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Motivation

Data is often sequential in nature
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For deep versus shallow learning in educational psychology, see Studant approaches te leaming.

Deep learning (also knawn as deep structured learning, hierarchical
learning or deep machine learning) is a class of machine learning
algorithms that;!!!(PP188-200)

* use a cascade of many layers of nonlinear processing units for feature
extraction and transiormation. Each successive layer uses the output
from the previous layer as inpul. The algorithms may be supervised or
unsupervised and applications include pattern analysis (unsuparvisad)
and classification (supervised).

« are based on the (unsupervised) Iearning ol multiple levels ol features or
rapresantations of the data. Higher lavel features are darived from lower
level features to form a hierarchical representatian.

« are part of the broader machine learnina fisld of learnina representations
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Questions

— Deep learning tools to learn from and to predict

sequences

. can standard tools like CNNs suffice?

- how about RNNSs?

— fundamental problems when dealing with sequences

- is the sequential structure important for the prediction task?

- how to leverage structure at the input?
- how to deal with large output spaces? how to predict and what loss

function to use?
- how to deal with variable length inputs/outputs? how to align

sequencess 4



TL:DR...

There is no general rule of thumb, it depends on the task
and constraints at hand.
Next, we will learn by reviewing several examples.



Learning Scenarios

Output Sequential?

Input Sequential?



Learning Scenarios: sequence -> single label

Output Sequential?

No

Input Sequential?

Examples:
- text classification

- language modeling
- action recognition
- music genre classification



Sequence->Single Label: Text Classification
Examples
Sentiment analysis

“I've had this place bookmarked for such a long time and | finally got to go!! | was not disappointed...
“ -> positive rating

Text classification

“Neural networks or connectionist systems are a computational approach used in computer science
and other research disciplines, which is based on ....” -> science

General problem:
Given a document (ordered sequence of words), predict a single label.

Challenge:
Efficiency VS accuracy trade-off.



Sequence->Single Label: Text Classification

Examples

Sentiment analysis

“I've had this place bookmarked for such a long time and I finally got to go!! | was not disappointed...
“ -> positive rating

Text classification

“Neural networks or connectionist systems are a computational approach used in computer science
and other research disciplines, which is based on ....” -> science

Approach:

Embed words in R"d -> average embeddings -> apply a linear classifier.
Word order is lost. This partially remedied by embedding n-grams.

Bag of tricks for efficient text classification, Joulin et al. 2016



Sequence->Single Label: Text Classification

Exar.nples . negative
Sentiment analysis O\,

“I've had this place bookmarked for such a long time and | finally got to go!! | was not disappointed...
“ -> positive rating

Text classification

“Neural networks or connectionist systems are a computational approach used in computer science
and other research disciplines, which is based on ....” -> science

Approach:

Embed words in R"d -> average embeddings -> apply a linear classifier.
Word order is lost. This partially remedied by embedding n-grams.

. - P . 19
Bag of tricks for efficient text classification, Joulin et al. 2016



Sequence->Single Label: Text Classification

Exar.nples . negative
Sentiment analysis O\

“I've had this place bookmarked for such a long time and | finally got to go!! | was ..
“ -> positive rating
Text classification positive

“Neural networks or connectionist systems are a computational approach used in computer science
and other research disciplines, which is based on ....” -> science

Approach:

Embed words in R"d -> average embeddings -> apply a linear classifier.
Word order is lost. This partially remedied by embedding n-grams.

. - P . 1]
Bag of tricks for efficient text classification, Joulin et al. 2016



Sequence->Single Label: Text Classification

Exar.nples . negative
Sentiment analysis O\

“I've had this place bookmarked for such a long time and | finally got to go!! | was ..
“ -> positive rating
Text classification positive

“Neural networks or connectionist systems are a computational approach used in computer science
and other research disciplines, which is based on ....” -> science

Conclusion:

In this application (so far), bagging n-grams (n=1, 2, ...) works the best
and is very efficient. No need to deal with sequential nature of the input!

12



fastText

n-gram features at the input
hashing
hierarchical softmax

product quantization of weights
asynchronous training, “Hogwild” what
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credit: A. Joulin

available at https://github.com/facebookresearch/fastText
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https://github.com/facebookresearch/fastText

fastText: results

CNN
Zhang et al. (2015) Conneau et al. (2016) fastText
AG 87.2 3h 91.3 Hb1m 925 s
Amz. F. 595 5d 63.0 h 60.2 O9s
DBpedia 98.3 5h 08.7 1lh 98.5 2s
Yah. A,  71.2 1d 3.4 2h 72.3 b5s
Yelp F.  62.0 : 64.7 1h12 63.9 4s

credit: A. Joulin

Accuracy and train time

Same accuracy — 1k-10K times faster!

Bag of tri
14
FastText.zip: com

cks for efficient text classification,
dressing text classification models, J

oulin et al.
oulin et al.
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fastText: results

Running time
Model prec@1

Train Test

Freq. baseline 2.2 - -
Tagspace (Weston et al., 2011) 35.6 5h32 15h

fastText 46.1 13m38 1m37

Results on Flickr. Prediction on 300K+ hashtags

Bag of tricks for efficient text classitication, .
credit: A. Joulin FastText.zip: compressing text classification models, .

ou
ou

INn et al.
N et al.
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fastText: results
Memory in Kb (log scale)

1000000

100000
10000
1000
) “““““““‘
m _

Yelp FuII

B Linear model Zhang et al. 2015 B Xiao & Cho, 2016 B fastText

Same accuracy — 1k-10K times faster + 10-100x smaller

credit: A. Joulin Bag of tricks for efficient text classification, Joulin et al. 2016



Sequence->SingIe Label: Language Modeling
Example

“Neural networks or connectionist systems are a computational 22?2’ Task: replace ?22? with the
correct word from the dictionary (useful for type-ahead and ASR, for instance).

plw|we_q ... wq)
Challenges:

- very large vocabularies (> 100,000 words)
- long range dependencies (overall if working at the character level)

17



Sequence->SingIe Label: Language Modeling
Example

“Neural networks or connectionist systems are a computational 22?2’ Task: replace ?22? with the
correct word from the dictionary (useful for type-ahead and ASR, for instance).

plwg|we_1...w1)
Approaches:
- N-8raims
- RNNs Exploring the limits of language modeling, Jozefowicz et al. 2016
- CNNs (more recent\y} Language modeling with gated convolutional networks, Dauphin et al. 2016

18



Sequence->SingIe Label: Language Modeling
Example

“Neural networks or connectionist systems are a computational 22?2’ Task: replace ?22? with the
correct word from the dictionary (useful for type-ahead and ASR, for instance).

Approaches:
- n-grams: count-based, works well for head of distribution.

In order to estimate:

plwgwe_q ... wq)
we first make the Markov assumption that:
plwelwe_q1...w1) = plwe|we_q1 ... We_pni1)

and then we simply count:
count(we_niq ... W)

p(wt\wt_l .« . TUt—n+1) _j COUﬂt(wt—n—l—l o wt—l)

26



Sequence->SingIe Label: Language Modeling
Example

“Neural networks or connectionist systems are a computational 22?2’ Task: replace ?22? with the
correct word from the dictionary (useful for type-ahead and ASR, for instance).

Approaches: o = o
) e
(5 eor 5 )

‘ ' . Y. LeCun’s diagram

- RNNSs

Z)9
7)9
7)9

the cat sat



Sequence->SingIe Label: Language Modeling
Example

“Neural networks or connectionist systems are a computational 22?2’ Task: replace ?22? with the
correct word from the dictionary (useful for type-ahead and ASR, for instance).

Approaches: P o

- RNNSs

+ it generalizes better thanks to embeddings
+ it can more easily capture longer context
- it’s sequential, tricky to train

@l
@&
@D

Fun demo with a charRNN:
http://www.cs.toronto.edu/~ilya/rnn.ntml
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http://www.cs.toronto.edu/~ilya/rnn.html

Approaches:
- CNNs

+ same generalization as RNN
+ more parallelizable than RNNs
- fixed context (but it does not matter)

Language modeling with gated convolutional networks,

Dauphin et al. 2016

22
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Sequence->SingIe Label: Language Modeling

Model Test PP Hardware
Sigmoid-RNN-2048 (Ji et al., 2015) 68.3 1 CPU
Interpolated KN 5-Gram (Chelba et al., 2013) 67.6 100 CPUs
Sparse Non-Negative Matrix LM (Shazeer et al., 2014) 52.9 -
RNN-1024 + MaxEnt 9 Gram Features (Chelba et al., 2013) 51.3 24 GPUs
LSTM-2048-512 (Jozefowicz et al., 2016) 43.7 32 GPUs
2-layer LSTM-8192-1024 (Jozefowicz et al., 2016) 30.6 32 GPUs
BIG GLSTM-G4 (Kuchaiev & Ginsburg, 2017) 23.3* 8 GPUs
LSTM-2048 (Grave et al., 2016a) 43.9 1 GPU
2-layer LSTM-2048 (Grave et al., 2016a) 30.8 1 GPU
GCNN-13 38.1 1 GPU
GCNN-14 Bottleneck 31.9 8 GPUs

Table 2. Results on the Google Billion Word test set. The GCNN outperforms the LSTMs with the same output approximation.

Language modeling with gated convolutional networks,
Dauphin et al. 2016

23



Sequence->SingIe Label: Language Modeling

Conclusion:

In language modeling, it is essential to take into account the sequential structure of the
iInput.
RNNs/CNNs work the best at the moment.

24



Sequence->Single Label: Action Recognition

S | - Y C'\\

. *”\__4 ) |
3 1”\ m & | * Playing Tennis
D ‘5 “_._“n v ,: J .

&:L *u'—-n& "L-L ‘*\A &J ‘Z__’

Challenges:

- how to aggregate information over time
- computational efficiency

25
Two stream convolutional network for action recognition in videos. Simonyan et al. NIPS 2014



Sequence->Single Label: Action Recognition

\\\ ' ' Y ' \\
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Approaches:

- CNN on static frames -> feature pooling over time -> classification. Possibly augmented with
optical flow or (learned) temporal features.

Current large datasets have peculiar biases. E.g.,: one can often easily recognize the action from
static frames by just looking at the context...

26
Two stream convolutional network for action recognition in videos. Simonyan et al. NIPS 2014



Sequence->Single Label: Action Recognition

Spatial stream
ConvNet

video |

Temporal stream

ConvNet

multi-frame optical flow
Two stream convolutional network tor action recognition in videos. Simonyan et al. NIPS 2014



Sequence->SingIe Label: Action Recognition
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Conclusion:

Methods and approaches heavily depend on the dataset used. Sometimes, the sequential
structure does not add much information, it the label already correlates well with what can be

found in static frames.

28



Sequence->Single Label: vaQa

Q: Are there an equal number of large things and
metal spheres?

Q: What size is the cylinder that is left of the
brown metal thing that is left of the big sphere?

Q: There is a sphere with the same size as the

metal cube; is it made of the same material as the
small red sphere?

Q: How many objects are either small cylinders or
metal things?

Johnson et al, “CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning”, CVPR 2017
29

credit: R. Girshick



Sequence->Single Label: vaQa

Q: Are there an equal number of large things and
metal spheres?

Q: What size is the cylinder that is left of the
brown metal thing that is left of the big sphere?

Q: There is a sphere with the same size as the

metal cube; is it made of the same material as
the small red sphere?

Q: How many objects are either small cylinders
or metal things”?

Attributes Counting Comparison
Spatial Relationships Logical Operations

Johnson et al, “CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning”, CVPR 2017

30
credit: R. Girshick



Sizes, colors, shapes, and materials

Large red
Large gray metal cube
metal _ .

sphere

Small green
metal sphere

Small blue
metal cylinder

Small yellow
rubber

sphere

ume brown m. m. Small cyan
rubber rubber
sphere cube

In front vs. behind

credit: R. Girshick

Sample chain-structured question:

@ @ Unique> Relate

sphere

vellow right cube

‘ Filter
shape

Sequence->Single Label: vqa

e o %

What color is the cube to the right of the yellow sphere?

Sample tree-structured question:

Filter > Unique Relate\
color

e

|

Filter
shape

.

gr:en ijt And >
4
:ii;t;er> Unique> Relate T

t

small in front

How many cylinders are in front of the small

cylinder

thing and on the left side of the green object?

31

CLEVR function catalog

Value we—p

Filter <attr> >—> objects

>—-> objects

objects ==

Objects ——p "And
objects == OF

tiecs—> [CompP—> e
object ==——p Query <attr> >——» value
Value m—p
value Equal >—' yes/no
NUMDbEr we——p-
number = ma; More >_. ves/no
object =——» Same <attr> >—> objects
Value we——p
object === Relate >—> objects
objects = FUnique >—' object




Question Types

Exist Count

Q: Is there another green rubber Q: There is a large cube that is
cube that has the same size as right of the red sphere; what

the green matte cube? number of large yellow things
are on the right side of it?

Query

Q: There is a sphere to
the right of the large

vellow ball;
what material is it?

32

credit: R. Girshick

Sequence->Single Label: vaQa

Compare number

Q: Are there more metallic
objects that are right of the

large red shiny cylinder than
gray matte objects?

Compare Attribute
Q: Is the size of the

is behind the cyan
cylinder?

cyan cube the same as
the metal cylinder that



Sequence->Single Label: vqa
Compositional Reasoning: Model

Question: Are there more cubes than yellow things? Answer: Yes

things—* LSTM LSTM —+ 9‘;‘;‘:’ Classifier
4 v :
yellow— LSTM LSTM |—»| coune | [CXECUtION
4 { Engine
filter
than—| LSTM LSTM | color ST
A v [yellow] 4 4
P count count
cubes—* LSTM LSTM — <SCENE> A A
4 v filter | filter
more——» LSTM LSTM [—» count color shape
+ [yellow] [cube]
: Ls*TM LSTM S t t
there ——» - shape
} : roubal /  CNN \
Are —» LSTM LSTM > <SCENE>
P G t Predicted
rogram Generator Program

Andreas et al, “Neural Module Networks”, 2016

. . : 33 .
o o g Johnson et al, “Inferring and Executing Programs for Visual Reasoning”. 2017 Andreas et al, “Learning to Compose Neural Networks for Question Answering”, 2016
credit: R. Girshick



Sequence->Single Label: vqa

Step 1: Traln Program Generator

Question: Are there more cubes than yellow things?

things—* LSTM ~r*| LSTM —» 9’;:?’
Supervision 4 i
yellow—» LSTM | » LSTM [—#| count
lmage 4 v filter :
than—{ LSTM | [-+| LSTM |—»| cotor (Using a small
Question A i [yellow] fraction of
cubes—* LSTM @ || LSTM [—%| <SCENE> ground-truth
Program 4 L programs)
more —» LSTM | LSTM [~ count
Answer & 7 filtar
there—» LSTM | LSTM [—%| shape
4 { [cube]
Are —» LSTM % LSTM [—» <SCENE>
P G t Predicted
| rogram wenerator " Program

Andreas et al, “Neural Module Networks”, 2016
Johnson et al, “Inferring and Executing Programs for Visual Reasoning”. 2017 Andreas et al, “Learning to Compose Neural Networks for Question Answering”, 2016

credit: R. Girshick



Sequence->Single Label: vqa

Step 2: Freeze PG, train Execution Engine

Question: Are there more cubes than yellow things? Answer: Yes

greater Classifier
Supervision T
count Engine
lmage filter J
color g:“t.t-tha:
Question [yellow] N g 2
<SCENE> A 3
Program ey | prrryom
count color shape
Answer lyd:m [cube]
filter X
shape
[cube] / CNN \
<SCENE>
P G t Predicted
rogram Generator Program

Andreas et al, “Neural Module Networks”, 2016
Johnson et al, “Inferring and Executing Programs for Visual Reasoning”. 2017 Andreas et al, “Learning to Compose Neural Networks for Question Answering”, 2016

35
credit: R. Girshick



Sequence->Single Label: vqa
Step 3: Train jointly with REINFORCE

Question: Are there more cubes than yellow things? Answer: Yes

things —* LS;‘M LSIM i gr:l:;-:r Classifier
Supervision :
yellow——» LSTM LSTM (=% count E::e?::on
Image A v filter 9
than— LSTM LSTM [—#| color 9;‘““’-‘_“;“
: 11
QUEStIOn * * yediow] — count count
cubes—* LSTM LSTM [—#» <SCENE> i A
Program 4 v filter | filter
more —» LSTM LSTM —# count color shape
[yellow] [cube]
Answer ? ' filter 4 Y
there —» LSTM LSTM [—#® shape / CNN \
: . E
Are —» LSTM LSTM —#| <SCENE>
P G t Predicted
rogram Generator Program

Andreas et al, “Neural Module Networks”, 2016
Johnson et al, “Inferring and Executing Programs for Visual Reasoning”. 2017, Andreas et al, “Learning to Compose Neural Networks for Question Answering”, 2016

credit: R. Girshick



Accuracy on CLEVR

100
75
S0
25

0

credit: R. Girshick

37

Sequence->Single Label: vaQa

B Q-type mode

B LSTM
. CNN+LSTM

B CNN+LSTM+SA
0 CNN+LSTM+SA+MLP

B Human

BN Ours (9 prog)
B Ours (18k prog)
B Ours (All prog)



Sequence->Single Label: vqa

onciusion:

In order to support compositional reasoning (even on rather artificial datasets like CLEVR),
current models use rather complicated architectures (RNN + CNN + composable CNN).
Accuracy is good but supervision is unrealistically strong.
Recent approaches seem to reduce the amount of required supervision and replace top
level composable CNN with a gated CNN. Unclear whether they can compose.

38
Learning visual reasoning without strong priors, Perez et al., arXiv 2017



Learning Scenarios: single input -> sequence

Output Sequential?

Input Sequential?

Example:
Image captioning

39



Single Input -> sequence: image captioning

Example:
A square with a fountain and tall
buildings in the background, with some
trees and a few people hanging out.
Challenge:

- how to deal with multiple modalities.

- what to look for and where to look in the input image.

- uncertainty in the output: there are many good captions for a given image.
- What is a good metric of success?

40



Single Input -> sequence: image captioning

Example:
A square with a fountain and tall
buildings in the background, with some
trees and a few people hanging out.
Approach:

Pre-train a CNN to extract features from the image, and generate text
conditioning an RNN with the image features.

41
Deep visual semantic alighments for generating image descriptions, Karpathy et al. CVPR 2015



Single Input -> sequence: image captioning

Example:
A square with a fountain and tall
buildings in the background, with some
trees and a few people hanging out.
ApprOaCh: “straw” “hat” END

START “straw” “hat”

Deep visual semantic alignments for generating image desgzériptions, Karpathy et al. CVPR 2015



Single Input -> sequence: image captioning

Example:
A square with a fountain and tall
buildings in the background, with some
trees and a few people hanging out.
Conclusion:

It is easy to condition a language model (RNN or CNN based) with additional
context, and ultimately map a static object into a sequence.

This however heavily relies on good pre-trained (on large labeled datasets)
image features.

43



Learning Scenarios: sequence -> sequence

Output Sequential?

Examples:

- machine translation

- summarization

- speech recognition

- OCR

- video frame prediction 44
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Sequence ->> Sequence: machine translation

Example:
I TA: Il gatto si e’ seduto sul tappetino.

v

EN: The cat sat on the mat.

Challenges:

- alighment: input/output sequences may have different length

- uncertainty (1-to-many mapping: many possible ways to translate)
- metric: how to automatically assess whether to sentences mean the same

thing?

45



Sequence ->> Sequence: machine translation

Example:
I TA: Il gatto si e’ seduto sul tappetino.
EN: The cat sat on the mat.
Approach:

Have one RNN to encode the source sentence, and another RNN to predict the
target sentence. The target RNN learns to (soft) align via attention.

46
Neural machine translation by jointly learning to align and translate, Bahdanau et al. ICLR 2015



Sequence ->> Sequence: machine translation

cat sat on

SNy
Sk
&)
O EINE)
@NEn
D@k

the cat sat Y. LeCun’s diagram



Source Target

1) Represent source

9l00000/®

)

il gatto si e’ seduto sul tappetino Y. LeCun’s diagram++



Source

2) score each source word (attention)

T
90000 1®

QR
9l00000/®

il gatto si e’ seduto sul tappetino

Target

(3 p{@0s

sat

on

o} (E

Y. LeCun’s diagram-++



Source Target

‘ 3) combine target hidden with source vector

sle/elelo] JOJNy Ny
QR
9l00000/®

Il gatto si € seduto sul tappetino sat Y. LeCun’s diagram-++

D@
({23



Sequence ->> Sequence: machine translation

Example:
I TA: Il gatto si e’ seduto sul tappetino.
EN: The cat sat on the mat.
Notes:

+ source and target sentence can have any length, it works well on long sentences too!
+ it learns to align implicitly.

+ RNN can be replaced with CNNSs. A convolutional encoder model for NMT, Gehring et al. 2016

+ it generates fluent sentences.

- It has trouble dealing with rare words, exact choice of words.

- It is typically trained like a language model (cross-entropy), good for scoring but not
for generation. )




Sequence ->> Sequence: machine translation

WMT°16 English-Romanian BLEU BLEU Time (s)
Sennrich et al. (2016b) GRU (BPE 90K) 28.1 GNMT GPU (KSO) 31.20 3.028
ConvS2S (Word 80K) 29.45 GNMT CPU 88 cores 31.20 1,322
ConvS2S (BPE 40K) 29.88 GNMT TPU 3121 384
. - ConvS2S GPU (K40)b =1 33.45 327
WALL' 16 Eagih-Germn BLEU ConvS2S GPU (M40) b = 1 33.45 221
Ll:lmhgbet al. (201;1) Ié%Tlg)I (Word 501(21 ) 230-2 ConvS2S GPU (GTX-1080ti))b=1  33.45 142
Kalchbrenner et al. (2016) ByteNet (Char A o
Wa et al. (2016) GNMT (Word 80K) "3 19 ConvS2S CPU 48 cores b = 1 33.45 142
Wu et al. (2016) GNMT (Word pieces) 24.61 ConvS2S GPU (K40) b =5 34.10 587
ConvS2S (BPE 40K) 25.16 ConvS2S CPU 48 cores b = 5 34.10 482
ConvS2S GPU (M40) b = 5 34.10 406
WMT 14 English-French mp— ConvS2S GPU (GTX-1080t))b =5  34.10 256
Wu et al. (2016) GNMT (Word 80K) 37.90 Table 3. CPU and GPU generation speed in seconds on the de-
Wu et al. (2016) GNMT (Word pieces) 38.95

velopment set of WMT’ 14 English-French. We show results for

different beam sizes b. GNMT figures are taken from Wu et al.
Conv525 (BPE 40K) 40.46 (2016). CPU speeds are not directly comparable because Wu et al.
(2016) use a 88 core machine compared to our 48 core setup.

Wu et al. (2016) GNMT (Word pieces) + RL  39.92

Table 1. Accuracy on WMT tasks comapred to previous work. All

results are averages over several runs.
Convolutional sequence to sequence learning, Gehring et al. arXiv 207 7, https://github.com/facebookresearch/fairseq



https://github.com/facebookresearch/fairseq

Sequence ->> Sequence: machine translation

Conclusions:

+ attention (gating) mechanism is rather general and it can be used for:
+ dealing with variable length inputs, as it “softly select one”
+ implicit alignment, which is discovered by the model as needed

+ to perform rounds of “reasoning” (e.g., “hops” in memory networks)

+ the same mechanism has been used to image captioning, summarization, etc.

- word level loss function (cross entropy for predicting the next word) is sub-optimal

for the generation task.

Sequence level training with RNNs, Ranzato et al. ICLR 2016

An actor-critic algorithm for sequence prediction, ICLR 2017
Sequence-to-sequence learning as beam-search optimization, EMNLP 2016

53



Sequence -> Sequence: OcCR
Example 1

T— Export as text

My To do st

v Date a top model
-Going to the moon
-Buy a sports car
What else?
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Sequence -> Sequence: OcCR
Example 2

y




Sequence -> Sequence: OCr
Example 2

Thomas 8 Anderson
Mary B8 Anderson 1001

SR 1411
Arywhere USA 12345-6789

”4”3&'2'33:';% oo L * “200”

v B

vevo MONTRLY B "}o\q\_ S\aﬂ&,

222370440 F 123456789123 (1001
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Sequence -> Sequence: OcCR

Challenges:

- digit segmentation is not observed; there can be several segmentations that are
correct (i.e., yield correct transcription).

- variable length.

- design of loss function.

- very large number of valid output sequences.
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Sequence ->> Sequence‘ OCR
-

e 200

e e L

EEEEEEEEEEEEEEEEEEEEEEEEEEEE

Approach:

- pre-train a CNN on single handwritten digits.
- over-segment and produce a lattice of possible “interpretations”.

- apply graph-transformer networks with a log-likelihood loss over sequences or
margin loss.

Global training of document processing systems with graph transformer networks, Bottou et al. CVPR 1997
Gradient-based learning applied to document recognition, LeCun et al. IEEE 1998
Deep structured output learning for unconstrained texttecognition, Jaderberg et al. ICLR 2015




Sequence -> Sequence: OcCR
Step1: over-segment & produce lattice of interpretations

[ l \

<’,) L > Segén;rgﬁtion
gl y—" o

2

v
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Gradient-based learning applied to document recognition, LeCun et al. IEEE 1998



Sequence -> Sequence: OcCR
Step2: score each hypothesis

Desired

Answer Interpretation
Graph
G int

Recognition
4 1 Transfomer
W NN T
Neural Net rec
Weights |

’, ‘ Segmentation
. . . J ® \ Graph
Gradient-based learning applied to
document recognition, LeCun et al. ’Z‘l. L‘ Ggeq

IEEE 1998




Sequence -> Sequence: OcCR
Step3: compute loss and gradients

Loss Function
[0.1](+1)

[0.71(+1) [0.6)(-1)

Find the best path

Find all paths yielding the o : .
correct output sequence (¢ 1l(+1>.°\ - according to the mode
vit

4 [0. 6](+1)

3[0.1)(~1)a A [0.41(-1)q 1 [0.1)(~1
6T T e
1](*1

cvnt
310.
42 41(0)
G 6\ Viterbi Transformer
3[3. 41(0) 4 (0. 61(+1)
"34"

Reswed - -
nswer 1 4 0.4)(-1) nterpretation
5 3}5 2|1 3&0) Graph
G|nt
3 3.4]50;
4 14.4)(0



Sequence -> Sequence: OcCR

Conclusions:

- problem may have latent variables (segmentation), over which one can
minimize or marginalize over.

- structure prediction is well expressed in terms of weighted lattices, and bprop
still applies (GTN).

- loss functions and EBMs can straightforwardly be extended to handle
sequences. This is one of the best examples of training at the sequence level.

- search over best hypothesis of the system can be expensive; marginalization
can be intractable. It’s problem and model dependent.
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Conclusions

- sequences can appear at the input, output, or both.

. structured outputs are the most difficult case, overall when there may
be several plausible predictions for the same input (e.g., MT, image
captioning).

- sometimes, we do not need to bother taking into account the sequential
aspect of the data, if the prediction task is well correlated to variables
present in static input.

- it’s possible to learn to generate sequences, to search in the space of
sequences, and to still train by back-propagation as in GTNs.

- ultimately, there is no general model/loss that work in all cases. They
should be designed for the task at hand.

- there are lots of demos and code available to reproduce these examples.
See pytorch and torch tutorials, for instance.



Questions?



Thank you!
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