
An Introduction to
Deep Learning

Marc’Aurelio Ranzato
Facebook AI Research

ranzato@fb.com

DeepLearn Summer School - Bilbao, 17 July 20171

mailto:ranzato@fb.com

Outline
• PART 0 [lecture 1]

• Motivation

• Training Fully Connected Nets with Backpropagation

• Part 1 [lecture 1 and lecture 2]

• Deep Learning for Vision: CNN

• Part 2 [lecture 2]

• Deep Learning for NLP: embeddings

• Part 3 [lecture 3]

• Modeling sequences
2

Representing Symbolic Data
• Lots of data is symbolic. For instance:

• Text

• Graphs

• Can DL be useful to represent such data?

• If we could represent symbolic data in a continuous
space, we could easily measure relatedness.

• We could apply the powerful tools of linear algebra and
DL to perform complex reasoning.

3

Representing Symbolic Data
• Challenges:

• Discrete nature, easy to count but not obvious how to
represent.

• One cannot use standard backprop through discrete
units.

• The number of entities to represent can be very large,
albeit finite; e.g., words in English dictionary.

• Often times this data is not associated to a regular grid
structure like an image. E.g.: text, social graph.

4

Case Study:
Learning Word Representations
• As a case study, we will consider the problem of learning word

representations from raw text (without any supervision).

• We will explore a few approaches to learn such representations.

• Practical applications:

• Text classification

• Ranking (e.g., google search, Facebook feeds ranking)

• Machine translation

• Chatbot
5

Latent Semantic Analysis
• Problem: Find similar documents in a corpus.

• Solution:

• construct the “term”/“document” matrix storing
(normalized) occurrence counts

• SVD

Deerwester et al. “Indxing by Latent Semantic Analysis” JASIS 1990

Latent Semantic Analysis

Deerwester et al. “Indxing by Latent Semantic Analysis” JASIS 1990

term-document matrix
xi,j (normalized) number of times word i appears in document j

Latent Semantic Analysis

Deerwester et al. “Indxing by Latent Semantic Analysis” JASIS 1990

term-document matrix
xi,j (normalized) number of times word i appears in document j

Example
doc1: the cat is furry
doc2: dogs are furry

doc1 doc2
are 0 1
cat 1 0

dogs 0 1
furry 1 1

is 1 0
the 1 0

Latent Semantic Analysis

Deerwester et al. “Indxing by Latent Semantic Analysis” JASIS 1990

term-document matrix
xi,j (normalized) number of times word i appears in document j

Latent Semantic Analysis

Deerwester et al. “Indxing by Latent Semantic Analysis” JASIS 1990

term-document matrix
xi,j (normalized) number of times word i appears in document j

Each column of V , is a representation of a document in the corpus.

is

T

Latent Semantic Analysis

Deerwester et al. “Indxing by Latent Semantic Analysis” JASIS 1990

term-document matrix
xi,j (normalized) number of times word i appears in document j

Each column of V , is a representation of a document in the corpus.

is

T

Each column is a D dimensional vector. We can use it to compare & retrieve documents.

Latent Semantic Analysis

Deerwester et al. “Indxing by Latent Semantic Analysis” JASIS 1990

term-document matrix
xi,j (normalized) number of times word i appears in document j

Each row of U, is a representation of a word in the dictionary.

Latent Semantic Analysis

Deerwester et al. “Indxing by Latent Semantic Analysis” JASIS 1990

term-document matrix
xi,j (normalized) number of times word i appears in document j

Each row of U, is a representation of a word in the dictionary.
Each row of U, is a vectorial representation of a word, a.k.a. embedding.

Word Embeddings
• Convert words (symbols) into a D dimensional vector,

where D is a hyper-parameter.

• Once embedded, we can:

• Compare words.

• Apply our favorite machine learning method (DL) to
represent sequences of words.

• At document retrieval time in LSA, the representation of a
new document is a weighted sum of word embeddings
(bag-of-words -> bag-of-embeddings): U’ x

14

bi-gram
• A bi-gram is a model of the probability of a word

given the preceding one:

• The simplest approach consists of building a
(normalized) matrix of counts:

15

p(wk|wk�1)

ci,j number of times word i
is preceded by word j

wk 2 V

c(wk|wk�1) =

2

4
c1,1 . . . c1,|V |
. . . ci,j . . .
c|V |,1 . . . c|V |,|V |

3

5

preceding word

cu
rre

nt
 w

or
d

Factorized bi-gram

• We can factorize (via SVD, for instance) the bigram
to reduce the number of parameters and become
more robust to noise (entries with low counts):

16

c(wk|wk�1) =

2

4
c1,1 . . . c1,|V |
. . . ci,j . . .
c|V |,1 . . . c|V |,|V |

3

5 = UV

U 2 R|V |⇥D

V 2 RD⇥|V |

• Rows of U store “output” word embeddings, and
columns of V store “input” word embeddings.

input word

ou
tp

ut
 w

or
d

Factorized bi-gram
• The same can be expressed as a two layer (linear)

neural network:

17

c(wk|wk�1) =

2

4
c1,1 . . . c1,|V |
. . . ci,j . . .
c|V |,1 . . . c|V |,|V |

3

5 = UV

softmaxV U

2

66666666664

0
...
0
1
0
...
0

3

77777777775

input word

1-hot representation
of the input word

ou
tp

ut
 w

or
d

Factorized bi-gram

18

c(wk|wk�1) =

2

4
c1,1 . . . c1,|V |
. . . ci,j . . .
c|V |,1 . . . c|V |,|V |

3

5 = UV

softmaxV U

2

66666666664

0
...
0
1
0
...
0

3

77777777775

input word

1-hot representation
of the input word

ou
tp

ut
 w

or
d

No need to multiply,
V is just a look up table!

• The same can be expressed as a two layer (linear)
neural network:

Factorized bi-gram

19

c(wk|wk�1) =

2

4
c1,1 . . . c1,|V |
. . . ci,j . . .
c|V |,1 . . . c|V |,|V |

3

5 = UV

softmaxV U

2

66666666664

0
...
0
1
0
...
0

3

77777777775

input word

1-hot representation
of the input word

ou
tp

ut
 w

or
d

No need to multiply,
V is just a look up table!

NOTE: Since embeddings are free, there is no
point adding non-linearities and more layers!
Here, depth does not help!

• The same can be expressed as a two layer (linear)
neural network:

Factorized bi-gram

• bi-gram model could be useful for type-ahead
applications (in practice, it’s much better to
condition upon the past n>2 words).

• Factorized model yields word embeddings as a by-
product.

20

Word Embeddings
• LSA learns word embeddings that take into

account co-occurrences across documents.

• bi-gram instead learns word embeddings that only
take into account the next word.

• It seems better to do something in between, using
more context but just around the word of interest,
yielding a method called word2vec.

Mikolov et al. “Efficient estimation of word representations” rejected by ICLR 2013

word2vec

Mikolov et al. “Efficient estimation of word representations” rejected by ICLR 2013

word2vec

Mikolov et al. “Efficient estimation of word representations” rejected by ICLR 2013

skip-gram
• Similar to factorized bi-gram model, but

predict N preceding and N following
words.

• Words that have the same context will
get similar embeddings. E.g.: cat & kitty.

• Input projection is just look-up table.
Bulk of computation is the the prediction
of words in context.

• Learning by cross-entropy minimization
via SGD.

Mikolov et al. “Efficient estimation of word representations” rejected by ICLR 2013

Hierarchical Softmax
• When there are lots of classes to predict (e.g.,

words in a dictionary, |V| in the order of 100,000 or
more), projection in the output space is
computationally very expensive.

• Hierarchical softmax speeds up computation at the
cost of a little decrease of accuracy:

25n-th cluster
feature

(word embedding in skip-gram)

Drop sum: each word belongs
to 1 and only 1 clusterp(wk|h) =

NX

n=1

p(wk|h, cn)p(cn|h)

= p(wk|h, cn)p(cn|h)

Hierarchical Softmax
p(wk|h) =

NX

n=1

p(wk|h, cn)p(cn|h)

= p(wk|h, cn)p(cn|h)
Why is it cheaper to have two softmaxes instead of one?

Because these are much smaller. If clusters have all the
same size and contain words:

D ⇥ |V | � D ⇥N +D ⇥ |V |
N

⇡ D ⇥ |V |
N

|V |
N

In practice, clusters are formed by taking into account word frequency in order to minimize
computation cost. Tree can be have more children (binary tree).

Mikolov et al. “Strategies for training large-scale neural network language models” ASRU 2011
Morin et al. “Hierarchical probabilistic neural network language model” AISTATS 2005

Hierarchical Softmax
p(wk|h) =

NX

n=1

p(wk|h, cn)p(cn|h)

= p(wk|h, cn)p(cn|h)

Is hierarchical softmax “deep”? No, as we walk down the
tree the representation is not changed.

Mikolov et al. “Strategies for training large-scale neural network language models” ASRU 2011
Morin et al. “Hierarchical probabilistic neural network language model” AISTATS 2005

h

p(wk|h, cn)

p(cn|h) 6=

word2vec

• code at: https://code.google.com/archive/p/
word2vec/

• next some evaluation from Tomas’s NIPS 2013
presentation at: https://drive.google.com/file/d/
0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit

28

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit
https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit
https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit

29from https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit credit T. Mikolov

https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit

30from https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit credit T. Mikolov

https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit

31from https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit credit T. Mikolov

https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit

32from https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit credit T. Mikolov

https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit

33from https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit credit T. Mikolov

https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit

34from https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit credit T. Mikolov

https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit

word2vec demo

35

Recap
• Embedding words (from a 1-hot to a distributed

representation) lets you:

• understand similarity between words

• plug them within any parametric ML model

• Several ways to learn word embeddings. word2vec is
still one of the most efficient ones.

• Note word2vec leverages large amounts of unlabeled
data.

36

Representing Phrases
• How about representing short sequences of words?

• Could we simply average (pool) word
embeddings?

word embedding of

e(wk, wk+1, . . . , wk+n�1) =
1

n

n�1X

i=0

e(wk+i)

wk+i

• This is a surprisingly good baseline! E.g.:
recommender systems.

ē =

credit to: A. Szlam https://learning.mpi-sws.org/mlss2016/slides/Arthur_Szlam_MLSS-2016.pdf

https://learning.mpi-sws.org/mlss2016/slides/Arthur_Szlam_MLSS-2016.pdf

Bag-of-embeddings
• Well-known but counter-intuitive fact about :

[concentration measure] with high probability, the
inner product of any two random vectors is 0
(therefore their distance is approx.).

If word embeddings were drawn i.i.d., what’s the
value of s.t. we can recover by finding the
nearest neighbor to ?

Rd

p
d

ē
d wk+i

d > n log(

n|V |
✏

)

number of words
in the bag

probability of
recovery failure

credit to: A. Szlam https://learning.mpi-sws.org/mlss2016/slides/Arthur_Szlam_MLSS-2016.pdf

https://learning.mpi-sws.org/mlss2016/slides/Arthur_Szlam_MLSS-2016.pdf

Bag-of-embeddings
• Well-known but counter-intuitive fact about :

[concentration measure] with high probability, the
inner product of any two random vectors is 0
(therefore their distance is approx.).

If word embeddings were drawn i.i.d., what’s the
value of s.t. we can recover by finding the
nearest neighbor to ?

Rd

p
d

ē
d wk+i

d > n log(

n|V |
✏

)

number of words
in the bag

probability of
recovery failure

credit to: A. Szlam https://learning.mpi-sws.org/mlss2016/slides/Arthur_Szlam_MLSS-2016.pdf

if |V|=100,000, n=10 and d>100,
-> perfect (orderless) recovery

from a bag!

https://learning.mpi-sws.org/mlss2016/slides/Arthur_Szlam_MLSS-2016.pdf

Recap
• Given word embeddings, bagging embeddings is

often an effective way to represent short
sequences of words.

• Theory of sparse recovery explains why.

• What other (better) ways are there?

• How can DL help here?

40

Language Modeling
• In language modeling, we want to predict a word given some

context.

• bi-gram uses only the preceding word.

• More generally, we can use the last N words. E.g.: n-grams
and neural net language model.

• Or even better, we can use some sort of running average of all
the words seen thus far, as in recurrent neural networks.

• As a by-product, these methods produce a representation of a
sequence of (fixed or variable length) words without any
supervision.

41

Language Modeling
• the math…

• with Markov assumption (used by n-grams):

42

p✓(w1, w2, . . . , wM) = p✓(wM |wM�1 . . . , wM�n)p✓(wM�1|wM�2, . . . , wM�n�1) . . . p✓(w2|w1)p✓(w1)

p✓(w1, w2, . . . , wM) = p✓(wM |wM�1 . . . , w1)p✓(wM�1|wM�2, . . . , w1) . . . p✓(w2|w1)p✓(w1)

Neural Network LM

43Y. Bengio et al. “A neural probabilistic language model” JMLR 2003

Neural Network LM

44Y. Bengio et al. “A neural probabilistic language model” JMLR 2003

• Natural extension of the factorized bi-gram
model.

• Improved accuracy with more context. A bit
better than n-gram (count based methods).

• if we are just interested in word embeddings,
much more expensive than word2vec.

• It gives a representation to ordered
sequences of n words.

Recurrent Neural Network

• In NN-LM, the hidden state is the concatenation of
word embeddings.

• Key idea of RNNs: compute a (non-linear) running
average instead, to increase the size of the context.

• Many variants…

45

Recurrent Neural Network
• Elman RNN:

46Elman “Finding structure in time” Cognitive Science 1990

hk = �(Urhk�1 + U i1(wk) + br)

p(w
k+1|h) = softmax(Uoh

k

+ bo)

only difference compared to
factorized bi-gram language model

Recurrent Neural Network
• Elman RNN:

47Elman “Finding structure in time” Cognitive Science 1990

hk = �(Urhk�1 + U i1(wk) + br)

p(w
k+1|h) = softmax(Uoh

k

+ bo)

only difference compared to
factorized bi-gram language model

this could be a hierarchical softmax

RNN: Inference Time
• Elman RNN:

48Elman “Finding structure in time” Cognitive Science 1990

hk = �(Urhk�1 + U i1(wk) + br)

p(w
k+1|h) = softmax(Uoh

k

+ bo)

U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6

ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7

o

RNN: Inference Time
• Elman RNN:

49Elman “Finding structure in time” Cognitive Science 1990

hk = �(Urhk�1 + U i1(wk) + br)

p(w
k+1|h) = softmax(Uoh

k

+ bo)

U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6

ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7

o

RNN: Inference Time
• Elman RNN:

50Elman “Finding structure in time” Cognitive Science 1990

hk = �(Urhk�1 + U i1(wk) + br)

p(w
k+1|h) = softmax(Uoh

k

+ bo)

U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6

ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7

o

RNN: Inference Time
• Elman RNN:

51Elman “Finding structure in time” Cognitive Science 1990

hk = �(Urhk�1 + U i1(wk) + br)

p(w
k+1|h) = softmax(Uoh

k

+ bo)

U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6

ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7

o

RNN: Inference Time
• Elman RNN:

52Elman “Finding structure in time” Cognitive Science 1990

hk = �(Urhk�1 + U i1(wk) + br)

p(w
k+1|h) = softmax(Uoh

k

+ bo)

U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6

ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7

o

RNN: Inference Time
• Elman RNN:

53Elman “Finding structure in time” Cognitive Science 1990

hk = �(Urhk�1 + U i1(wk) + br)

p(w
k+1|h) = softmax(Uoh

k

+ bo)

U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6

ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7

o

RNN: Inference Time

54

• Inference in an RNN is like a regular forward pass in a deep
neural network, with two differences:

• Weights are shared at every layer.
• Inputs are provided at every layer.

• Two possible applications:
• Scoring: compute the log-likelihood of an input

sequence (sum the log-prob scores at every step).
• Generation: sample or take the max from the predicted

distribution over words at each time step, and feed that
prediction as input at the next time step.

RNN: Inference Time

55

• Inference in an RNN is like a regular forward pass in a deep
neural network, with two differences:

• Weights are shared at every layer.
• Inputs are provided at every layer.

• Two possible applications:
• Scoring: compute the log-likelihood of an input

sequence (sum the log-prob scores at every step).
• Generation: sample or take the max from the predicted

distribution over words at each time step, and feed that
prediction as input at the next time step.

RNN: Training Time
• Truncated Back-Propagation Through Time:

• Unfold RNN for only N steps and do:

• Forward

• Backward

• Weight update

• Repeat the process on the following sequence of N
words, but carry over the value of the last hidden
state.

56Werbos “Backpropagation through time: what does it do and how to do it” IEEE 1990

RNN: Truncated BPTT

57Elman “Finding structure in time” Cognitive Science 1990

U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6

ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7

o

Forward Pass

58Elman “Finding structure in time” Cognitive Science 1990

U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6

ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7

o

RNN: Truncated BPTT
Forward Pass

59Elman “Finding structure in time” Cognitive Science 1990

U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6

ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7

o

RNN: Truncated BPTT
Forward Pass

60Elman “Finding structure in time” Cognitive Science 1990

U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6

ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7

o

RNN: Truncated BPTT
Backward Pass

61Elman “Finding structure in time” Cognitive Science 1990

U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6

ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7

o

RNN: Truncated BPTT
Backward Pass

62Elman “Finding structure in time” Cognitive Science 1990

U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6

ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7

o

RNN: Truncated BPTT
Backward Pass

63Elman “Finding structure in time” Cognitive Science 1990

U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6

ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7

o

RNN: Truncated BPTT
Parameter Update

64Elman “Finding structure in time” Cognitive Science 1990

U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6

ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7

o

RNN: Truncated BPTT
Forward Pass

65Elman “Finding structure in time” Cognitive Science 1990

U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6

ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7

o

RNN: Truncated BPTT
Forward Pass

66Elman “Finding structure in time” Cognitive Science 1990

U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6

ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7

o

RNN: Truncated BPTT
Forward Pass

67Elman “Finding structure in time” Cognitive Science 1990

U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6

ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7

o

RNN: Truncated BPTT
Backward Pass

68Elman “Finding structure in time” Cognitive Science 1990

U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6

ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7

o

RNN: Truncated BPTT
Backward Pass

69Elman “Finding structure in time” Cognitive Science 1990

U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6

ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7

o

RNN: Truncated BPTT
Backward Pass

70Elman “Finding structure in time” Cognitive Science 1990

U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6

ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7

o

RNN: Truncated BPTT
Parameter Update

Recap
• RNNs are more powerful because they capture a

context of potentially “infinite” size.

• The hidden state of a RNN can be interpreted as a way
to represent the history of what has been seen so far.

• RNNs can be useful to represent variable length
sentences.

• There are lots of RNN variants. The best working ones
have gating (units that multiply other units): e.g.: LSTM
and GRU.

71

Gated Recurrent Unit RNN
Key idea: add gating units that enable hidden units to
maintain (or reset) their state over time.

72

rk = �(V i1(wk) + V rhk�1)

zk = �(Si1(wk) + Srhk�1) update gates

reset gates

Cho et al. “On the properties of NMT: encoder-decoder approaches” arXiv 2014

Gated Recurrent Unit RNN
Key idea: add gating units that enable hidden units to
maintain (or reset) their state over time.

73

h̄k = tanh(U i1(wk) + Ur(rk · hk�1))

rk = �(V i1(wk) + V rhk�1)

zk = �(Si1(wk) + Srhk�1)

hk = (1� zk)hk�1 + zkh̄k

update gates

reset gates

candidate hiddens

new hiddens

Cho et al. “On the properties of NMT: encoder-decoder approaches” arXiv 2014

Comparison
PennTreeBank perplexity

n-gram 141

neural net 141

Elman RNN 123

GRU -

LSTM 82

Mikolov et al. “Extensions of RNN LMs” ICASSP 2011
Grave et al. “Improving neural LMs with continuous cache” ICLR 2017

perplexity = 2H(p)

interpretation: average number of
words the model is uncertain among

(ideal value is 1).

Hochreiter et al. “Long short term memory” Neural Computation 1997

Recap
• There are several ways to represent sentences:

• Bag of embeddings: strong baseline.

• neural net language model: assumes fixed
context, good for predicting the next word.

• RNN: longer context, particularly good for
predicting the next word.

• Why predicting just future words? How about
predicting surrounding words in the context?

75

Skip-Thought Vectors
Key idea: 1) encode a sentence with an RNN, 2) use final
hidden state to bias two other RNNs, one predicting the
next sentence and one predicting the previous sentence.

76 https://github.com/ryankiros/skip-thoughts
Kyros et al. “Skip-Thought vectors” arXiv 2015

GRU-RNN 2

Given: “Deep learning works well in applications. I want to learn it. I already know logistic regression.”

GRU-RNN 3

0

I want to learn it.

h̃GRU-RNN 1

Deep learning
works well

in applications.

I already know
logistic regression.

https://github.com/ryankiros/skip-thoughts

Skip-Thought Vectors

77 https://github.com/ryankiros/skip-thoughts
Kyros et al. “Skip-Thought vectors” arXiv 2015

GRU-RNN 2

Given: “Deep learning works well in applications. I want to learn it. I already know logistic regression.”

GRU-RNN 3

Deep learning
works well

in applications.

I already know
logistic regression.

I want to learn it.

sentence
representation

h̃GRU-RNN 1

Key idea: 1) encode a sentence with an RNN, 2) use final
hidden state to bias two other RNNs, one predicting the
next sentence and one predicting the previous sentence.

https://github.com/ryankiros/skip-thoughts

Skip-Thought Vectors

78 https://github.com/ryankiros/skip-thoughts
Kyros et al. “Skip-Thought vectors” arXiv 2015

GRU-RNN 2

Given: “Deep learning works well in applications. I want to learn it. I already know logistic regression.”

GRU-RNN 3

Deep learning
works well

in applications.

I already know
logistic regression.

I want to learn it.

sentence
representation

GRU-RNN 2 & 3
have slightly modified
recurrent equations

zk = �(Si1(wk) + Srhk�1 + Sch̃)

rk = �(V i1(wk) + V rhk�1 + V ch̃)

h̃GRU-RNN 1

…

Key idea: 1) encode a sentence with an RNN, 2) use final
hidden state to bias two other RNNs, one predicting the
next sentence and one predicting the previous sentence.

https://github.com/ryankiros/skip-thoughts

Skip-Thought Vectors
It’s a generalization of word2vec to sentences, using
RNNs to represent sentences.

79 https://github.com/ryankiros/skip-thoughts
Kyros et al. “Skip-Thought vectors” arXiv 2015

Loss = cross entropy of previous sentence + cross entropy of next
sentence.

It uses the BookCorpus dataset with sentences from 11,000 books.

Training:

https://github.com/ryankiros/skip-thoughts

80

Skip-Thought Vectors

Kyros et al. “Skip-Thought vectors” arXiv 2015

81

Skip-Thought Vectors

Kyros et al. “Skip-Thought vectors” arXiv 2015

Example of generation:

Supervised Learning of
Sentence Representations

If one has available labeled data on related tasks, it’s always better to
train in supervised mode. Representations transfer well to other tasks.

82Conneau et al. “Supervised learning of universal sentence representations” arXiv 2017

Supervised Learning of
Sentence Representations

83Conneau et al. “Supervised learning of universal sentence representations” arXiv 2017

Recap
• Predict surrounding context is a general principle.

It can be used to learn word and sentence
representations in an unsupervised manner.

• Learning from labeled datasets, lets you transfer
better features usually.

• Choice of sentence representation depends on
sequence length, task, computational and memory
constraints.

84

Questions?

85

Acknowledgements

I would like to thank Arthur Szlam for sharing his
material about sparse recovery from bag-of-word
embeddings.

86

