An Introduction to
Deep Learning

Marc’Aurelio Ranzato
Facebook Al Research
ranzato@fb.com

Deepliearn Summer School - Bilbao, 17 July 2017

mailto:ranzato@fb.com

Outline

PART 0 [lecture 1]
e Motivation
* Training Fully Connected Nets with Backpropagation
Part 1 [lecture 1 and lecture 2]
* Deep Learning for Vision: CNN
Part 2 [lecture 2]
- Deep Learning for NLP: embeddings
Part 3 [lecture 3]

 Modeling sequences

Representing Symbolic Data

e |Lots of data is symbolic. For instance:
o Jext
* Graphs
 Can DL be useful to represent such data®?

e |f we could represent symbolic data in a continuous
space, we could easily measure relatedness.

 We could apply the powerful tools of linear algebra and
DL to perform complex reasoning.

3

Representing Symbolic Data

* Challenges:

* Discrete nature, easy to count but not obvious how to
represent.

* One cannot use standard backprop through discrete
units.

* The number of entities to represent can be very large,
albeit finite; e.g., words in English dictionary.

e Often times this data is not associated to a regular grid
structure like an image. E.g.: text, social graph.

4

Case Study:
_earning Word Representations

* As a case study, we will consider the problem of learning word
representations from raw text (without any supervision).

 We will explore a tew approaches to learn such representations.
* Practical applications:

e [ext classification

 Ranking (e.g., google search, Facebook feeds ranking)

* Machine translation

 Chatbot

| atent Semantic Analysis

 Problem: Find similar documents in a corpus.
e Solution:

» construct the “term”/"document” matrix storing
(normalized) occurrence counts

« SVD

Deerwester et al. “Indxing by Latent Semantic Analysis” JASIS 1990

| atent Semantic Analysis

term-document matrix

T;; (normalized) number of times word i appears in document |

Deerwester et al. “Indxing by Latent Semantic Analysis” JASIS 1990

| atent Semantic Analysis

Example
doc1: the cat is furry
X doc?2: dogs are furry
(ij) docl doc2
[T11 ... T1g | 0 1
1 0
(t) — 0 1
1 1
| Tm1 .- Tmp] O
term-document matrix 1 0

T;; (normalized) number of times word i appears in document |

Deerwester et al. “Indxing by Latent Semantic Analysis” JASIS 1990

| atent Semantic Analysis

X U by vT
(d;) (d;)
))
[11 Tim T -7
[01 0 [Vi]
(67) — = (&)~ ||w|..|w
| 0 o _ | vy]
| Tm,1 . Lm,n - = - - -

term-document matrix

T;; (normalized) number of times word i appears in document |

Deerwester et al. “Indxing by Latent Semantic Analysis” JASIS 1990

| atent Semantic Analysis

X U by vT
(d;) (d;)
))
[11 Tim T -7
[01 0 [Vi]
(67) — = (&)~ ||w|..|w
| 0 o _ | vy]
| Tm,1 . Lm,n - = - - -

term-document matrix

T;; (normalized) number of times word i appears in document |

Each column of V', is a representation of a document in the corpus.

Deerwester et al. “Indxing by Latent Semantic Analysis” JASIS 1990

| atent Semantic Analysis

X U by vT
(d;) (d;)
))
[11 Tim T -7
[01 0 [Vi]
(67) — = (&)~ ||w|..|w
| 0 o _ | vy]
| Tm,1 . Lm,n - = - - -

term-document matrix
T;; (normalized) number of times word i appears in document |

Each column of V', is a representation of a document in the corpus.
Each column is a D dimensional vector. We can use it to compare & retrieve documents.

Deerwester et al. “Indxing by Latent Semantic Analysis” JASIS 1990

| atent Semantic Analysis

X U by vT
(d;) (d;)
| l
[11 Tim T -1
(- °] [v T
(tF) — L., = (f:;fr) — w |- | -
| 0 oy | N \L!]
| Tm,1 . Lm,n - = - - -

term-document matrix

T;; (normalized) number of times word i appears in document |

Each row of U, is a representation of a word in the dictionary.

Deerwester et al. “Indxing by Latent Semantic Analysis” JASIS 1990

| atent Semantic Analysis

X U by vT
(d;) (d;)
v)
_wl,l L1,n } - - - - -
P 0] [v T
(tle’) — = (E;T) — up | -.-- | W . : . : . :
0 o1 [w]
| Tm1l .- Tmn - L - L

term-document matrix

T;; (normalized) number of times word i appears in document |

Each row of U, is a representation of a word in the dictionary.
Each row of U, is a vectorial representation of a word, a.k.a. embedding.

Deerwester et al. “Indxing by Latent Semantic Analysis” JASIS 1990

Word Embeddings

e Convert words (symbols) into a D dimensional vector,
where D Is a hyper-parameter.

e Once embedded, we can:
 Compare words.

* Apply our favorite machine learning method (DL) to
represent sequences of words.

* At document retrieval time in LSA, the representation of a
new document is a weighted sum of word embeddings
(bag-of-words -> bag-of-embeddings): U’ x

14

pI-gram

* A bi-gram is a model of the probability of a word
given the preceding one:

p(wg|wg_1) w €V

* [he simplest approach consists of building a
(normalized) matrix of counts:

preceding word

C1,1 c. 617|V|
Ci,5 number of times word i
IS preceded by word |

current word

c(wi|wr—1) Ci, j

Cvir - Vv

15

-actorized pi-gram

* We can factorize (via SVD, for instance) the bigram
to reduce the number of parameters and become
more robust to noise (entries with low counts):

O
VR
S
o
S
T
p—d
N—"
|
output word

C1.1

Clv,1

input word

Ci,j

C1,|V]

V],V

— UV V e RPxIVI

U e

 Rows of U store “output” word embeddings, and
columns of V store “input” word embeddings.

16

R|V|XD

-actorized pi-gram

 The same can be expressed as a two layer (linear)
neural network:

_ input word —
C1,1 “ . 61,|V|

c(Ci.j = UV

=

&
=
i
||

IS
o
=
-+
D)
O
-+
D)
@)

1-hot rep_re_sentation
of the input word

17

-actorized pi-gram

 The same can be expressed as a two layer (linear)
neural network:

= input word —

g C1,1 61,|V|
c(wk\wk_l) :g Ci] =UV

D)

LYvi - GVLIVIL

No need to multiply,
V is just a look up table!

0

0
0

1-hot rep_re_sentation
of the input word

18

-actorized pi-gram

 The same can be expressed as a two layer (linear)

neural network:

c(

S
SO

S
~

—

N——"

output word

C1,1

V)1

No need to multiply,

0

0

0
1-hot representation
of the input word

V is just a look up table!

_ input word

Ci,j

€1,V

CIVILIVI_

NOTE: Since embeddings are free, there is no

Here, depth does not help!

19

point adding non-linearities and more layers!

-actorized pi-gram

* pbi-gram model could be useful for type-ahead
applications (in practice, it's much better to
condition upon the past n>2 words).

* Factorized model yields word embeddings as a by-
poroduct.

20

Word Embeddings

* LSA learns word embeddings that take into
account co-occurrences across documents.

* pbi-gram instead learns word embeddings that only
take into account the next word.

* |t seems better to do something in between, using
more context but just around the word of interest,
yielding a method called word2vec.

Mikolov et al. “Efficient estimation of word representations” rejected by ICLR 2013

w(t-2)

w(t-1)

w(t+1)

w(t+2)

wora2vec

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT
w(t-2)
w(t-1)
\SUM / |
»J w(t) w(t) —
w(t+2)
CBOW Skip-gram

Mikolov et al. “Efficient estimation of word representations” rejected by ICLR 2013

w(t-2)

w(t-1)

w(t+1)

w(t+2)

wora2vec

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT
w(t-2)
w(t-1)
\SUM _—
g w(t) w(t) .
w(t+2)
CBOW Skip-gram

Mikolov et al. “Efficient estimation of word representations” rejected by ICLR 2013

sKip-gram

INPUT PROJECTION OUTPUT o . .
* Similar to factorized bi-gram model, but
t2) predict N preceding and N following
words.
w1 e Words that have the same context will
get similar embeddings. E.g.: cat & Kitty.
w(t) e

w(t+1) Bulk of computation is the the prediction
of words Iin context.

\‘ * |nput projection is just look-up table.

w(t+2) , Ce :
* Learning by cross-entropy minimization

via SGD.
Skip-gram

Mikolov et al. “Efficient estimation of word representations” rejected by ICLR 2013

Hierarchical Softmax

* When there are lots of classes to predict (e.qg.,
words in a dictionary, |V| in the order of 100,000 or
more), projection in the output space is
computationally very expensive.

* Hierarchical softmax speeds up computation at the
cost of a little decrease of accuracy:

Drop sum: each word belongs

wk\h Z D wk|h Cn Cn‘h)k” and only 1 cluster

= p(wk ‘h, Cn)p(cn‘h)
/ \ feature
n-th cluster ,; (word embedding in skip-gram)

Hierarchical Softmax

N
p(wg|h) = Zp(wk\h, cn)p(cnlh)
n=1
— p(wk‘ha Cn)p(cnlh)
Why is it cheaper to have two softmaxes instead of one”?

Because these are much smaller. |f clusters have all the

same size and contain IVl words:

N
Vi, VI

N

In practice, clusters are formed by taking into account word frequency in order to minimize
computation cost. Tree can be have more children (binary tree).

Dx|VI>DXxN+Dx—~D

Morin et al. “Hierarchical probabilistic neural network language model” AISTATS 2005
Mikolov et al. “Strategies for training large-scale neural network language models” ASRU 2011

Hierarchical Softmax

p(wilh) = > plwi|h, cp)p(calh)

n=1

= p(wk|h, cn)p(cnlh)

|s hierarchical softmax “deep”? No, as we walk down the
tree the representation Is not changed.

Morin et al. “Hierarchical probabilistic neural network language model” AISTATS 2005
Mikolov et al. “Strategies for training large-scale neural network language models” ASRU 2011

wora2vec

* code at: https://code.google.com/archive/p/
word2vec/

* next some evaluation from Tomas’s NIPS 2013
presentation at: https://drive.google.com/file/d/
0B7XkCwpl5KDYRWRNd1RzZWXQ2TWc/edit

28

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit
https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit
https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit

Linguistic Regularities in Word Vector Space

WOMAN

/, AUNT QUEENS
MAN /

UNCLE KINGS \
QUEEN \ QUEEN

KING KING

@ The word vector space implicitly encodes many regularities
among words

credit T. Mikolov from https://drive.googIe?gom/fiIe/d/OB7XkapI5KDYRWRnd1 RzWXQ2TWc/edit

https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit

Linguistic Regularities in Word Vector Space

@ The resulting distributed representations of words contain
surprisingly a lot of syntactic and semantic information

@ There are multiple degrees of similarity among words:

o KING is similar to QUEEN as M AN is similar to
WOMAN

o KING is similarto KINGS as MAN is similar to MEN

@ Simple vector operations with the word vectors provide
very intuitive results

credit T. Mikolov from https://drive.googIe‘r.sgom/fiIe/d/OB7XkapI5KDYRWRnd1 RzWXQ2TWc/edit

https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit

Linguistic Regularities - Results

@ Regularity of the learned word vector space is evaluated
using test set with about 20K questions

@ The test set contains both syntactic and semantic
questions

@ We measure TOP1 accuracy (input words are removed
during search)

@ We compare our models to previously published word
vectors

credit T. Mikolov from https://drive.googIe‘r.séom/fiIe/d/OB7XkapI5KDYRWRnd1 RzWXQ2TWc/edit

https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit

Linguistic Regularities - Results

Model Vector Training Training | Accuracy
Dimensionality | Words Time [%]
Collobert NNLM 50 660M 2 months 11
Turian NNLM 200 37M few weeks 2
Mnih NNLM 100 37M 7 days 9
Mikolov RNNLM 640 320M weeks 25
Huang NNLM 50 990M weeks 13
Our NNLM 100 6B 2.5 days 51
Skip-gram (hier.s.) 1000 6B hours 66
CBOW (negative) 300 1.5B minutes 72

credit T. Mikolov from https://drive.googIe‘r.sgom/fiIe/d/OB7XkapI5KDYRWRnd1 RzWXQ2TWc/edit

https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit

Linguistic Regularities in Word Vector Space

Expression Nearest token
Paris - France + ltaly Rome
bigger - big + cold colder
sushi - Japan + Germany bratwurst
Cu - copper + gold Au
Windows - Microsoft + Google Android
Montreal Canadiens - Montreal + Toronto | Toronto Maple Leafs

credit T. Mikolov from https://drive.googIe‘r.sgom/fiIe/d/OB7XkapI5KDYRWRnd1 RzWXQ2TWc/edit

https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit

Visualization of Regularities in Word Vector Space

2 | I | | | | 1
China¢
Beijing
1.5 F Russiar 7
Japanx
1k "Moscow |
Turkeyx Ankara "TOkyo
0.5 -
Poland«

0| Germjinw -

France ‘Warsaw

w —Berlin
-0.5 Italy- Paris E

» Athens
. Greeces Rome
1 b Spain¢ -
” Madrid
-1.5 Portugal Lisbon

2 |]] | | 1]

-2 1.5 1 0.5 0 0.5 1 1.5 2

credit T. Mikolov from https://drive.googIe‘r.séom/fiIe/d/OB7XkapI5KDYRWRnd1 RzWXQ2TWc/edit

https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit

word2vec demo

35

Recap

 Embedding words (from a 1-hot to a distributed
representation) lets you:

e understand similarity between words
e plug them within any parametric ML model

e Several ways to learn word embeddings. word2vec is
still one of the most efficient ones.

* Note word2vec leverages large amounts of unlabeled
data.

36

Representing Phrases

* How about representing short sequences of words”

* Could we simply average (pool) word

embeddings? |
word embedding of wg;

1 n—1 /

= e(Wky Wht1y -+ Wktn—1) = =) e(wri)
1=0

* This s a surprisingly good baseline! E.Q.:
recommender systems.

credit to: A. Szlam https:/learning.mpi-sws.org/mlss2016/slides/Arthur Szlam MLSS-2016.pdf

https://learning.mpi-sws.org/mlss2016/slides/Arthur_Szlam_MLSS-2016.pdf

Bag-of-embeddings
« Well-known but counter-intuitive fact about R? :

[concentration measure] with high probability, the
iInner product of any two random vectors is 0
(therefore their distance is approx.v/d).

It word embeddings were drawn I.1.d., what's the
value of d s.t. we can recover w; by finding the
nearest neighbor to e ?

n|V]|

d > nlog()
€
number of words \ probability of
in the bag recovery failure

credit to: A. Szlam https:/learning.mpi-sws.org/mlss2016/slides/Arthur Szlam MLSS-2016.pdf

https://learning.mpi-sws.org/mlss2016/slides/Arthur_Szlam_MLSS-2016.pdf

Bag-of-embeddings
« Well-known but counter-intuitive fact about R? :

[concentration measure] with high probability, the
iInner product of any two random vectors is 0
(therefore their distance is approx.v/d).

It word embeddings were drawn I.1.d., what's the
value of d s.t. we can recover w; by finding the
nearest neighbor to e ?

TL|V‘ if IVI=100,000, n=10 and d>100,
d > n]og() -> perfect (orderless) recovery
/' € from a bag!
number of words \ probability of
in the bag recovery failure

credit to: A. Szlam https:/learning.mpi-sws.org/mlss2016/slides/Arthur Szlam MLSS-2016.pdf

https://learning.mpi-sws.org/mlss2016/slides/Arthur_Szlam_MLSS-2016.pdf

Recap

* Given word embeddings, bagging embeddings is
often an effective way to represent short
sequences of words.

* Theory of sparse recovery explains why.

* \What other (better) ways are there”

 How can DL help here?

40

. anguage Moaeling

In language modeling, we want to predict a word given some
context.

bi-gram uses only the preceding word.

More generally, we can use the last N words. E.g.: n-grams
and neural net language model.

Or even better, we can use some sort of running average of all
the words seen thus far, as in recurrent neural networks.

As a by-product, these methods produce a representation of a
seqguence of (fixed or variable length) words without any

supervision.
41

. anguage Moaeling

e the math...

pe(wh wa, ..., UJM) — Pe(wM\wM—l . ,wl)pe(’wM—ﬂ”wM—z ----- wl) . -pe(wz\’wl)pe(wﬁ

* with Markov assumption (used by n-grams):

Pe(wh wa, ..., wM) — pe(wM\’wM—l . ,wM—n)pe(wM—lle—z ----- wM—n—l) . -pe(wz\wl)pe(’wﬂ

42

Neura\ Network LM

i-th output = P(w, = i| context)
A
softmax
L K s o00®)
. A
\
most | computation here \
\
\
\
|
tanh :
o ®0) |

Clwi—2) Clwiy)\ _-~

e @ O --- 0
A)
Table |-, ~.. Matrlx C Y
look_u Ll AR R R SR E R R R R R R N fessmssnensnanananans "
inC P sharcd parameters
1 o across words o
index for w,_,. index for w,_» index for w,_,

Y. Bengio et 4l “A neural probabilistic language model” JVMLR 2003

Neural Network LIV

* Natural extension of the factorized bi-gram
model.

* |Improved accuracy with more context. A bit
better than n-gram (count based methods).

* if we are just interested in word embeddings,
much more expensive than word2vec.

* |t gives a representation to ordered
sequences of n words.

Y. Bengio et af- “A neural probabilistic language model” JMLR 2003

Recurrent Neural Network

 |n NN-LM, the hidden state is the concatenation of
word embeddings.

* Key idea of RNNs: compute a (non-linear) running
average instead, to increase the size of the context.

* Many variants...

45

Recurrent Neural Network

* Elman RNN:

p(wiy1]h) = softmax(U°hg + b°)
hi = O‘(Urhk_l —+ Uzl(wk) —+ br)

only difference compared to
factorized bi-gram language model

46 i
Elman “Finding structure in time” Cognitive Science 1990

Recurrent Neural Network

* Elman RNN:

this could be a hierarchical softmax

/

p(wiy1]h) = softmax(U°hg + b°)
hi = O‘(Urhk_l —+ Uzl(wk) —+ br)

only difference compared to
factorized bi-gram language model

47
Elman “Finding structure in time” Cognitive Science 1990

RNN: Inference Time

e Elman RNN: p(wi1|h) = softmax(U°hy + b°)
hi = O'(Urhk_l -+ U’l(wk) -+ br)

48
Elman “Finding structure in time” Cognitive Science 1990

RNN: Inference Time

e Elman RNN: p(wi1|h) = softmax(U°hy + b°)
hi, = O'(Urhk_l -+ Uzl(wk) -+ br)

49
Elman “Finding structure in time” Cognitive Science 1990

RNN: Inference Time

e Elman RNN: p(wi1|h) = softmax(U°hy + b°)
hi, = O'(Urhk_l -+ Uzl(wk) -+ br)

50
Elman “Finding structure in time” Cognitive Science 1990

RNN: Inference Time

e Elman RNN: p(wi1|h) = softmax(U°hy + b°)
hi, = O'(Urhk_l -+ Uzl(wk) -+ br)

o1
Elman “Finding structure in time” Cognitive Science 1990

RNN: Inference Time

e Elman RNN: p(wi1|h) = softmax(U°hy + b°)
hi, = O'(Urhk_l -+ Uzl(wk) -+ br)

52
Elman “Finding structure in time” Cognitive Science 1990

RNN: Inference Time

e Elman RNN: p(wi1|h) = softmax(U°hy + b°)
hi, = O'(Urhk_l -+ Uzl(wk) -+ br)

53
Elman “Finding structure in time” Cognitive Science 1990

RNN: Inference Time

* Inference in an RNN is like a regular forward pass in a deep
neural network, with two differences:
 Weights are shared at every layer.
* |nputs are provided at every layer.

o4

RNN: Inference Time

* Inference in an RNN is like a regular forward pass in a deep
neural network, with two differences:
 Weights are shared at every layer.
* |nputs are provided at every layer.

* [wo possible applications:
o Scoring: compute the log-likelihood of an input
seqguence (sum the log-prob scores at every step).
* (Generation: sample or take the max from the predicted
distribution over words at each time step, and feed that
prediction as input at the next time step.

95

RNN: Training Time

e [runcated Back-Propagation Through Time:
* Unfold RNN for only N steps and do:
* Forward
* Backward
 Weight update
* Repeat the process on the following sequence of N

words, but carry over the value of the last hidden
state.

Werbos “Backpropagation throSl?gh time: what does it do and how to do it” IEEE 1990

RNN: Truncatea BPI1 1

Forward Pass

o7
Elman “Finding structure in time” Cognitive Science 1990

RNN: Truncatea BPI1 1

Forward Pass

o8
Elman “Finding structure in time” Cognitive Science 1990

RNN: Truncatea BPI1 1

Forward Pass

959
Elman “Finding structure in time” Cognitive Science 1990

RNN: Truncatea BPI1 1

Backward Pass

60
Elman “Finding structure in time” Cognitive Science 1990

RNN: Truncatea BPI1 1

Backward Pass

o1
Elman “Finding structure in time” Cognitive Science 1990

RNN: Truncatea BPI1 1

Backward Pass

62
Elman “Finding structure in time” Cognitive Science 1990

RNN: Truncatea BPI1 1

Parameter Update

63
Elman “Finding structure in time” Cognitive Science 1990

RNN: Truncatea BPI1 1

Forward Pass

64
Elman “Finding structure in time” Cognitive Science 1990

RNN: Truncatea BPI1 1

Forward Pass

65
Elman “Finding structure in time” Cognitive Science 1990

RNN: Truncatea BPI1 1

Forward Pass

06
Elman “Finding structure in time” Cognitive Science 1990

RNN: Truncatea BPI1 1

Backward Pass

o6/
Elman “Finding structure in time” Cognitive Science 1990

RNN: Truncatea BPI1 1

Backward Pass

638
Elman “Finding structure in time” Cognitive Science 1990

RNN: Truncatea BPI1 1

Backward Pass

69
Elman “Finding structure in time” Cognitive Science 1990

RNN: Truncatea BPI1 1

Parameter Update

/70
Elman “Finding structure in time” Cognitive Science 1990

Recap

RNNs are more powerful because they capture a
context of potentially “infinite” size.

The hidden state of a RNN can be interpreted as a way
to represent the history of what has been seen so far.

RNNs can be useful to represent variable length
sentences.

There are lots of RNN variants. The best working ones
have gating (units that multiply other units): e.g.: LSTM
and GRU.

71

Gated Recurrent Unit RNN

Key idea: add gating units that enable hidden units to
maintain (or reset) their state over time.

2 = O‘(Szl(wk) —+ Srhk_l) update gates

ri = J(Vil(wk) + Vrhk_l) reset gates

.
Cho et al. “On the propert?es of NMT: encoder-decoder approaches” arXiv 2014

Gated Recurrent Unit RNN

Key idea: add gating units that enable hidden units to
maintain (or reset) their state over time.

2 = O‘(Szl(wk) —+ Srhk_l) update gates

ri = U(Vil(wk) + Vrhk_l) reset gates

Bk — tanh(Uil(wk) +U" (Tk - hk—l)) candidate hiddens

hp = (1 — Zk)hk—l -+ Zkilk new hiddens

.
Cho et al. “On the propert?es of NMT: encoder-decoder approaches” arXiv 2014

Comparison

PennTreeBank perplexity

n-gram

perplexity = oH(P)

interpretation: average number of
words the model is uncertain among
(ideal value is 1).

neural net

Eiman RNN

GRU

82

Hochreiter et al. “Long short term memory” Neural Computation 1997
Grave et al. “Improving neural LMs with continuous cache” ICLR 2017
Mikolov et al. “Extensions of RNN LMs” ICASSP 2011

Recap

* [here are several ways to represent sentences:
e Bag of embeddings: strong baseline.

* neural net language model: assumes fixed
context, good for predicting the next word.

 RNN: longer context, particularly good for
predicting the next word.

 Why predicting just future words” How about
predicting surrounding words in the context?

79

Skip-Thought Vectors

Key idea: 1) encode a sentence with an RNN, 2) use final
nidden state to bias two other RNNs, one predicting the
next sentence and one predicting the previous sentence.

Given: “Deep learning works well in applications. | want to learn it. | already know logistic regression.”

Deep learning
works well
in applications.

| want to learn it.

—>
| already know
logistic regression

76 Kyros et al. “Skip-Thought vectors” arXiv 2015
https://qgithub.com/ryankiros/skip-thoughts

https://github.com/ryankiros/skip-thoughts

Skip-Thought Vectors

Key idea: 1) encode a sentence with an RNN, 2) use final
nidden state to bias two other RNNs, one predicting the
next sentence and one predicting the previous sentence.

Given: “Deep learning works well in applications. | want to learn it. | already know logistic regression.”

Deep learning
works well
in applications.

| want to learn it.

—>
| already know
logistic regression

sentence

representation 27 Kyros et al. “Skip-Thought vectors” arXiv 2015

https://qgithub.com/ryankiros/skip-thoughts

https://github.com/ryankiros/skip-thoughts

Skip-Thought Vectors

Key idea: 1) encode a sentence with an RNN, 2) use final
nidden state to bias two other RNNs, one predicting the
next sentence and one predicting the previous sentence.

Given: “Deep learning works well in applications. | want to learn it. | already know logistic regression.”

| want to learn it.

Deep learning
works well
in applications.

| already know

logistic regression

sentence
representation

GRU-RNN 2 & 3
have slightly modified
recurrent equations

2 = O'(Si].(wk) + S"hi_1 + SciL)
rL = U(Vil(wk) +V"hp_1+ Vcﬁ)

78 Kyros et al. “Skip-Thought vectors” arXiv 2015
https://qgithub.com/ryankiros/skip-thoughts

https://github.com/ryankiros/skip-thoughts

Skip-Thought Vectors

It's a generalization of word2vec to sentences, using
RNNs to represent sentences.

Training:
Loss = cross entropy of previous sentence + cross entropy of next
sentence.

It uses the BookCorpus dataset with sentences from 11,000 books.

79 Kyros et al. “Skip-Thought vectors” arXiv 2015
https://qgithub.com/ryankiros/skip-thoughts

https://github.com/ryankiros/skip-thoughts

Skip-Thought Vectors

Method MR CR SUBJ] MPQA TREC
NB-SVM [41] 794 81.8 93.2 86.3

MNB [41] 79.0 80.0 93.6 86.3

cBoW [6] 772 799 91.3 86.4 87.3
GrConv [6] 76.3 81.3 89.5 84.5 88.4
RNN [6] 772 823 93.7 90.1 90.2
BRNN [6] 823 826 94.2 90.3 91.0
CNN [4] 81.5 85.0 934 89.6 93.6
AdaSent [6] 83.1 86.3 95.5 93.3 92.4
Paragraph-vector [7] 748 78.1 90.5 74.2 01.8
uni-skip 75.5 793 92.1 86.9 014
bi-skip 739 779 92.5 83.3 89.4
combine-skip 76.5 80.1 93.6 87.1 92.2

combine-skip + NB 80.4 81.3 93.6 87.5

Table 7: Classification accuracies on several standard bench-
marks. Results are grouped as follows: (a): bag-of-words mod-
els; (b): supervised compositional models; (c¢) Paragraph Vector
(unsupervised learning of sentence representations); (d) ours.
Best results overall are bold while best results outside of group
(b) are underlined.

80 Kyros et al. “Skip-Thought vectors” arXiv 2015

Skip-Thought Vectors

Example of generation:

»

she grabbed my hand . “ come on . ” she fluttered her bag in the air . “ i think we ’re at your place . i ca
n’t come get you . ” he locked himself back up . “ no. she will . ” kyrian shook his head . “ we met ... that
congratulations ... said no . ” the sweat on their fingertips ’s deeper from what had done it all of his flesh hard
did n’t fade . cassie tensed between her arms suddenly grasping him as her sudden her senses returned to its
big form . her chin trembled softly as she felt something unreadable in her light . it was dark . my body shook
as i lost what i knew and be betrayed and i realize just how it ended . it was n’t as if i did n’t open a vein . this
was all my fault , damaged me . i should have told toby before i was screaming . i should 've told someone that
was an accident . never helped it . how can i do this , to steal my baby ’s prints ? ”

d Kyros et al. “Skip-Thought vectors” arXiv 2015

Supervised Learning of
Sentence Representations

It one has available labeled data on related tasks, it's always better to
train in supervised mode. Representations transfer well to other tasks.

3-way softmax

?

fully-connected layers

*

(u,v, |lu —v|,u *v)

T

U ()
sentence encoder sentence encoder
with premise input with hypothesis input

Conneau et al. “Supervised Iearr?ﬁ\g of universal sentence representations’ arXiv 2017

Model MR CR SUBJ MPQA SST TREC MRPC SICK-R SICK-E STS14
Unsupervised representation training (unordered sentences)
Unigram-TFIDF 737 79.2 90.3 824 - 850 73.6/81.7 . - S8/.57
word2vec BOW 73.6 773 89.2 85.0 - 822 69.3/77.2 . - 58/.57
SIF - - - - 822 - - . 84.6 .68/ -
ParagraphVec (DBOW) 60.2 669 76.3 70.7 - 594 729/81.1 . - 42/.43
SDAE 746 78.0 90.8 869 - 784 73.7/80.7 . g 37/.38
GloVe BOW' 78.7 788 90.6 87.6 794 774 T73.0/81.6 0.799 78.7 46/.50
GloVe Positional Encoding’| 76.3 774 90.4 87.1 80.6 80.8 72.5/81.2 0.789 77.9 44/.48
BiLSTM-Max (untrained)’ | 77.5 81.3 89.6 88.7 80.7 85.8 73.2/81.6 0.860 83.4 .39/.48
Unsupervised representation training (ordered sentences)
FastSent 70.8 784 88.7 806 - 768 72.2/80.3 . - .63/.64
FastSent+AE 71.8 76.7 88.8 815 - 804 71.2/79.1 - - 62/.62
SkipThought 76.5 80.1 93.6 87.1 82.0 92.2 73.0/82.0 0.858 82.3 .29/.35
SkipThought-LN 794 831 93.7 89.3 829 884 - 0.858 79.5 44/.45
Supervised representation training
CaptionRep (bow) 619 693 774 708 - 722 - - - 46/.42
DictRep (bow) 76.7 7877 90.7 872 - 810 68.4/76.8 . - .67/.70
NMT En-to-Fr 64.7 70.1 849 81.5 - 828 - . 43/.42
Paragram-phrase - - - - 197 - - 0.849 83.1 -1.71
BiLSTM-Max (on SST)! (*) 837 902 89.5 (*) 86.0 72.7/80.9 0.863 83.1 55/.54
BiLSTM-Max (on SNLI)! | 799 846 92.1 89.8 83.3 88.7 75.1/82.3 0.885 86.3 .66/.64
BiLSTM-Max (on AIINLI)'| 81.1 86.3 92.4 90.2 84.6 88.2 76.2/83.1 0.884 86.3 .68/.65
Supervised methods (directly trained for each task — no transfer)
Naive Bayes - SVM 794 818 932 86.3 831 - - - - -
AdaSent 83.1 863 955 933 - 924 - . - -

Conneau et al. “Supervised Iearr?igng of universal sentence representations’ arXiv 2017

Recap

* Predict surrounding context is a general principle.
t can be used to learn word and sentence
'epresentations in an unsupervised mannet.

* [earning from labeled datasets, lets you transfer
better features usually.

* Choice of sentence representation depends on
seqguence length, task, computational and memory

constraints.

84

Questions?

Acknowledgements

| would like to thank Arthur Szlam for sharing his
material about sparse recovery from bag-of-word
embeddings.

86

