sparse Coding, Product of Student’s t and mean PoT.

underlying assumptions limit their modeling abilities. This
motivates the introduction of the model we propose. After
describing our basic model and its learning and inference
procedures, we show how we can make it hierarchical and
how we can scale it up using parameter-sharing to deal with
high-resolution images.

2.1 Relation to Other Probabilistic Models
Natural images live in a very high dimensional space that
has as many dimensions as number of pixels, easily in the
order of millions and more. Yet it is believed that they
occupy a tiny fraction of that space, due to the structure
of the world, encompassing a much lower dimensional
yet highly non-linear manifold [23]. The ultimate goal of
unsupervised learning is to discover representations that pa-
rameterize such a manifold, and hence, capture the intrinsic
structure of the input data. This structure is represented
through features, also called latent variables in probabilistic
models.

One simple way to check whether a model extracts
features that retain information about the input, is by recon-
structing the input itself from the features. If reconstruction
errors of inputs similar to training samples is lower than
reconstruction errors of other input data points, then the
model must have learned interesting regularities [24]. In
PCA, for instance, the mapping into feature space is a linear
projection into the leading principal components and the
reconstruction is performed by another linear projection.
The reconstruction is perfect only for those data points that
lie in the linear subspace spanned by the leading principal
components. The principal components are the structure
captured by this model.

Also in a probabilistic framework we have a mapping
into feature, or latent variable, space and back to image
space. The former is obtained by using the posterior
distribution over the latent variables, p(h|x) where x is
the input and h the latent variables, the latter through the
conditional distribution over the input, p(x|h).

JOURNAL OF PAMI, VOL. ?, NO. ?, JANUARY 20?? 3

As in PCA one would reconstruct the input from the
features in order to assess the quality of the encoding,
while in a probabilistic setting we can analyze and compare
different models in terms of their conditional p(x|h). We
can sample the latent variables, h̄ ∼ p(h|x̄) given an input
image x̄, and then look at how well the image x̄ can be
reconstructed using p(x|h̄). Reconstructions produced in
this way are typically much more like real data than true
samples from the underlying generative model because the
latent variables are sampled from their posterior distribu-
tion, p(h|x̄), rather than from their prior, p(h), but the
reconstructions do provide insight into how much of the
information in the image is preserved in the sampled values
of the latent variables.

As shown in fig. 1, most models such as Probabilistic
Principal Component Analysis (PPCA) [25], Factor Analy-
sis (FA) [26], Independent Component Analysis (ICA) [27],
Sparse Coding (SC) [28], and Gaussian Restricted Boltz-
mann Machines (GRBM) [29], assume that the conditional
distribution of the pixels p(x|h) is Gaussian with a mean
determined by the latent variables and a fixed, image-
independent covariance matrix. In PPCA the mean of
the distribution lies along the directions of the leading
eigenvectors while in SC it is along a linear combination
of a very small number of basis vectors (represented by
black arrows in the figure). From a generative point of view,
these are rather poor assumptions for modeling natural
images because much of the interesting structure of natural
images lies in the fact that the covariance structure of the
pixels varies considerably from image to image. A vertical
occluding edge, for example, eliminates the typical strong
correlation between pixels on opposite sides of the edge.

This limitation is addressed by models like Product of
Student’s t (PoT) [30], covariance Restricted Boltzmann
Machine (cRBM) [21] and the model proposed by Karklin
and Lewicki [14] each of which instead assume a Gaussian
conditional distribution with a fixed mean but with a full
covariance determined by the states of the latent vari-
ables. Latent variables explicitly account for the correlation
patterns of the input pixels, avoiding interpolation across
edges while smoothing within uniform regions. The mean,
however, is fixed to the average of the input data vectors
across the whole dataset. As shown in the next section,
this can yield very poor conditional models of the input
distribution.

In this work, we extend these two classes of models with
a new model whose conditional distribution over the input
has both a mean and a covariance matrix determined by
latent variables. We will introduce two such models, namely
the mean PoT (mPoT) [13] and the mean-covariance RBM
(mcRBM) [9], which differ only in the choice of their
distribution over latent variables. We refer to these models
as gated MRF’s because they are pair-wise Markov Random
Fields (MRFs) with latent variables gating the couplings
between input variables. Their marginal distribution can
be interpreted as a mixture of Gaussians with an infinite
(mPoT) or exponential (mcRBM) number of components,
each with non-zero mean and full covariance matrix and

Fig. 2. In the first column, each image is zero mean. In the
second column, the whole data set is centered but each image
can have non-zero mean. First row: 8x8 natural image patches and
contours of the empirical distribution of (tiny) two-pixel images (the
x-axis being the first pixel and the y-axis the second pixel). Second
row: images generated by a model that does not account for mean
intensity with plots of how such model could fit the distribution of
two-pixel images using mixture of Gaussians with components that
can choose between two covariances. Third row: images generated
by a model that has both “mean” and “covariance” hidden units and
toy-illustration of how such model can fit the distribution of two-pixel
images discovering the manifold of structured images (along the anti-
diagonal) using a mixture of Gaussians with arbitrary mean and only
two covariances.

tied parameters.

2.2 Motivation
A Product of Student’s t (PoT) model [31] can be viewed as
modelling image-specific, pair-wise relationships between
pixel values by using the states of its latent variables. It
is very good at representing the fact that two pixels have
very similar intensities and no good at all at modelling what
these intensities are. Failure to model the mean also leads
to impoverished modelling of the covariances when the
input images have non-zero mean intensity. The covariance
RBM (cRBM) [21] is another model that shares the same
limitation since it only differs from PoT in the distribution
of its latent variables: The posterior over the latent variables
p(h|x) is a product of Bernoulli distributions instead of
Gamma distributions as in PoT.

We explain the fundamental limitation of these models
by using a simple toy example: Modelling two-pixel images
using a cRBM with only one binary latent variable (see
fig. 2). This cRBM assumes that the conditional distribution
over the input p(x|h) is a zero-mean Gaussian with a
covariance that is determined by the state of the latent
variable. Since the latent variable is binary, the cRBM can
be viewed as a mixture of two zero-mean full covariance
Gaussians. The latent variable uses the pairwise relationship
between pixels to decide which of the two covariance
matrices should be used to model each image. When the
input data is pre-processed by making each image have zero
mean intensity (the plot of the empirical histogram is shown

JOURNAL OF PAMI, VOL. ?, NO. ?, JANUARY 20?? 4

in the first row and first column), most images lie near the
origin because most of the times nearby pixels are strongly
correlated. Less frequently we encounter edge images that
exhibit strong anti-correlation between the pixels, as shown
by the long tails along the anti-diagonal line. A cRBM
could model this data by using two Gaussians (second row
and first column): one that is spherical and tight at the origin
for smooth images and another one that has a covariance
elongated along the anti-diagonal for structured images.

If, however, the whole set of images is normalized
by subtracting from every pixel the mean value of all
pixels over all images (first row and second column), the
cRBM fails at modelling structured images (second row
and second column). It can fit a Gaussian to the smooth
images by discovering the direction of strong correlation
along the main diagonal, but it is very likely to fail to
discover the direction of anti-correlation, which is crucial
to represent discontinuities, because structured images with
different mean intensity appear to be evenly spread over the
whole input space.

If the model has another set of latent variables that
can change the means of the Gaussian distributions in the
mixture (as explained more formally below and yielding
the mPoT and mcRBM models), then the model can rep-
resent both changes of mean intensity and the correlational
structure of pixels (see last row). The mean latent variables
effectively subtract off the relevant mean from each data-
point, letting the covariance latent variable capture the
covariance structure of the data. As before, the covariance
latent variable needs only to select between two covariance
matrices.

In fact, experiments on real 8x8 image patches confirm
these conjectures. Fig. 2 shows samples drawn from PoT
and mPoT. The mPoT model (and similarly mcRBM [9])
is better at modelling zero mean images and much better
at modelling images that have non-zero mean intensity.
This will be particularly relevant when we introduce a
convolutional extension of the model to represent spatially
stationary high-resolution images (as opposed to small im-
age patches), since it will not be possible to independently
normalize overlapping image patches.

As we shall see in sec. 6.1, models that do not account
for mean intensity cannot generate realistic samples of
natural images since samples drawn from the conditional
distribution over the input have expected intensity that is
constant everywhere regardless of the value of the latent
variables. In the model we propose instead there is a set
of latent variables whose role is to bias the average mean
intensity differently in different regions of the input image.
Combined with the correlational structure provided by the
covariance latent variables, this produces smooth images
that have sharp boundaries between regions of different
mean intensity.

2.3 Energy Functions

We start the discussion assuming the input is a small
vectorized image patch, denoted by x ∈ RD, and the

latent variables are denoted by the vector hp ∈ {0, 1}N .
First, we consider a pair-wise MRF defined in terms of
an energy function E. The probability density function is
related to E by: p(x,hp) = exp(−E(x,hp))/Z, where Z
is an (intractable) normalization constant which is called
the partition function. The energy is:

E(x,hp) =
1

2

∑
i,j,k

tijkxixjh
p
k (1)

The states of the latent variables, called precision hidden
units, modulate the pair-wise interactions tijk between all
pairs of input variables xi and xj , with i, j = 1..D. Sim-
ilarly to Sejnowski [32], the energy function is defined in
terms of 3-way multiplicative interactions. Unlike previous
work by Memisevic and Hinton [33] on modeling image
transformations, here we use this energy function to model
the joint distribution of the variables within the vector x.

This way of allowing hidden units to modulate inter-
actions between input units has far too many parameters.
For real images we expect the required lateral interactions
to have a lot of regular structure. A hidden unit that
represents a vertical occluding edge, for example, needs
to modulate the lateral interactions so as to eliminate
horizontal interpolation of intensities in the region of the
edge. This regular structure can be approximated by writing
the 3-dimensional tensor of parameters t as a sum of outer
products: tijk =

∑
f C

(1)
if C

(2)
jf Pfk, where f is an index

over F deterministic factors, C(1) and C(2) ∈ RD×F , and
P ∈ RF×N . Since the factors are connected twice to the
same image through matrices C(1) and C(2), it is natural to
tie their weights further reducing the number of parameters,
yielding the final parameterization tijk =

∑
f CifCjfPfk.

Thus, taking into account also the hidden biases, eq. 1
becomes:

E(x,hp) =
1

2

F∑
f=1

(

N∑
k=1

Pfkh
p
k)(

D∑
i=1

Cifxi)
2 −

N∑
k=1

bpkh
p
k (2)

which can be written more compactly in matrix form as:

E(x,hp) =
1

2
xTCdiag(Php)CTx− bpThp (3)

where diag(v) is a diagonal matrix with diagonal entries
given by the elements of vector v. This model can be
interpreted as an instance of an RBM modeling pair-
wise interactions between the input pixels1 and we dub it
covariance RBM (cRBM) [21], [9]2 since it models the
covariance structure of the input through the “precision”
latent variables hp.

The hidden units remain conditionally independent given
the states of the input units and their binary states can be
sampled using:

p(hpk = 1|x) = σ

(
− 1

2

F∑
f=1

Pfk(

D∑
i=1

Cifxi)
2 + bpk

)
(4)

1. More precisely, this is an instance of a semi-restricted Boltzmann
machine [34], [35], since only hidden units are “restricted”, i.e. lack lateral
interactions.

2. This model should not be confused with the conditional RBM [36].

JOURNAL OF PAMI, VOL. ?, NO. ?, JANUARY 20?? 5

where σ is the logistic function σ(v) = 1/
(
1 + exp(−v)

)
.

Given the states of the hidden units, the input units form
an MRF in which the effective pairwise interaction weight
between xi and xj is 1

2

∑
f

∑
k Pfkh

p
kCifCjf . Therefore,

the conditional distribution over the input is:

p(x|hp) = N(0,Σ), with Σ−1 = Cdiag(Php)CT (5)

Notice that the covariance matrix is not fixed, but is a
function of the states of the precision latent variables hp.
In order to guarantee positive definiteness of the covariance
matrix we need to constrain P to be non-negative and add a
small quadratic regularization term to the energy function3,
here ignored for clarity of presentation.

As described in sec. 2.2, we want the conditional dis-
tribution over the pixels to be a Gaussian with not only
its covariance but also its mean depending on the states of
the latent variables. Since the product of a full covariance
Gaussian (like the one in eq. 5) with a spherical non-
zero mean Gaussian is a non-zero mean full covariance
Gaussian, we simply add the energy function of cRBM in
eq. 3 to the energy function of a GRBM [29], yielding:

E(x,hm,hp) =
1

2
xTCdiag(Php)CTx− bpThp

+
1

2
xTx− hmWTx− bmThm − bxTx (6)

where hm ∈ {0, 1}M are called “mean” latent variables be-
cause they contribute to control the mean of the conditional
distribution over the input:

p(x|hm,hp) = N

(
Σ(Whm + bx),Σ

)
, (7)

with Σ−1 = Cdiag(Php)CT + I

where I is the identity matrix, W ∈ RD×M is a matrix of
trainable parameters and bx ∈ RD is a vector of trainable
biases for the input variables. The posterior distribution
over the mean latent variables is4:

p(hmk = 1|x) = σ(

D∑
i=1

Wikxi + bmk) (8)

The overall model, whose joint probability density function
is proportional to exp(−E

(
x,hm,hp)

)
, is called a mean

covariance RBM (mcRBM) [9] and is represented in fig. 3.

The demonstration in fig. 4 is designed to illustrate
how the mean and precision latent variables cooperate to
represent the input. Through the precision latent variables
the model knows about pair-wise correlations in the image.

3. In practice, this term is not needed when the dimensionality of hp

is larger than x.
4. Notice how the mean latent variables compute a non-linear projection

of a linear filter bank, akin to the most simplified “simple-cell” model
of area V1 of the visual cortex, while the precision units perform an
operation similar to the “complex-cell” model because rectified (squared)
filter outputs are non-linearly pooled to produce their response. In this
model, simple and complex cells perform their operations in parallel (not
sequentially). If, however, we equate the factors used by the precision
units to simple cells, we recover the standard model in which simple cells
send their squared outputs to complex cells.

FN M

precision

units
factors mean units

pixels

Fig. 3. Graphical model representation (with only three input
variables): There are two sets of latent variables (the mean and the
precision units) that are conditionally independent given the input
pixels and a set of deterministic factor nodes that connect triplets of
variables (pairs of input variables and one precision unit).

Fig. 4. A) Input image patch. B) Reconstruction performed using
only mean hiddens (i.e. Whm +bx) (top) and both mean and preci-
sion hiddens (bottom) (that is multiplying the patch on the top by the
image-specific covariance Σ =

(
Cdiag(Php)CT + I

)−1, see mean
of Gaussian in eq. 7). C) Reconstructions produced by combining the
correct image-specific covariance as above with the incorrect, hand-
specified pixel intensities shown in the top row. Knowledge about
pair-wise dependencies allows a blob of high or low intensity to be
spread out over the appropriate region. D) Reconstructions produced
like in C) showing that precision hiddens do not account for polarity
(nor for the exact intensity values of regions) but only for correlations.

For instance, it knows that the pixels in the lower part of
the image in fig. 4-A are strongly correlated; these pixels
are likely to take the same value, but the precision latent
variables do not carry any information about which value
this is. Then, very noisy information about the values of the
individual pixels in the lower part of the image, as those
provided by the mean latent variables, would be sufficient
to reconstruct the whole region quite well, since the model
knows which values can be smoothed. Mathematically, the
interaction between mean and precision latent variables
is expressed by the product between Σ (which depends
only on hp) and Whm + bx in the mean of the Gaussian
distribution of eq. 7. We can repeat the same argument
for the pixels in the top right corner and for those in the
middle part of the image as well. Fig. 4-C illustrates this
concept, while fig. 4-D shows that flipping the sign of
the reconstruction of the mean latent variables flips the
sign of the overall reconstruction as expected. Information
about intensity is propagated over each region thanks to the
pair-wise dependencies captured by the precision hidden
units. Fig. 4-B shows the same using the actual mean
intensity produced by the mean hidden units (top). The
reconstruction produced by the model using the whole set
of hidden units is very close to the input image, as can be
seen in the bottom part of fig. 4-B.

In a mcRBM the posterior distribution over the latent
variables p(h|x) is a product of Bernoullis as shown in
eq. 8 and 4. This distribution is particularly easy to use
in a standard DBN [20] where each layer is trained using
a binary-binary RBM. Binary latent variables, however,
are not very good at representing different real-values of

JOURNAL OF PAMI, VOL. ?, NO. ?, JANUARY 20?? 6

the mean intensity or different levels of contrast across an
edge. A binary latent variable can represent a probability
of 0.71 that a binary feature is present, but this is not at
all the same as representing that a real-valued intensity
is 0.71 and definitely not 0.70 or 0.72. In our previous
work [21] we showed that by combining many binary
variables with shared weights and offset biases we can
closely approximate continuous Gamma units, however.
This issue can be addressed in several other ways, by either
normalizing the input data x, or by normalizing the input
in the energy function [9], or by changing the distribution
of the latent variables.

In our experiments, we tried a few distributions5 and
found that Bernoulli variables for the mean hiddens and
Gamma variables for the precision hiddens gave the best
generative model. The resulting model, dubbed mean PoT
(mPoT), is a slight modification of mcRBM. The energy
is:

E(x,hm,hp) =
1

2
xTCdiag(Php)CTx + 1T(hp +

(1− γ) loghp) +
1

2
xTx− hmWTx− bmThm − bxTx (9)

where 1 is a vector of 1’s, γ ∈ R+ and hp is a positive
vector of real valued variables [31]. In mPoT the posterior
distribution over the precision hiddens is:

p(hpj |x) = Γ(γ, 1 +
1

2

∑
f

Pfj(
∑
i

Cifxi)
2) (10)

where Γ is the Gamma distribution with expected value:

E[hpj |x] =
γ

1 + 1
2

∑
f Pfj(

∑
i Cifxi)

2
(11)

Compared to eq. 4, we see that the operations required
to compute the expectations are very similar, except for
the non-linear transformation on the pooled squared filter
outputs.

2.4 Relation to Line Processes and Sparse Cod-
ing
Let us consider the energy function of eq. 2 assuming
that P is set to identity and the biases are all large and
positive. The energy penalizes those images x that yield
large filter responses (because of the positive sign of the
energy function) [37]. Without latent variables that have
the possibility of turning off, the model would discover the
minor components of the data [38], i.e. the filter weights
would represent the directions of the minor components or
linear combinations of those directions. The introduction of
latent variables makes the model highly non-linear, causing
it to learn filters with heavy-tailed output distributions. In
the rare event of a non-smooth image (e.g., an edge in a
certain location and orientation), a large filter output will
cause the corresponding latent variable to turn off so that
the increase in energy is equal to the bias rather than

5. An extensive evaluation of different choices of latent variable distri-
butions is not explored here, and it is subject of future study.

quadratic in the filter output value. This leads to sparse
filter outputs that are usually close to zero but occasionally
much larger. By default hidden units are all “on” because
the input is not typically aligned with the oriented filters,
but when an input x matches a filter, the corresponding
hidden unit turns “off” thus representing the violation of a
smoothness constraint.

In other words, images are assumed to be almost always
smooth, but rare violations of this constraint are allowed
by using auxiliary (latent) variables that act like switches.
This idea was first proposed by Geman and Geman [39] and
later revisited by many others [40], [41]. Like the Gaussian
Scale Mixture model [10], our model uses hidden variables
that control the modeled covariance between pixels, but
our inference process is simpler because the model is
undirected. Also, all parameters of our model are learned.

2.5 Notes on the Modelling Choice
As stated in sec. 2.2, the main motivation for the model
we propose is to define a conditional distribution over the
input p(x|hm,hp) which is a multivariate Gaussian with
both mean and covariance determined by the state of latent
variables. In order to achieve this, we have defined an
energy function of the type: E = 1

2x
TΣ−1hp x + Whmx,

where we denote with Σhp and Whm matrices that depend
on hp and hm, respectively. Two questions naturally arise.
First, would the model work as well if we tie the set of
latent variables that control the mean and covariance? And
second, are there other formulations of energy functions
that define multivariate Gaussian conditional distributions?

The answer to the first question is negative for a model
of natural images since the statistics of the covariance
structure is heavy tailed (nearby pixels are almost always
strongly correlated) while the statistics of the mean in-
tensity is not. This affects the statistics of the mean and
covariance latent variables as well. The former is typically
much sparser than the latter, therefore, tying both sets of
latent variables would constrain the model in an unnatural
way.

The answer to the second question is positive instead.
The alternative would be the following energy function:
E = 1

2 (x−Whm)TΣ−1hp (x−Whm). The advantage of this
formulation is that the parameters defining the mean are
defined in the image domain and, therefore, are much easier
to interpret. The mean parameters directly define the mean
of the Gaussian distribution, while in our formulation the
mean of the Gaussian distribution is given by a product,
ΣhpWhm , see eq. 7. The fundamental disadvantage of this
formulation is that inference of the latent variables becomes
inefficient since the energy function has multiplicative
interactions between latent variables which make them
conditionally dependent given the input. Lengthy iterative
procedures would be required to compute a sample from
p(hm|x) and p(hp|x).

3 LEARNING ALGORITHM
The models described in the previous section can be re-
formulated by integrating out the latent variables over their

JOURNAL OF PAMI, VOL. ?, NO. ?, JANUARY 20?? 7

domain. In the case of mPoT, for instance, we have that the
free energy F(x) = − log

∫
hp

∑
hm exp(−E(x,hm,hp))

is:

F(x) =

N∑
j=1

log(1 +
1

2

F∑
f=1

Pfj(

D∑
i=1

Cifxi)
2) +

D∑
i=1

1

2
x2i

−
D∑
i=1

bxi xi −
M∑
k=1

log(1 + e
∑

iWikxi+b
m
k) (12)

making the marginal distribution, p(x) ∝ exp(−F(x)), a
product of experts [42].

Let us denote a generic parameter of the model with
θ ∈ {C,P, γ,W,bx,bm}. We learn the parameters by
stochastic gradient ascent in the log likelihood. We can
write the likelihood in terms of the joint energy E or in
terms of the free energy F . In both cases, maximum like-
lihood requires us to compute expectations over the model
distributions. These can be approximated with Monte Carlo
sampling algorithms. When using E the most natural sam-
pling algorithm is Gibbs sampling (alternating the sampling
from p(hm|x) and p(hp|x) to p(x|hm,hp)), while Hybrid
Monte Carlo (HMC) [43] is a better sampling algorithm
when using F since x ∈ RD and F is differentiable. It
is beyond the scope of this work to analyze and compare
different sampling methods. Our preliminary experiments
showed that training with HMC yielded models that pro-
duce better visually looking samples, and therefore, we will
now describe the algorithm in terms F only.

The update rule for gradient ascent in the likelihood is:

θ ← θ + η

(
<
∂F
∂θ

>model − <
∂F
∂θ

>data

)
(13)

where <> denotes expectation over samples from the
model or the training data. While it is straightforward to
compute the value and the gradient of the free energy with
respect to θ, computing the expectations over the model
distribution is intractable because we would need to run the
HMC sampler for a very long time, discarding and reinitial-
izing the momentum auxiliary variables many times [43].
We approximate that with Fast Persistent Contrastive Di-
vergence (FPCD) [44]. We run the sampler for only one
step6 starting at the previous sample drawn from the model
and using as parameters the sum of the original parameters
and a small perturbation vector which adapts rapidly but
also decays towards zero rapidly. The perturbation vector
repels the system from its current state by raising the
energy of that state and it therefore encourages samples
to explore the input space rapidly even when the learning
rate for the model parameters is very small (see [44] for
more details). The learning algorithm loops over batches
of training samples and: (1) it computes < ∂F

∂θ > at the
training samples, (2) it generates “negative” samples by

6. One step of HMC is composed of a randomly chosen initial mo-
mentum and 20 “leap-frog steps” that follow a dynamical simulation. If
the sum of the kinetic and potential energy rises by ∆ due to inaccurate
simulation of the dynamics, the system is returned to the initial state with
probability 1 − exp(−∆). The step size of the simulation is adjusted to
keep the rejection rate at 10%.

def train_DBN():
loop from bottom to top layer
for k in range(number_of_layers):
W[k] = random_init()
Wf[k] = 0 # fast weights used by FPCD
neg_batch = random_init() # init. samples from model
sweep over data divided into minibatches
for epoch in range(number_of_epochs):
for batch in range(number_of_minibatches):
g1 = compute_dFdW(batch,W[k])
neg_batch = draw_sample(neg_batch,W[k]+Wf[k],k)
g2 = compute_dFdW(neg_batch,W[k]+Wf[k])
W[k] = W[k] - (learn_rate/epoch)*(g1-g2 + decay*W[k])
Wf[k] = 19/20*Wf[k] - learn_rate*(g1-g2)

make minibatches for layer above by computing E[h|x]
generate_data_using_posterior(batches,W[k])

def draw_sample(datainit,param,layer): # only 1 M.C. step
if layer == 1: # 1st layer: do 1 step of HMC
velocity = randn()
tot_energy1 = .5*velocityˆ2 + compute_F(datainit,param)
data = datainit
velocity = velocity - eps * compute_dFdX(data,param)/2
for iter in range(20): # 20 leap-frog steps
data = data + eps * velocity
if iter != 19:
velocity = velocity - eps * compute_dFdX(data,param)

velocity = velocity - eps * compute_dFdX(data,param)
tot_energy2 = .5*velocityˆ2 + compute_F(data,param)
if rand() < exp(tot_energy1 - tot_energy2):
return data # accept sample
else:
return datainit # reject sample

else: # higher layers: do 1 step of Gibbs
hiddens = sample_posterior(datainit,param) # p(h|x)
return sample_inputs(hiddens,param) # p(x|h)

Fig. 5. Pseudo-code of learning algorithm for DBN using FPCD.
Energy function given by eq. 12.

running HMC for just one set of 20 leap-frog steps (using
the slightly perturbed parameter vector in the free energy
function), (3) it computes < ∂F

∂θ > at the negative samples,
and (4) it updates the parameters using eq. 13 (see algorithm
in fig. 5).

4 LEARNING A DBN
In their work, Hinton et al. [20] trained DBNs using a
greedy layer-wise procedure, proving that this method, if
done properly, creates a sequence of lower bounds on the
log likelihood of the data, each of which is better than the
previous bound. Here, we follow a similar procedure. First,
we train a gated MRF to fit the distribution of the input.
Then, we use it to compute the expectation of the first layer
latent variables conditioned on the input training images.
Second, we use these expected values as input to train the
second layer of latent variables7. Once the second layer is
trained, we use it to compute expectations of the second
layer latent variables conditioned on the second layer input
to provide inputs to the third layer, and so on. The difficult
problem of learning a hierarchical model with several layers

7. It would be more correct to use stochastically sampled values as
the “data”, but using the expectations reduces noise in the learning and
works almost as well. Also, the second layer RBM expects input values
in the interval [0, 1] when using the expectations of Bernoulli variables.
Therefore, when we use the precision units of mPoT, we divide the
expectation of eq. 11 by γ. A more elegant solution is to change the
conditional distribution in the second layer RBM to Gamma. However,
the simple rescaling worked well in our experiments.

JOURNAL OF PAMI, VOL. ?, NO. ?, JANUARY 20?? 8

of latent variables is thus decomposed into a sequence of
much simpler learning tasks.

Let us consider the i-th layer of the deep model in
isolation. Let us assume that the input to that layer consists
of a binary vector denoted by hi−1 ∈ {0, 1}Ni−1 . This is
modeled by a binary RBM which is also defined in terms
of an energy function:

E(hi−1,hi) = −hi−1T
W ihi − bi−1

T
hi−1 − bi

T
hi (14)

where W i ∈ RNi−1×Ni is the i-th layer parameter matrix
and bi ∈ RNi is the i-th layer vector of biases. In a RBM,
all input variables are conditionally independent given the
latent variables and vice versa; so:

p(hik = 1|hi−1) = σ(

Ni−1∑
j=1

W i
jkh

i−1
j + bik), k = 1..Ni (15)

p(hi−1j = 1|hi) = σ(

Ni∑
k=1

W i
jkh

i
k + bi−1j), j = 1..Ni−1 (16)

Therefore, in the higher layers both computing the posterior
distribution over the latent variables and computing the
conditional distribution over the input variables is very
simple and it can be done in parallel.

Learning higher layer RBMs is done using the FPCD
algorithm as before, except that HMC is replaced with
Gibbs sampling (i.e. samples from the model are updated
by sampling from p(hi|hi−1) followed by p(hi−1|hi)). The
pseudo-code of the overall algorithm is given in fig. 5.

Once the model has been trained it can be used to
generate samples. The correct sampling procedure [20]
consists of generating a sample from the topmost RBM,
followed by back-projection to image space through the
chain of conditional distributions for each layer given the
layer above. For instance, in the model shown in fig. 6 one
generates from the top RBM by running a Gibbs sampler
that alternates between sampling h2 and h3. In order to
draw an unbiased sample from the deep model, we then
map the second layer sample produced in this way through
the conditional distributions p(hm|h2) and p(hp|h2) to
sample the mean and precision latent variables. These
sampled values then determine the mean and covariance
of a Gaussian distribution over the pixels, p(x|hm,hp).

Given an image, an inexact but fairly accurate way to
infer the posterior distribution of the latent variables in the
deep model consists of propagating the input through the
chain of posterior distributions for each of the greedily
learned individual models (i.e. the mPoT or the subse-
quent RBMs). For each of these models separately, this
corresponds to exact inference because, for each separate
model, the latent variables are conditionally independent
given the “data” variables used for that individual model so
no iteration is required. Unfortunately, when the individual
models are composed to form a deep belief net, this
way of inferring the lower level variables is no longer
correct, as explained in [20]. Fortunately, however, the
variational bound on the likelihood that is improved as each
layer is added assumes this form of incorrect inference so

Fig. 6. Outline of a deep generative model composed of three
layers. The first layer applies filters that tile the input image with
different offsets (squares of different color are filters with different
parameters). The filters of this layer are learned on natural images.
Afterwards, a second layer is added using as input the expectation
of the first layer latent variables. This layer is trained to fit the
distribution of its input. The procedure is repeated again for the third
layer. After training, inference of the top level representation is well
approximated by propagating the expectation of the latent variables
given their input starting from the input image (see dashed arrows).
Generation is performed by first using a Monte Carlo method to
sample from the “layer-3” model, and then using the conditional over
the input at each layer given the sample at the layer above to back-
project in image space (see continuous line arrows).

the learning ensures that it works well. Referring to the
deep model in fig. 6, we perform inference by computing
p(hm|x) and p(hp|x), followed by p(h2|hm,hp), followed
by p(h3|h2). Notice that all these distributions are factorial
and can be computed without any iteration (see eq. 8, 10
and 15).

5 SCALING TO HIGH-RESOLUTION IMAGES

The gated MRF described in the previous sections does not
scale well to high-resolution images because each latent
variable is connected to all input pixels. Since the number
of latent variables scales as the number of input variables,
the number of parameters subject to learning scales quadrat-
ically with the size of the input making learning infeasibly
slow. We can limit the number of parameters by making
use of the fact that correlations between pixels usually
decay rapidly with distance [45]. In practice, gated MRFs
that learn filters on large image patches discover spatially
localized patterns. This suggests the use of local filters
that connect each latent variable to only a small set of
nearby pixels, typically a small square image patch. Both
“precision” filters C and “mean” filters W can benefit from
locality, and P can also be made local by connecting each
latent variable to only a small local subset of filter outputs.

In addition to locality, we can exploit stationarity to
further reduce the number of parameters since (on average)
different locations in images have the same statistical
properties. This suggests that we should parameterize by
replicating each learned filter across all possible locations.
This dramatically reduces the number of parameters but,
unfortunately, it makes the values of the latent variables
highly redundant. Convolutional models [46], [11] typically
extract highly overcomplete representations. If k different
local filters are replicated over all possible integer positions

JOURNAL OF PAMI, VOL. ?, NO. ?, JANUARY 20?? 9

channels

latent variables
(1 channel)

y

same
location

1st tile

input variables (2 channels)
latent variables

(2 channels)

2nd tile

1
st

 o
ff

se
t

channel 1

channel 2

x

channels

x

y
input variables

(1 channel)

2
n
d
 o

ff
se

t

different
locations

Fig. 7. A toy illustration of how units are combined across layers.
Squares are filters, gray planes are channels and circles are latent
variables. Left: illustration of how input channels are combined into a
single output channel. Input variables at the same spatial location
across different channels contribute to determine the state of the
same latent variable. Input units falling into different tiles (without
overlap) determine the state of nearby units in the hidden layer (here,
we have only two spatial locations). Right: illustration of how filters
that overlap with an offset contribute to hidden units that are at
the same output spatial location but in different hidden channels. In
practice, the deep model combines these two methods at each layer
to map the input channels into the output channels.

in the image, the representation will be about k times
overcomplete8.

Like other recent papers [47], [48], we propose an
intermediate solution that yields a better trade-off between
compactness of the parameterization and compactness of
the latent representation: Tiling [13], [22]. Each local filter
is replicated so that it tiles the image without overlaps
with itself (i. e. it uses a stride that is equal to the
diameter of the filter). This reduces the spatial redundancy
of the latent variables and allows the input images to have
arbitrary size without increasing the number of parameters.
To reduce tiling artifacts, different filters typically have
different spatial phases so the borders of the different local
filters do not all align. In our experiments, we divide the
filters into sets with different phases. Filters in the same set
are applied to the same image locations (to tile the image),
while filters in different sets have a fixed diagonal offset, as
shown in fig. 6. In our experiments we only experimented
with diagonal offsets but presumably better schemes could
be employed, where the whole image is evenly tiled but at
the same time the number of overlaps between filter borders
is minimized.

At any given layer, the model produces a three-
dimensional tensor of values of its latent variables. Two
dimensions of this tensor are the dimensions of the 2-D
image and the third dimension, which we call a “channel”
corresponds to filters with different parameters. The left
panel of fig. 7 shows how each unit is connected to
all patches centered at its location, across different input
channels. The right panel of fig. 7 shows instead that output
channels are generated by stacking filter outputs produced
by different filters at nearby locations.

When computing the first layer hidden units we stack
the precision and the mean hidden units in such a way
that units taking input at the same image locations are
placed at the same output location but in different channels.
Therefore, each second layer RBM hidden unit models

8. In the statistics literature, a convolutional weight-sharing scheme is
called a homogeneous field while a locally connected one that does not tie
the parameters of filters at every location is called inhomogeneous field.

cross-correlations among mean and precision units at the
first hidden layer.

6 EXPERIMENTS

In this section we first evaluate the mPoT gated MRF as
a generative model by: a) interpreting the filters learned
after training on an unconstrained distribution of natural
images, b) by drawing samples from the model and c) by
using the model on a denoising task9. Second, we show
that the generative model can be used as a way of learning
features by interpreting the expected values of its latent
variables as features representing the input. In both cases,
generation and feature extraction, the performance of the
model is significantly improved by adding layers of binary
latent variables on the top of mPoT latent variables. Finally,
we show that the generative ability of the model can be used
to fill in occluded pixels in images before recognition. This
is a difficult task which cannot be handled well without a
good generative model of the input data.

6.1 Modeling Natural Images
We generated a dataset of 500,000 color images by picking,
at random locations, patches of size 16x16 pixels from
images of the Berkeley segmentation dataset10. Images
were preprocessed by PCA whitening retaining 99% of
variance, for a total of 105 projections11. We trained a
model with 1024 factors, 1024 precision hiddens and 256
mean hiddens using filters of the same size as the input.
P was initialized with a sparse connectivity inducing a
two-dimensional topography when filters in C are laid out
on a grid, as shown in fig. 8. Each hidden unit takes
as input a neighborhood of filter outputs that learn to
extract similar features. Nearby hidden units in the grid
use neighborhoods that overlap. Therefore, each precision
hidden unit is not only invariant to the sign of the input,
because filter outputs are squared, but also it is invariant
to a whole subspace of local distortions (that are learned
since both C and P are learned). Roughly 90% of the
filters learn to be balanced in the R, G, and B channels
even though they were randomly initialized. They could be
described by localized, orientation-tuned Gabor functions.
The colored filters generally have lower spatial frequency
and they naturally cluster together in large blobs.

The figure also shows some of the filters representing
the mean intensities (columns of matrix W). These features
are more complex, with color Gabor filters and on-center
off-surround patterns. These features have different effects
than the precision filters (see also fig. 4). For instance, a
precision filter that resembles an even Gabor is responsible
for encouraging interpolation of pixel values along the edge
and discouraging interpolation across the edge, while a

9. Code available at:
www.cs.toronto.edu/˜ranzato/publications/mPoT/mPoT.html

10. Available at: www.cs.berkeley.edu/projects/vision/grouping/segbench/
11. The linear transform is: S− 1

2U , where S is a diagonal matrix with
eigenvalues on the diagonal entries and U is a matrix whose rows are the
leading eigenvectors.

JOURNAL OF PAMI, VOL. ?, NO. ?, JANUARY 20?? 10

Fig. 8. Top: Precision filters (matrix C) of size 16x16 pixels learned
on color image patches of the same size. Matrix P was initialized with
a local connectivity inducing a two dimensional topographic map.
This makes nearby filters in the map learn similar features. Bottom
left: Random subset of mean filters (matrix W). Bottom right (from
top to bottom): independent samples drawn from the training data,
mPoT, GRBM and PoT.

TABLE 1
Log-probability estimates of test natural images x, and exact

log-probability ratios between the same test images x and random
images n.

Model log
(
p(x)

)
log
(
p(x)/p(n)

)
MoG -85 68

GRBM FPCD -152 -3
PoT FPCD -101 65
mPoT CD -109 82

mPoT PCD -92 98
mPoT FPCD -94 102

mean filter resembling a similar Gabor specifies the initial
intensity values before the interpolation.

The most intuitive way to test a generative model is to
draw samples from it [49]. After training, we then run HMC
for a very long time starting from a random image. The
bottom right part of Fig. 8 shows that mPoT is actually
able to generate samples that look much more like natural
images than samples generated by a PoT model, which
only models the pair-wise dependencies between pixels or a
GRBM model, which only models the mean intensities. The
mPoT model succeeds in generating noisy texture patches,
smooth patches, and patches with long elongated structures
that cover the whole image.

More quantitatively, we have compared the different
models in terms of their log-probability on a hold out
dataset of test image patches using a technique called
annealed importance sampling [50]. Tab. 1 shows great
improvements of mPoT over both GRBM and PoT. How-
ever, the estimated log-probability is lower than a mixture
of Gaussians (MoG) with diagonal covariances and the
same number of parameters as the other models. This is
consistent with previous work by Theis et al.[51]. We
interpret this result with caution since the estimates for
GRBM, PoT and mPoT can have a large variance due to the
noise introduced by the samplers, while the log-probability
of the MoG is calculated exactly. This conjecture is con-
firmed by the results reported in the rightmost column
showing the exact log-probability ratio between the same
test images and Gaussian noise with the same covariance12.
This ratio is indeed larger for mPoT than MoG suggesting
inaccuracies in the former estimation. The table also reports
results of mPoT models trained by using cheaper but
less accurate approximations to the maximum likelihood
gradient, namely Contrastive Divergence [52] and Persistent
Contrastive Divergence [53]. The model trained with FPCD
yields a higher likelihood ratio as expected [44].

We repeated the same data generation experiment us-
ing the extension of mPoT to high-resolution images, by
training on large patches (of size 238x238 pixels) picked
at random locations from a dataset of 16,000 gray-scale
natural images that were taken from ImageNet [54]13. The
model was trained using 8x8 filters divided into four sets
with different spatial phases. Each set tiles the image with
a diagonal offset of two pixels from the previous set. Each
set consists of 64 covariance filters and 16 mean filters.
Parameters were learned using the algorithm described in
sec. 3, but setting P to identity.

The first two rows of fig. 9 compare samples drawn
from PoT with samples drawn from mPoT and show that
the latter ones exhibit strong structure with smooth regions
separated by sharp edges while the former ones lack any
sort of long range structure. Yet, mPoT samples still look
rather artificial because the structure is fairly primitive and
repetitive. We then made the model deeper by adding two
layers on the top of mPoT.

All layers are trained by using FPCD but, as training pro-
ceeds, the number of Markov chain steps between weight
updates is increased from 1 to 100 at the topmost layer
in order to obtain a better approximation to the maximum
likelihood gradient. The second hidden layer has filters of
size 3x3 that also tile the image with a diagonal offset of
one. There are 512 filters in each set. Finally, the third
layer has filters of size 2x2 and it uses a diagonal offset
of one; there are 2048 filters in each set. Every layer
performs spatial subsampling by a factor equal to the size
of the filters used. This is compensated by an increase in
the number of channels which take contributions from the

12. The log probability ratio is exact since the intractable partition
function cancels out. This quantity is equal to the difference of energies.

13. Categories are: tree, dog, cat, vessel, office furniture, floor lamp,
desk, room, building, tower, bridge, fabric, shore, beach and crater.

JOURNAL OF PAMI, VOL. ?, NO. ?, JANUARY 20?? 11

Fig. 9. Top row: Three representative samples generated by PoT
after training on an unconstrained distribution of high-resolution gray-
scale natural images. Second row: Representative samples gener-
ated by mPoT. Third row: Samples generated by a DBN with three
hidden layers, whose first hidden layer is the gated MRF used for the
second row. Bottom row: as in the third row, but samples (scanned
from left to right) are taken at intervals of 50,000 iterations from
the same Markov chain. All samples have approximate resolution
of 300x300 pixels.

filters that are applied with a different offset, see fig. 7.
This implies that at the top hidden layer each latent variable
receives input from a very large patch in the input image.
With this choice of filter sizes and strides, each unit at the
topmost layer affects a patch of size 70x70 pixels. Nearby
units in the top layer represent very large (overlapping)
spatial neighborhoods in the input image.

After training, we generate from the model by perform-
ing 100,000 steps of blocked Gibbs sampling in the topmost
RBM (using eq. 15 and 16) and then projecting the samples
down to image space as described in sec. 4. Representative
samples are shown in the third row of fig. 9. The extra
hidden layers do indeed make the samples look more
“natural”: not only are there smooth regions and fairly sharp
boundaries, but also there is a generally increased variety of
structures that can cover a large extent of the image. These
are among the most realistic samples drawn from models
trained on an unconstrained distribution of high-resolution
natural images. Finally, the last row of fig. 9 shows the
evolution of the sampler. Typically, Markov chains slowly
and smoothly evolve morphing one structure into another.

TABLE 2
Denoising performance using σ = 20 (PSNR=22.1dB).

Barb. Boats Fgpt. House Lena Peprs.
mPoT 28.0 30.0 27.6 32.2 31.9 30.7
mPoT+A 29.2 30.2 28.4 32.4 32.0 30.7
mPoT+A+NLM 30.7 30.4 28.6 32.9 32.4 31.0
FoE [11] 28.3 29.8 - 32.3 31.9 30.6
NLM [55] 30.5 29.8 27.8 32.4 32.0 30.3
GSM [56] 30.3 30.4 28.6 32.4 32.7 30.3
BM3D [57] 31.8 30.9 - 33.8 33.1 31.3
LSSC [58] 31.6 30.9 28.8 34.2 32.9 31.4

6.2 Denoising

The most commonly used task to quantitatively validate
a generative model of natural images is image denoising,
assuming homogeneous additive Gaussian noise of known
variance [10], [11], [37], [58], [12]. We restore images
by maximum a-posteriori (MAP) estimation. In the log
domain, this amounts to solving the following optimization
problem: arg minx λ||y − x||2 + F(x; θ), where y is the
observed noisy image, F(x; θ) is the mPoT energy function
(see eq. 12), λ is an hyper-parameter which is inversely
proportional to the noise variance and x is an estimate of
the clean image. In our experiments, the optimization is
performed by gradient descent.

For images with repetitive texture, generic prior models
usually offer only modest denoising performance compared
to non-parametric models [45], such as non-local means
(NLM) [55] and BM3D [57] which exploit “image self-
similarity” in order to denoise. The key idea is to compute
a weighted average of all the patches within the test
image that are similar to the patch that surrounds the
pixel whose value is being estimated, and the current state-
of-the-art method for image denoising [58] adapts sparse
coding to take that weighted average into account. Here,
we adapt the generic prior learned by mPoT in two simple
ways: 1) first we adapt the parameters to the denoised
test image (mPoT+A) and 2) we add to the denoising
loss an extra quadratic term pulling the estimate close to
the denoising result of the non-local means algorithm [55]
(mPoT+A+NLM). The first approach is inspired by a large
body of literature on sparse coding [59], [58] and consists
of a) using the parameters learned on a generic dataset of
natural images to denoise the test image and b) further
adapting the parameters of the model using only the test
image denoised at the previous step. The second approach
simply consists of adding an additional quadratic term
to the function subject to minimization, which becomes
λ||y − x||2 + F(x; θ) + γ||xNLM − x||2, where xNLM
is the solution of NLM algorithm.

Table 2 summarizes the results of these methods compar-
ing them to the current state-of-the-art methods on widely
used benchmark images at an intermediate level of noise.
At lower noise levels the difference between these methods
becomes negligible while at higher noise levels parametric
methods start outperforming non-parametric ones.

First, we observe that adapting the parameters and taking
into account image self-similarity improves performance

JOURNAL OF PAMI, VOL. ?, NO. ?, JANUARY 20?? 12

Fig. 10. Denoising of “Barbara” (detail). From left to right: original image, noisy image (σ = 20, PSNR=22.1dB), denoising of mPoT
(28.0dB), denoising of mPoT adapted to this image (29.2dB) and denoising of adapted mPoT combined with non-local means (30.7dB).

(over both baselines, mPoT+A and NLM). Second, on this
task a gated MRF with mean latent variables is no better
than a model that lacks them, like FoE [11] (which is a
convolutional version of PoT)14. Mean hiddens are crucial
when generating images in an unconstrained manner, but
are not needed for denoising since the observation y already
provides (noisy) mean intensities to the model (a similar
argument applies to inpainting). Finally, the performance
of the adapted model is still slightly worse than the best
denoising method.

6.3 Scene Classification
In this experiment, we use a classification task to com-
pare SIFT features with the features learned by adding
a second layer of Bernoulli latent variables that model
the distribution of latent variables of an mPoT generative
model. The task is to classify the natural scenes in the 15
scene dataset [2] into one of 15 categories. The method
of reference on this dataset was proposed by Lazebnik et
al. [2] and it can be summarized as follows: 1) densely
compute SIFT descriptors every 8 pixels on a regular grid,
2) perform K-Means clustering on the SIFT descriptors, 3)
compute histograms of cluster ids over regions of the image
at different locations and spatial scales, and 4) use an SVM
with an intersection kernel for classification.

We use a DBN with an mPoT front-end to mimic this
pipeline. We treat the expected value of the latent variables
as features that describe the input image. We extract first
and second layer features (using the model that produced
the generations in the bottom of fig. 9) from a regular
grid with a stride equal to 8 pixels. We apply K-Means
to learn a dictionary with 1024 prototypes and then assign
each feature to its closest prototype. We compute a spatial
pyramid with 2 levels for the first layer features ({hm,hp})
and a spatial pyramid with 3 levels for the second layer
features (h2). Finally, we concatenate the resulting repre-
sentations and train an SVM with an intersection kernel for
classification. Lazebnik et al. [2] reported an accuracy of
81.4% using SIFT while we obtained an accuracy of 81.2%,
which is not significantly different.

6.4 Object Recognition on CIFAR 10
The CIFAR 10 dataset [60] is a hand-labeled subset of a
much larger dataset of 80 million tiny images [61], see

14. The difference of performance between Tiled PoT and convolutional
PoT, also called Field of Experts, is not statistically significant on this task.

Fig. 11. Example of images in the CIFAR 10 dataset. Each column
shows samples belonging to the same category.

TABLE 3
Test and training (in parenthesis) recognition accuracy on the

CIFAR 10 dataset. The numbers in italics are the feature
dimensionality at each stage.

Method Accuracy %
1) mean (GRBM): 11025 59.7 (72.2)
2) cRBM (225 factors): 11025 63.6 (83.9)
3) cRBM (900 factors): 11025 64.7 (80.2)
4) mcRBM: 11025 68.2 (83.1)
5) mcRBM-DBN (11025-8192) 70.7 (85.4)
6) mcRBM-DBN (11025-8192-8192) 71.0 (83.6)
7) mcRBM-DBN (11025-8192-4096-1024-384) 59.8 (62.0)

fig. 11. These images were downloaded from the web and
down-sampled to a very low resolution, just 32x32 pixels.
The CIFAR 10 subset has ten object categories, namely air-
plane, car, bird, cat, deer, dog, frog, horse, ship, and truck.
The training set has 5000 samples per class, the test set has
1000 samples per class. The low resolution and extreme
variability make recognition very difficult and a traditional
method based on features extracted at interest-points is
unlikely to work well. Moreover, extracting features from
such images using carefully engineered descriptors like
SIFT [3] or GIST [62] is also likely to be suboptimal since
these descriptors were designed to work well on higher
resolution images.

We use the following protocol. We train a gated MRF on
8x8 color image patches sampled at random locations, and
then we apply the algorithm to extract features convolu-
tionally over the whole 32x32 image by extracting features
on a 7x7 regularly spaced grid (stepping every 4 pixels).
Then, we use a multinomial logistic regression classifier

JOURNAL OF PAMI, VOL. ?, NO. ?, JANUARY 20?? 13

TABLE 4
Test recognition accuracy on the CIFAR 10 dataset produced by

different methods. Features are fed to a multinomial logistic
regression classifier for recognition.

Method Accuracy %
384 dimens. GIST 54.7
10,000 linear random projections 36.0
10K GRBM(*), 1 layer, ZCA’d images 59.6
10K GRBM(*), 1 layer 63.8
10K GRBM(*), 1layer with fine-tuning 64.8
10K GRBM-DBN(*), 2 layers 56.6
11025 mcRBM 1 layer, PCA’d images 68.2
8192 mcRBM-DBN, 3 layers, PCA’d images 71.0
384 mcRBM-DBN, 5 layers, PCA’d images 59.8

to recognize the object category in the image. Since our
model is unsupervised, we train it on a set of two million
images from the TINY dataset that does not overlap with
the labeled CIFAR 10 subset in order to further improve
generalization [20], [63], [64]. In the default set up we
learn all parameters of the model, we use 81 filters in W
to encode the mean, 576 filters in C to encode covariance
constraints and we pool these filters into 144 hidden units
through matrix P . P is initialized with a two-dimensional
topography that takes 3x3 neighborhoods of filters with
a stride equal to 2. In total, at each location we extract
144+81=225 features. Therefore, we represent a 32x32
image with a 225x7x7=11025 dimensional descriptor.

Table 3 shows some comparisons. First, we assess
whether it is best to model just the mean intensity, or just
the covariance or both in 1), 2) and 4). In order to make a
fair comparison we used the same feature dimensionality.
The covariance part of the model produces features that
are more discriminative, but modelling both mean and
covariance further improves generalization. In 2) and 3)
we show that increasing the number of filters in C while
keeping the same feature dimensionality (by pooling more
with matrix P) also improves the performance. We can
allow for a large number of features as long as we pool
later into a more compact and invariant representation.
Entries 4), 5) and 6) show that adding an extra layer on the
top (by training a binary RBM on the 11025 dimensional
feature) improves generalization. Using three stages and
8192 features we achieved the best performance of 71.0%.

We also compared to the more compact 384 dimensional
representation produced by GIST and found that our fea-
tures are more discriminative, as shown in table 4. Previous
results using GRBMs [60] reported an accuracy of 59.6%
using whitened data while we achieve 68.2%. Their result
improved to 64.8% by using unprocessed data and by fine-
tuning, but it did not improve by using a deeper model.
Our performance improves by adding other layers showing
that these features are more suitable for use in a DBN. The
current state-of-the-art result on this dataset is 80.5% [65]
and it employs a much bigger network and perturbation of
the input to improve generalization.

Fig. 12. Top: Samples generated by a five-layer deep model
trained on faces. The top layer has 128 binary latent variables
and images have size 48x48 pixels. Bottom: comparison between
six samples from the model (top row) and the Euclidean distance
nearest neighbor images in the training set (bottom row).

TABLE 5
TFD: Facial expression classification accuracy using features

trained without supervision.

Method layer 1 layer 2 layer 3 layer 4
raw pixels 71.5 - - -
Gaussian SVM 76.2 - - -
Sparse Coding 74.6 - - -
Gabor PCA 80.2 - - -
GRBM 80.0 81.5 80.3 79.5
PoT 79.4 79.3 80.6 80.2
mPoT 81.6 82.1 82.5 82.4

6.5 Recognition of Facial Expressions
In these experiments we study the recognition of facial
expressions under occlusion in the Toronto Face Database
(TFD) [66]. This is the largest publicly available dataset
of faces to date, created by merging together 30 pre-
existing datasets [66]. It has about 100,000 images that
are unlabeled and more than 4,000 images that are labeled
with seven facial expressions, namely: anger, disgust, fear,
happiness, sadness, surprise and neutral. Faces were prepro-
cessed by: detection and alignment of faces using the Ma-
chine Perception Toolbox [67], followed by down-sampling
to a common resolution of 48x48 pixels. We choose to
predict facial expressions under occlusion because this
is a particularly difficult problem: The expression is a
subtle property of faces that requires good representations
of detailed local features, which are easily disrupted by
occlusion.

Since the input images have fairly low resolution and
the statistics across the images are strongly non-stationary
(because the faces have been aligned), we trained a deep
model without weight-sharing. The first layer uses filters
of size 16x16 centered at grid-points that are four pixels
apart, with 32 covariance filters and 16 mean filters at
each grid-point. At the second layer we learn a fully-
connected RBM with 4096 latent variables each of which

JOURNAL OF PAMI, VOL. ?, NO. ?, JANUARY 20?? 14
O

R
IG

IN
A

L
T

Y
P

E
 1

T
Y

P
E

 2
T

Y
P

E
 3

T
Y

P
E

 4
T

Y
P

E
 5

T
Y

P
E

 6
T

Y
P

E
 7

Fig. 13. Example of conditional generation performed by a four-
layer deep model trained on faces. Each column is a different
example (not used in the unsupervised training phase). The topmost
row shows some example images from the TFD dataset. The other
rows show the same images occluded by a synthetic mask (on the
top) and their restoration performed by the deep generative model
(on the bottom).

Fig. 14. An example of restoration of unseen images performed
by propagating the input up to first, second, third, fourth layer, and
again through the four layers and re-circulating the input through the
same model for ten times.

is connected to all of the first layer features. Similarly,
at the third and fourth layer we learn fully connected

Fig. 15. Expression recognition accuracy on the TFD dataset
when both training and test labeled images are subject to 7 types
of occlusion.

RBMs with 1024 latent variables, and at the fifth layer
we have an RBM with 128 hidden units. The deep model
was trained entirely generatively on the unlabeled images
without using any labeled instances [64]. The discriminative
training consisted of training a linear multi-class logistic
regression classifier on the top level representation without
using back-propagation to jointly optimize the parameters
across all layers.

Fig. 12 shows samples randomly drawn from the gener-
ative model. Most samples resemble plausible faces of dif-
ferent individuals with a nice variety of facial expressions,
poses, and lighting conditions. Nearest neighbor analysis,
using Euclidean distance, reveals that these samples are
not just copies of images in the training set: Each sample
exhibits regularities derived from many different training
cases.

In the first experiment, we train a linear classifier on
the features produced by each layer and we predict the
facial expression of the images in the labeled set. Each
input image is processed by subtracting from each pixel the
mean intensity in that image then dividing by the standard
deviation of the pixels in that image. The features at
successive hidden layers give accuracies of 81.6%, 82.1%,
82.5%, and 82.4%. Each higher layer is a RBM with 4096
hidden units. These accuracies should be compared to:
71.5% achieved by a linear classifier on the raw pixels,
76.2% achieved by a Gaussian SVM on the raw pixels,
74.6% achieved by a sparse coding method [68], and 80.2%
achieved by the method proposed by Dailey et al. [69]
which employs a large Gabor filter bank followed by PCA
and a linear classifier, using cross-validation to select the
number of principal components. The latter method and
its variants [70] are considered a strong baseline in the
literature. Table 5 reports also a direct comparison to a DBN
with a GRBM at the first layer and to a DBN with a PoT
at the first layer using the same number of parameters and
weight sharing scheme. mPoT outperforms its competitors
on this task. The accuracies reported on the table are an
average over 5 random training/test splits of the data with
80% of the images used for training and the rest for test.
Facial identities of subjects in training and test sets are
disjoint.

In the next experiment, we apply synthetic occlusions

JOURNAL OF PAMI, VOL. ?, NO. ?, JANUARY 20?? 15

only to the labeled images. The occlusions are shown
in fig. 13, they block: 1) eyes, 2) mouth, 3) right half,
4) bottom half, 5) top half, 6) nose and 7) 70% of the
pixels at random. Before extracting the features, we use
the generative model to fill-in the missing pixels, assuming
knowledge of which pixels are occluded. In order to fill-in
we initialize the missing pixels at zero and propagate the
occluded image through the four layers using the sequence
of posterior expectations. Then we reconstruct from the
top layer representation using the sequence of conditional
expectations in the generative direction. The last step of
the reconstruction consists of using the mPoT model to
fill in only the missing pixels by conditioning on both the
known pixels and the first-layer hidden variables which
gives a Gaussian distribution for the missing pixels [12].
This whole up and down process is repeated a few times
with the number of times being determined by the filling-
in performance (in terms of PSNR) on a validation set of
unlabeled images.

Fig. 14 shows the filling process. The latent represen-
tation in the higher layers is able to capture longer range
structure and it does a better job at filling-in the missing
pixels15. After missing pixels are imputed, the model is
used to extract features from the restored images as before.

The results reported in fig. 15 show that the deep model
is generally more robust to these occlusions, even compared
to other methods that know which pixels are missing and try
to compensate for occlusion. In these figures, we compare
to a Gaussian SVM on the raw images, a Gaussian SVM on
linearly interpolated images, a Gabor-based approach [69]
on linearly interpolated images and a sparse coding ap-
proach on the unoccluded part of the input images [68].

7 SUMMARY AND FUTURE WORK

Gated MRFs are higher-order MRFs that can be more
easily described as MRFs with latent variables. The joint
distribution is a product of potentials that either take pairs
of variables (one input and one “mean” latent variable)
or triplets of variables (two inputs and one “precision”
latent variable). For every configuration of latent variables
(and there are exponentially many if these are binary, for
instance) the model describes the input with a multi-variate
Gaussian distribution with a certain mean and covariance
matrix. The conditional distribution over the input induces
a soft-partitioning of the input space (one for each con-
figuration of latent variables) with hyper-ellipses that can
fit much more precisely the input distribution than using
hyper-spheres (like in PPCA [25] or GRBM [29]) or hyper-
ellipses centered at the origin (like in PoT [30]).

We have described a probabilistic generative model that
can be used for a large variety of applications in both
low-level and high-level vision. In both cases, better per-
formance is achieved by making the model hierarchical
which is easily done by using the latent variables of the

15. A similar experiment using a similar DBN was also reported by
Lee et al. [17] in fig. 6 of their paper. Our generation is more realistic
probably thanks to the better modeling of the first layer mPoT.

gated MRF as the first layer of a DBN that uses Bernoulli
variables for all subsequent layers. The ability of the model
to generate realistic samples can be used to assess the
quality of learning and to intuitively see what information
is captured or lost during training.

For high-level vision tasks such as object or scene
recognition, the latent variables of the model can be used
as image descriptors. These descriptors offer several ad-
vantages over engineered descriptors. They can adapt to
the input domain by leveraging large amounts of unlabeled
data (as done in this work) but they can also be tuned
to the task at hand by back-propagating the discriminative
error through the feature extractor. Feature extraction in
the hierarchical model is computationally efficient and is
equivalent to feed-forward propagation in a neural network
with a peculiar first layer composed of mean units that
act as linear filters followed by a logistic non-linearity and
precision units that pool the squared outputs of many linear
filters. This contrasts with inference in directed graphical
models which typically requires iteration, or inaccurate
variational approximations16. Generating unbiased samples
from a directed model is typically much simpler than gen-
erating from our model, but for computer vision, efficient
inference is far more important than efficient generation.

The main drawbacks of our model are that exact maxi-
mum likelihood learning is intractable and so computation-
ally expensive Markov Chain Monte Carlo methods have
to be used during training. This increases the number of
hyper-parameters that have to be set and makes the training
slow and hard to monitor. Consequently, the assessment
of whether our model is preferable to others seems to be
application-dependent since we must consider the trade-
off between the computational cost of training and the
efficiency of inference at test time.

Although our model generates quite good samples of
natural images, these samples still exhibit rather simplistic
structure and are very limited in the types of texture they
contain. The gated MRF can be extended in several ways
to address these issues by a) modifying the form of the
energy function to better embed our prior knowledge of
natural image statistics and to better model texture and long
range dependencies (e.g., learning multi-scale representa-
tions), b) improving the model at the higher layers of the
hierarchy (e.g., replacing RBMs with gated RBMs that are
the analogue of the model here described but for binary
input variables) and c) exploiting image self-similarity by
designing mixed parametric and non-parametric models to
more naturally represent repetitive texture. Finally, a very
promising research avenue is to extend the model to video
sequences in which the temporal regularities created by
smoothly changing viewing transformations should make
it far easier to learn to model depth, three-dimensional
transformations and occlusion [71].

16. Feedforward inference in our hierarchical generative model can be
viewed as a type of variational approximation that is only exactly correct
for the top layer, but the inference for the lower layers is a very good
approximation because of the way they are learned [20].

JOURNAL OF PAMI, VOL. ?, NO. ?, JANUARY 20?? 16

ACKNOWLEDGMENTS

The research was funded by grants from NSERC, CFI and
CIFAR and by gifts from Google and Microsoft.

REFERENCES

[1] E. Simoncelli, “Statistical modeling of photographic images,” Hand-
book of Image and Video Processing, pp. 431–441, 2005.

[2] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories,”
in IEEE Conference on Computer Vision and Pattern Recognition,
June 2006.

[3] D. Lowe, “Distinctive image features from scale-invariant key-
points,” IJCV, 2004.

[4] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2005.

[5] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Surf: Speeded
up robust features,” in Computer Vision and Image Understanding,
2008.

[6] A. Bosch, A. Zisserman, and X. Munoz, “Representing shape with
a spatial pyramid kernel,” in CIVR, 2007.

[7] A. Hyvarinen, J. Karhunen, and E. Oja, Independent Component
Analysis. John Wiley & Sons, 2001.

[8] G. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[9] M. Ranzato and G. Hinton, “Modeling pixel means and covariances
using factorized third-order boltzmann machines,” in IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2010.

[10] M. Wainwright and E. Simoncelli, “Scale mixtures of gaussians and
the statistics of natural images,” in Advances in Neural Information
Processing Systems, 2000.

[11] S. Roth and M. Black, “Fields of experts: A framework for learning
image priors,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2005.

[12] U. Schmidt, Q. Gao, and S. Roth, “A generative perspective on mrfs
in low-level vision,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2010.

[13] M. Ranzato, V. Mnih, and G. Hinton, “Generating more realistic
images using gated mrf’s,” in Advances in Neural Information
Processing Systems, 2010.

[14] Y. Karklin and M. Lewicki, “Emergence of complex cell properties
by learning to generalize in natural scenes,” Nature, vol. 457, pp.
83–86, 2009.

[15] U. Koster and A. Hyvarinen, “A two-layer ica-like model estimated
by score matching,” in ICANN, 2007.

[16] P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in
International Conference in Machine Learning, 2008.

[17] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng., “Convolutional
deep belief networks for scalable unsupervised learning of hierarchi-
cal representations,” in Proc. International Conference in Machine
Learning, 2009.

[18] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the
best multi-stage architecture for object recognition?” in International
Conference in Computer Vision, 2009.

[19] Q. Le, W. Zou, S. Yeung, and A. Ng, “Learning hierarchical spatio-
temporal features for action recognition with independent subspace
analysis,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2011.

[20] G. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” Neural Computation, vol. 18, pp. 1527–1554,
2006.

[21] M. Ranzato, A. Krizhevsky, and G. Hinton, “Factored 3-way re-
stricted boltzmann machines for modeling natural images,” in Con-
ference in Artificial Intelligence and Statistics, 2010.

[22] M. Ranzato, J. Susskind, V. Mnih, and G. Hinton, “On deep gener-
ative models with applications to recognition,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2011.

[23] J. DiCarlo, D. Zoccolan, and R. N.C., “How does the brain solve
visual object recognition?” Neuron, vol. 73, no. 3, pp. 415–34, 2012.

[24] M. Ranzato, “Unsupervised learning of feature hierarchies,” Ph.D.
thesis, ch. 1, 2009.

[25] M. E. Tipping and C. M. Bishop, “Probabilistic principal component
analysis,” Journal of the Royal Statistical Society, Series B, vol. 61,
pp. 611–622, 1999.

[26] G. Young, “Maximum likelihood estimation and factor analysis,”
Psychometrika, vol. 6, no. 1, pp. 49–53, 1940.

[27] D. MacKay, “Maximum likelihood and covariant algorithms for
independent component analysis,” 1999.

[28] B. A. Olshausen and D. J. Field, “Sparse coding with an overcom-
plete basis set: a strategy employed by v1?” Vision Research, vol. 37,
pp. 3311–3325, 1997.

[29] M. Welling, M. Rosen-Zvi, and G. Hinton, “Exponential family har-
moniums with an application to information retrieval,” in Advances
in Neural Information Processing Systems, 2005.

[30] M. Welling, G. Hinton, and S. Osindero, “Learning sparse topo-
graphic representations with products of student-t distributions,” in
Advances in Neural Information Processing Systems, 2003.

[31] Y. W. Teh, M. Welling, S. Osindero, and G. E. Hinton, “Energy-based
models for sparse overcomplete representations,” JMLR, vol. 4, pp.
1235–1260, 2003.

[32] T. Sejnowski, “Higher-order boltzmann machines,” in AIP Conf.
proc., Neural networks for computing, 1986.

[33] R. Memisevic and G. Hinton, “Learning to represent spatial trans-
formations with factored higher-order boltzmann machines.” Neural
Computation, vol. 22, pp. 1473–1492, 2009.

[34] M. Welling and G. E. Hinton, “A new learning algorithm for mean
field boltzmann aachines,” in Int. Conf. Artificial Neural Networks,
2002.

[35] S. Osindero and G. E. Hinton, “Modeling image patches with a
directed hierarchy of markov random fields,” in Advances in Neural
Information Processing Systems, 2008.

[36] G. Taylor, G. Hinton, and S. Roweis, “Modeling human motion
using binary latent variables,” in Advances in Neural Information
Processing Systems, 2007.

[37] Y. Weiss and W. Freeman, “What makes a good model of natural
images?” in IEEE Conference on Computer Vision and Pattern
Recognition, 2007.

[38] C. Williams and F. Agakov, “Products of gaussians and probabilistic
minor component analysis,” Neural Computation, vol. 14, pp. 1169–
1182, 2002.

[39] S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions,
and the bayesian restoration of images,” PAMI, vol. 6, pp. 721–741,
1984.

[40] M. Black and A. Rangarajan, “On the unification of line processes,
outlier rejection, and robust statistics with applications in early
vision,” Int. Journal of Computer Vision, vol. 19, no. 1, pp. 57–92,
1996.

[41] G. Hinton and Y. Teh, “Discovering multiple constraints that are
frequently approximately satisfied,” in Uncertainty and Artificial
Intelligence, 2001.

[42] G. Hinton, “Products of experts,” in Proc. of the Ninth International
Conference on Artificial Neural Networks, 1999.

[43] R. Neal, Bayesian learning for neural networks. Springer-Verlag,
1996.

[44] T. Tieleman and G. Hinton, “Using fast weights to improve persistent
contrastive divergence,” in International Conference in Machine
Learning, 2009.

[45] M. Zontak and M. Irani, “Internal statistics of a single natural
image,” in IEEE Conference on Computer Vision and Pattern Recog-
nition, 2011.

[46] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[47] K. Gregor and Y. LeCun, “Emergence of complex-like cells in a tem-
poral product network with local receptive fields,” arXiv:1006.0448,
2010.

[48] Q. Le, J. Ngiam, Z. Chen, D. Chia, P. Koh, and A. Ng, “Tiled
convolutional neural networks,” in Advances in Neural Information
Processing Systems, 2010.

[49] S. Zhu and D. Mumford, “Prior learning and gibbs reaction diffu-
sion,” PAMI, pp. 1236–1250, 1997.

[50] I. Murray and R. Salakhutdinov, “Evaluating probabilities under
high-dimensional latent variable models,” 2009.

[51] L. Theis, S. Gerwinn, F. Sinz, and M. Bethge, “In all likelihood,
deep belief is not enough,” Journal of Machine Learning Research,
vol. 12, pp. 3071–3096, 2011.

[52] M. A. Carreira-Perpignan and G. E. Hinton, “On contrastive diver-
gence learning,” Artificial Intelligence and Statistics, 2005.

JOURNAL OF PAMI, VOL. ?, NO. ?, JANUARY 20?? 17

[53] T. Tieleman, “Training restricted boltzmann machines using approx-
imations to the likelihood gradient,” in International Conference in
Machine Learning, 2008.

[54] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “Imagenet:
a large-scale hierarchical image database,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2009.

[55] A. Buades, B. Coll, and J. Morel, “A non local algorithm for image
denoising,” in IEEE Computer Vision and Pattern Recognition, 2005.

[56] J. Portilla, V. Strela, M. Wainwright, and E. Simoncelli, “Image
denoising using scale mixtures of gaussians in the wavelet domain,”
IEEE Trans. Image Processing, vol. 12, no. 11, pp. 1338–1351, 2003.

[57] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denois-
ing with block-matching and 3d filtering,” in Proc. SPIE Electronic
Imaging, 2006.

[58] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-
local sparse models for image restoration,” in Int. Conference on
Computer Vision, 2009.

[59] M. Elad and M. Aharon, “Image denoising via learned dictionaries
and sparse representation,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2006.

[60] A. Krizhevsky, “Learning multiple layers of features from tiny
images,” 2009, mSc Thesis, Dept. of Comp. Science, Univ. of
Toronto.

[61] A. Torralba, R. Fergus, and W. Freeman, “80 million tiny images:
a large dataset for non-parametric object and scene recognition,”
PAMI, vol. 30, pp. 1958–1970, 2008.

[62] A. Oliva and A. Torralba, “Modeling the shape of the scene: a holistic
representation of the spatial envelope,” IJCV, vol. 42, pp. 145–175,
2001.

[63] M. Ranzato, F. Huang, Y. Boureau, and Y. LeCun, “Unsupervised
learning of invariant feature hierarchies with applications to object
recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2007.

[64] R. Raina, A. Battle, H. Lee, B. Packer, and A. Ng, “Self-taught
learning: Transfer learning from unlabeled data,” in International
Conference in Machine Learning, 2007.

[65] D. Ciresan, U. Meier, J. Masci, L. Gambardella, and J. Schmidhuber,
“Flexible, high performance convolutional neural networks for image
classification,” in IJCAI, 2011.

[66] J. M. Susskind, A. K. Anderson, and G. E. Hinton, “The Toronto face
database,” Department of Computer Science, University of Toronto,
Toronto, ON, Canada, Tech. Rep., 2010.

[67] B. Fasel, I. Fortenberry and J. Movellan, “A generative framework
for real-time object detection and classification,” in CV Image
Understanding, 2005.

[68] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust
face recognition via sparse representation,” in IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI, 2008.

[69] M. Dailey, G. Cottrell, R. Adolphs, and C. Padgett, “Empath:
A neural network that categorizes facial expressions,” Journal of
Cognitive Neuroscience, vol. 14, pp. 1158–1173, 2002.

[70] G. Littlewort, M. Bartlett, I. Fasel, J. Susskind, and J. Movellan,
“Dynamics of facial expression extracted automatically from video,”
Computer Vision and Pattern Recognition Workshop, vol. 5, p. 80,
2004.

[71] G. Hinton, A. Krizhevsky, and S. Wang, “Learning structural de-
scriptions of objects using equivariant capsules,” in Int. Conf. on
Artificial Neural Networks, 2011.

Marc’Aurelio Ranzato is a research scien-
tist at Google. He received a PhD in com-
puter science in 2009 under the supervision
of professor Yann LeCun at New York Uni-
versity and he later was a postdoctoral fellow
working with professor Geoffrey Hinton in
the department of computer science at the
University of Toronto. He is recipient of the
2008-2009 NYU Dean’s dissertation fellow-
ship. Marc’Aurelio’s major interests are in the
areas of machine learning, computer vision

and multi-media processing.

Volodymyr Mnih received a BSc in mathe-
matics from the University of Toronto and an
MSc in computing science from the Univer-
sity of Alberta. He is currently a PhD student
in computer science under the supervision of
Geoffrey Hinton at the University of Toronto.
His main research interests are in machine
learning and computer vision.

Joshua M. Susskind is a postdoctoral
scholar working with professors Marian
Bartlett and Javier Movellan in the Institute
for Neural Computation at the University of
California, San Diego. He received a PhD in
Psychology in 2011 under the co-supervision
of professors Adam Anderson (Cognitive
Neuroscience) and Geoffrey Hinton (Com-
puter Science) at the University of Toronto.
His research interests are multi-disciplinary,
using experimental psychology and machine

learning to understand how the brain perceives facial expressions.

Geoffrey E. Hinton received a BA in Ex-
perimental Psychology from Cambridge in
1970 and a PhD in Artificial Intelligence from
Edinburgh in 1978. He was a member of
the PDP group at the University of Califor-
nia, San Diego and an assistant and asso-
ciate professor at Carnegie-Mellon Univer-
sity. He is currently the Raymond Reiter Dis-
tinguished Professor of Artificial Intelligence
at the University of Toronto and the director
of the program on Neural Computation and

Adaptive Perception funded by the Canadian Institute for Advanced
Research. From 1998 to 2001 he set up the Gatsby Computational
Neuroscience Unit at University College, London. He is a fellow of
the Royal Society and the Royal Society of Canada, an honorary
foreign member of the American Academy of Arts and Sciences,
and a former president of the Cognitive Science Society. He has
received the the David E. Rumelhart prize, the IJCAI research excel-
lence award, the Gerhard Herzberg Canada gold medal for Science
and Engineering, and honorary doctorates from the Universities of
Edinburgh and Sussex. His research contributions include back-
propagation, Boltzmann machines, distributed representations, time-
delay neural nets, mixtures of experts, variational inference and
learning, contrastive divergence, and deep belief nets.

