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Representing Symbolic Data
• Lots of data is symbolic. For instance: 

• Text 

• Graphs 

• Can DL be useful to represent such data? 

• If we could represent symbolic data in a continuous 
space, we could easily measure relatedness. 

• We could apply the powerful tools of linear algebra and 
DL to perform complex reasoning.
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Representing Symbolic Data
• Challenges: 

• Discrete nature, easy to count but not obvious how to 
represent. 

• One cannot use standard backprop through discrete 
units. 

• The number of entities to represent can be very large, 
albeit finite; e.g., words in English dictionary. 

• Often times this data is not associated to a regular grid 
structure like an image. E.g.: text, social graph.
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Case Study:  
Learning Word Representations
• As a case study, we will consider the problem of learning word 

representations from raw text (without any supervision). 

• We will explore a few approaches to learn such representations. 

• Practical applications: 

• Text classification 

• Ranking (e.g., google search, Facebook feeds ranking) 

• Machine translation 

• Chatbot
5



Latent Semantic Analysis
• Problem: Find similar documents in a corpus. 

• Solution: 

• construct the “term”/“document” matrix storing 
(normalized) occurrence counts 

• SVD

Deerwester et al. “Indxing by Latent Semantic Analysis” JASIS 1990
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Deerwester et al. “Indxing by Latent Semantic Analysis” JASIS 1990

term-document matrix
xi,j (normalized) number of times word i appears in document j



Latent Semantic Analysis

Deerwester et al. “Indxing by Latent Semantic Analysis” JASIS 1990

term-document matrix
xi,j (normalized) number of times word i appears in document j

Example  
doc1: the cat is furry 
doc2: dogs are furry

doc1 doc2
are 0 1
cat 1 0

dogs 0 1
furry 1 1

is 1 0
the 1 0
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Latent Semantic Analysis

Deerwester et al. “Indxing by Latent Semantic Analysis” JASIS 1990

term-document matrix
xi,j (normalized) number of times word i appears in document j

Each column of V , is a representation of a document in the corpus. 

is

T



Latent Semantic Analysis

Deerwester et al. “Indxing by Latent Semantic Analysis” JASIS 1990

term-document matrix
xi,j (normalized) number of times word i appears in document j

Each column of V , is a representation of a document in the corpus. 

is

T

Each column is a D dimensional vector. We can use it to compare & retrieve documents.



Latent Semantic Analysis

Deerwester et al. “Indxing by Latent Semantic Analysis” JASIS 1990

term-document matrix
xi,j (normalized) number of times word i appears in document j

Each row of U, is a representation of a word in the dictionary. 



Latent Semantic Analysis

Deerwester et al. “Indxing by Latent Semantic Analysis” JASIS 1990

term-document matrix
xi,j (normalized) number of times word i appears in document j

Each row of U, is a representation of a word in the dictionary. 
Each row of U, is a vectorial representation of a word, a.k.a. embedding.



Word Embeddings
• Convert words (symbols) into a D dimensional vector, 

where D is a hyper-parameter. 

• Once embedded, we can: 

• Compare words. 

• Apply our favorite machine learning method (DL) to 
represent sequences of words. 

• At document retrieval time in LSA, the representation of a 
new document is a weighted sum of word embeddings 
(bag-of-words -> bag-of-embeddings): U’ x
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bi-gram
• A bi-gram is a model of the probability of a word 

given the preceding one: 

• The simplest approach consists of building a 
(normalized) matrix of counts:
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p(wk|wk�1)

ci,j number of times word i 
is preceded by word j

wk 2 V

c(wk|wk�1) =

2

4
c1,1 . . . c1,|V |
. . . ci,j . . .
c|V |,1 . . . c|V |,|V |

3

5

preceding word

cu
rre

nt
 w

or
d



Factorized bi-gram

• We can factorize (via SVD, for instance) the bigram 
to reduce the number of parameters and become 
more robust to noise (entries with low counts):
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c(wk|wk�1) =

2

4
c1,1 . . . c1,|V |
. . . ci,j . . .
c|V |,1 . . . c|V |,|V |

3

5 = UV

U 2 R|V |⇥D

V 2 RD⇥|V |

• Rows of U store “output” word embeddings, and 
columns of V store “input” word embeddings. 

input word

ou
tp

ut
 w

or
d



Factorized bi-gram
• The same can be expressed as a two layer (linear) 

neural network:
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c(wk|wk�1) =

2

4
c1,1 . . . c1,|V |
. . . ci,j . . .
c|V |,1 . . . c|V |,|V |

3

5 = UV

softmaxV U

2

66666666664

0
...
0
1
0
...
0

3

77777777775

input word

1-hot representation  
of the input word

ou
tp

ut
 w

or
d



Factorized bi-gram
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c(wk|wk�1) =

2

4
c1,1 . . . c1,|V |
. . . ci,j . . .
c|V |,1 . . . c|V |,|V |

3

5 = UV

softmaxV U

2

66666666664

0
...
0
1
0
...
0

3

77777777775

input word

1-hot representation  
of the input word

ou
tp

ut
 w

or
d

No need to multiply, 
V is just a look up table!

• The same can be expressed as a two layer (linear) 
neural network:



Factorized bi-gram
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c(wk|wk�1) =

2

4
c1,1 . . . c1,|V |
. . . ci,j . . .
c|V |,1 . . . c|V |,|V |

3

5 = UV

softmaxV U

2

66666666664

0
...
0
1
0
...
0

3

77777777775

input word

1-hot representation  
of the input word

ou
tp

ut
 w

or
d

No need to multiply, 
V is just a look up table!

NOTE: Since embeddings are free, there is no 
point adding non-linearities and more layers!
Here, depth does not help!

• The same can be expressed as a two layer (linear) 
neural network:



Factorized bi-gram

• bi-gram model could be useful for type-ahead 
applications (in practice, it’s much better to 
condition upon the past n>2 words). 

• Factorized model yields word embeddings as a by-
product.
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Word Embeddings
• LSA learns word embeddings that take into 

account co-occurrences across documents. 

• bi-gram instead learns word embeddings that only 
take into account the next word. 

• It seems better to do something in between, using 
more context but just around the word of interest, 
yielding a method called word2vec.

Mikolov et al. “Efficient estimation of word representations” rejected by ICLR 2013



word2vec

Mikolov et al. “Efficient estimation of word representations” rejected by ICLR 2013



word2vec

Mikolov et al. “Efficient estimation of word representations” rejected by ICLR 2013



skip-gram
• Similar to factorized bi-gram model, but 

predict N preceding and N following 
words. 

• Words that have the same context will 
get similar embeddings. E.g.: cat & kitty. 

• Input projection is just look-up table. 
Bulk of computation is the the prediction 
of words in context. 

• Learning by cross-entropy minimization 
via SGD.

Mikolov et al. “Efficient estimation of word representations” rejected by ICLR 2013



Hierarchical Softmax
• When there are lots of classes to predict (e.g., 

words in a dictionary, |V| in the order of 100,000 or 
more), projection in the output space is 
computationally very expensive. 

• Hierarchical softmax speeds up computation at the 
cost of a little decrease of accuracy:

25n-th cluster
feature 

(word embedding in skip-gram)

Drop sum: each word belongs 
to 1 and only 1 clusterp(wk|h) =

NX

n=1

p(wk|h, cn)p(cn|h)

= p(wk|h, cn)p(cn|h)



Hierarchical Softmax
p(wk|h) =

NX

n=1

p(wk|h, cn)p(cn|h)

= p(wk|h, cn)p(cn|h)
Why is it cheaper to have two softmaxes instead of one? 

Because these are much smaller. If clusters have all the 
same size and contain      words:

D ⇥ |V | � D ⇥N +D ⇥ |V |
N

⇡ D ⇥ |V |
N

|V |
N

In practice, clusters are formed by taking into account word frequency in order to minimize 
computation cost. Tree can be have more children (binary tree).

Mikolov et al. “Strategies for training large-scale neural network language models” ASRU 2011
Morin et al. “Hierarchical probabilistic neural network language model” AISTATS 2005



Hierarchical Softmax
p(wk|h) =

NX

n=1

p(wk|h, cn)p(cn|h)

= p(wk|h, cn)p(cn|h)

Is hierarchical softmax “deep”? No, as we walk down the 
tree the representation is not changed.

Mikolov et al. “Strategies for training large-scale neural network language models” ASRU 2011
Morin et al. “Hierarchical probabilistic neural network language model” AISTATS 2005

h

p(wk|h, cn)

p(cn|h) 6=



word2vec

• code at: https://code.google.com/archive/p/
word2vec/  

• next some evaluation from Tomas’s NIPS 2013 
presentation at: https://drive.google.com/file/d/
0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit 
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word2vec demo
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Recap
• Embedding words (from a 1-hot to a distributed 

representation) lets you: 

• understand similarity between words 

• plug them within any parametric ML model 

• Several ways to learn word embeddings. word2vec is 
still one of the most efficient ones. 

• Note word2vec leverages large amounts of unlabeled 
data. 
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Representing Phrases
• How about representing short sequences of words? 

• Could we simply average (pool) word 
embeddings?

word embedding of 

e(wk, wk+1, . . . , wk+n�1) =
1

n

n�1X

i=0

e(wk+i)

wk+i

• This is a surprisingly good baseline! E.g.: 
recommender systems.

ē =

credit to: A. Szlam https://learning.mpi-sws.org/mlss2016/slides/Arthur_Szlam_MLSS-2016.pdf

https://learning.mpi-sws.org/mlss2016/slides/Arthur_Szlam_MLSS-2016.pdf


Bag-of-embeddings
• Well-known but counter-intuitive fact about         : 

[concentration measure] with high probability, the 
inner product of any two random vectors is 0 
(therefore their distance is approx.     ). 

If word embeddings were drawn i.i.d., what’s the 
value of    s.t. we can recover          by finding the 
nearest neighbor to    ? 

Rd

p
d

ē
d wk+i

d > n log(

n|V |
✏

)

number of words 
in the bag

probability of 
recovery failure

credit to: A. Szlam https://learning.mpi-sws.org/mlss2016/slides/Arthur_Szlam_MLSS-2016.pdf

https://learning.mpi-sws.org/mlss2016/slides/Arthur_Szlam_MLSS-2016.pdf


Bag-of-embeddings
• Well-known but counter-intuitive fact about         : 

[concentration measure] with high probability, the 
inner product of any two random vectors is 0 
(therefore their distance is approx.     ). 

If word embeddings were drawn i.i.d., what’s the 
value of    s.t. we can recover          by finding the 
nearest neighbor to    ? 

Rd

p
d

ē
d wk+i

d > n log(

n|V |
✏

)

number of words 
in the bag

probability of 
recovery failure

credit to: A. Szlam https://learning.mpi-sws.org/mlss2016/slides/Arthur_Szlam_MLSS-2016.pdf

if |V|=100,000, n=10 and d>100,
-> perfect (orderless) recovery 

from a bag!

https://learning.mpi-sws.org/mlss2016/slides/Arthur_Szlam_MLSS-2016.pdf


Recap
• Given word embeddings, bagging embeddings is 

often an effective way to represent short 
sequences of words. 

• Theory of sparse recovery explains why. 

• What other (better) ways are there? 

• How can DL help here?
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Language Modeling
• In language modeling, we want to predict a word given some 

context.  

• bi-gram uses only the preceding word. 

• More generally, we can use the last N words. E.g.: n-grams 
and neural net language model. 

• Or even better, we can use some sort of running average of all 
the words seen thus far, as in recurrent neural networks. 

• As a by-product, these methods produce a representation of a 
sequence of (fixed or variable length) words without any 
supervision.
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Language Modeling
• the math… 

• with Markov assumption (used by n-grams):

42

p✓(w1, w2, . . . , wM ) = p✓(wM |wM�1 . . . , wM�n)p✓(wM�1|wM�2, . . . , wM�n�1) . . . p✓(w2|w1)p✓(w1)

p✓(w1, w2, . . . , wM ) = p✓(wM |wM�1 . . . , w1)p✓(wM�1|wM�2, . . . , w1) . . . p✓(w2|w1)p✓(w1)



Neural Network LM

43Y. Bengio et al. “A neural probabilistic language model” JMLR 2003



Neural Network LM

44Y. Bengio et al. “A neural probabilistic language model” JMLR 2003

• Natural extension of the factorized bi-gram 
model. 

• Improved accuracy with more context. A bit 
better than n-gram (count based methods). 

• if we are just interested in word embeddings, 
much more expensive than word2vec. 

• It gives a representation to ordered 
sequences of n words.



Recurrent Neural Network

• In NN-LM, the hidden state is the concatenation of 
word embeddings. 

• Key idea of RNNs: compute a (non-linear) running 
average instead, to increase the size of the context. 

• Many variants… 
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Recurrent Neural Network
• Elman RNN:

46Elman “Finding structure in time” Cognitive Science 1990

hk = �(Urhk�1 + U i1(wk) + br)

p(w
k+1|h) = softmax(Uoh

k

+ bo)

only difference compared to 
factorized bi-gram language model



Recurrent Neural Network
• Elman RNN:

47Elman “Finding structure in time” Cognitive Science 1990

hk = �(Urhk�1 + U i1(wk) + br)

p(w
k+1|h) = softmax(Uoh

k

+ bo)

only difference compared to 
factorized bi-gram language model

this could be a hierarchical softmax



RNN: Inference Time
• Elman RNN:

48Elman “Finding structure in time” Cognitive Science 1990

hk = �(Urhk�1 + U i1(wk) + br)

p(w
k+1|h) = softmax(Uoh

k

+ bo)
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o



RNN: Inference Time
• Elman RNN:

50Elman “Finding structure in time” Cognitive Science 1990

hk = �(Urhk�1 + U i1(wk) + br)

p(w
k+1|h) = softmax(Uoh

k

+ bo)

U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6
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o



RNN: Inference Time
• Elman RNN:

51Elman “Finding structure in time” Cognitive Science 1990

hk = �(Urhk�1 + U i1(wk) + br)

p(w
k+1|h) = softmax(Uoh

k

+ bo)

U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6
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o



RNN: Inference Time

54

• Inference in an RNN is like a regular forward pass in a deep 
neural network, with two differences: 

• Weights are shared at every layer. 
• Inputs are provided at every layer. 

• Two possible applications: 
• Scoring: compute the log-likelihood of an input 

sequence (sum the log-prob scores at every step). 
• Generation: sample or take the max from the predicted 

distribution over words at each time step, and feed that 
prediction as input at the next time step.



RNN: Inference Time
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• Inference in an RNN is like a regular forward pass in a deep 
neural network, with two differences: 

• Weights are shared at every layer. 
• Inputs are provided at every layer. 

• Two possible applications: 
• Scoring: compute the log-likelihood of an input 

sequence (sum the log-prob scores at every step). 
• Generation: sample or take the max from the predicted 

distribution over words at each time step, and feed that 
prediction as input at the next time step.



RNN: Training Time
• Truncated Back-Propagation Through Time: 

• Unfold RNN for only N steps and do:  

• Forward 

• Backward 

• Weight update 

• Repeat the process on the following sequence of N 
words, but carry over the value of the last hidden 
state.

56Werbos “Backpropagation through time: what does it do and how to do it” IEEE 1990



RNN: Truncated BPTT

57Elman “Finding structure in time” Cognitive Science 1990
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Forward Pass
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ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7
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o

RNN: Truncated BPTT
Backward Pass



68Elman “Finding structure in time” Cognitive Science 1990

U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6
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ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7
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RNN: Truncated BPTT
Parameter Update



Recap
• RNNs are more powerful because they capture a 

context of potentially “infinite” size.  

• The hidden state of a RNN can be interpreted as a way 
to represent the history of what has been seen so far. 

• RNNs can be useful to represent variable length 
sentences. 

• There are lots of RNN variants. The best working ones 
have gating (units that multiply other units): e.g.: LSTM 
and GRU.
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Gated Recurrent Unit RNN
Key idea: add gating units that enable hidden units to 
maintain (or reset) their state over time. 

72

rk = �(V i1(wk) + V rhk�1)

zk = �(Si1(wk) + Srhk�1) update gates

reset gates

Cho et al. “On the properties of NMT: encoder-decoder approaches” arXiv 2014



Gated Recurrent Unit RNN
Key idea: add gating units that enable hidden units to 
maintain (or reset) their state over time. 

73

h̄k = tanh(U i1(wk) + Ur(rk · hk�1))

rk = �(V i1(wk) + V rhk�1)

zk = �(Si1(wk) + Srhk�1)

hk = (1� zk)hk�1 + zkh̄k

update gates

reset gates

candidate hiddens

new hiddens

Cho et al. “On the properties of NMT: encoder-decoder approaches” arXiv 2014



Comparison
PennTreeBank perplexity

n-gram 141

neural net 141

Elman RNN 123

GRU -

LSTM 82

Mikolov et al. “Extensions of RNN LMs” ICASSP 2011
Grave et al. “Improving neural LMs with continuous cache” ICLR 2017

perplexity = 2H(p)

interpretation: average number of 
words the model is uncertain among 

(ideal value is 1).

Hochreiter et al. “Long short term memory” Neural Computation 1997



Recap
• There are several ways to represent sentences: 

• Bag of embeddings: strong baseline. 

• neural net language model: assumes fixed 
context, good for predicting the next word. 

• RNN: longer context, particularly good for 
predicting the next word. 

• Why predicting just future words? How about 
predicting surrounding words in the context?
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Skip-Thought Vectors
Key idea: 1) encode a sentence with an RNN, 2) use final 
hidden state to bias two other RNNs, one predicting the 
next sentence and one predicting the previous sentence. 

76 https://github.com/ryankiros/skip-thoughts
Kyros et al. “Skip-Thought vectors” arXiv 2015

GRU-RNN 2

Given: “Deep learning works well in applications. I want to learn it. I already know logistic regression.”

GRU-RNN 3

0

I want to learn it.

h̃GRU-RNN 1

Deep learning 
works well  

in applications.

I already know 
logistic regression.

https://github.com/ryankiros/skip-thoughts


Skip-Thought Vectors
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GRU-RNN 2

Given: “Deep learning works well in applications. I want to learn it. I already know logistic regression.”

GRU-RNN 3

Deep learning 
works well  

in applications.

I already know 
logistic regression.

I want to learn it.

sentence 
representation

h̃GRU-RNN 1

Key idea: 1) encode a sentence with an RNN, 2) use final 
hidden state to bias two other RNNs, one predicting the 
next sentence and one predicting the previous sentence. 

https://github.com/ryankiros/skip-thoughts


Skip-Thought Vectors
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GRU-RNN 2

Given: “Deep learning works well in applications. I want to learn it. I already know logistic regression.”

GRU-RNN 3

Deep learning 
works well  

in applications.

I already know 
logistic regression.

I want to learn it.

sentence 
representation

GRU-RNN 2 & 3
have slightly modified 
recurrent equations

zk = �(Si1(wk) + Srhk�1 + Sch̃)

rk = �(V i1(wk) + V rhk�1 + V ch̃)

h̃GRU-RNN 1

…

Key idea: 1) encode a sentence with an RNN, 2) use final 
hidden state to bias two other RNNs, one predicting the 
next sentence and one predicting the previous sentence. 

https://github.com/ryankiros/skip-thoughts


Skip-Thought Vectors
It’s a generalization of word2vec to sentences, using 
RNNs to represent sentences.

79 https://github.com/ryankiros/skip-thoughts
Kyros et al. “Skip-Thought vectors” arXiv 2015

Loss = cross entropy of previous sentence + cross entropy of next 
sentence. 

It uses the BookCorpus dataset with sentences from 11,000 books.

Training:

https://github.com/ryankiros/skip-thoughts
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Skip-Thought Vectors

Kyros et al. “Skip-Thought vectors” arXiv 2015
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Skip-Thought Vectors

Kyros et al. “Skip-Thought vectors” arXiv 2015

Example of generation:



Supervised Learning of 
Sentence Representations

If one has available labeled data on related tasks, it’s always better to 
train in supervised mode. Representations transfer well to other tasks.

82Conneau et al. “Supervised learning of universal sentence representations” arXiv 2017



Supervised Learning of 
Sentence Representations

83Conneau et al. “Supervised learning of universal sentence representations” arXiv 2017



Recap
• Predict surrounding context is a general principle. 

It can be used to learn word and sentence 
representations in an unsupervised manner. 

• Learning from labeled datasets, lets you transfer 
better features usually. 

• Choice of sentence representation depends on 
sequence length, task, computational and memory 
constraints.
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Questions?
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