An Introduction to
Deep Learning

Marc’Aurelio Ranzato
Facebook Al Research
ranzato@fb.com

DeeplLearn Summer School - Bilbao, 17 July 2017

mailto:ranzato@fb.com

Goal

A.l. ;. build a system that is useful to people and
that extends humans abilities.

More interested in complementing human skills than
necessarily replicating them.

Extending Human Abillities:
Examples

Xl century: extending human vision
with eyeglasses

4

Extending Human Abillities:
Examples

XVII-XVIII centuries: "extending” human legs
with steam engine for faster transportation

Extending Human Abillities:
Examples

XXI century: extending the human brain s e
by making information more easily accessible

What's next”

* Build A.l. that actually works..

IRPLGX:;;; IE:E:I' -- EIRPLGX

e— g t— - - . —_- =

“ ° ’ :
- " ¥y
|

DARPA Challenge videos

Technical Challenges

Content understanding

e Vision

e Audio

o Jext
Learn as much as possible from data with as little as possible human engineering
Sample and computational efficiency
Learn with as little supervision as possible
Knowledge transfer
Memory
Acquisition of common sense
End-to-end logical reasoning, planning

Robustness to uncertainty 9

What is Deep Learning an
How Can |t Help?

Deep learming Example:

Shallow . , .
s Example: Example:

Logistic Knowledgs

resTession bases

Example: autoencoders

MLPs

Representation learning

Machine learning

Figure 1.4: A Venn diagram showing how deep learning is a kind of representation learning,
which is in turn a kind of machine learning, which is used for many but not all approaches
to AL. Each section of the Venn diagram includes an example of an Al technology.

10 Goodfellow et al. “Deep Learning” MIT Press 2016

What Is Deep Learning and
How Can |t Help?

Deep Learning (DL) is a class of Machine Learning
methods that aims at learning feature hierarchies.

11

What Is Deep Learning and
How Can |t Help?

Philosophical justification (to be further claritied later):

* Hierarchical models are potentially more efficient as they
allow better feature sharing (compositionality).

* Intermediate representations are good candidate for
transterring knowledge to other tasks.

* These models are inherently very modular.

DL is not the solution but a useful set of tools for our quest
towards A.l.

12

Hierarchical Structure: Vision

Images can be naturally decomposed in:

pixel -> edge -> texton -> super-pixel -> part -> object

13

Hierarchical Structure: Vision

There is evidence of a similar hierarchy in the mammalian visual cortex.

The Mammalian Visual Cortex is Hierarchical

@ The ventral (recognition) pathway in the visual cortex has multiple stages

@ Retina - LGN - V1 - V2 - V4 - PIT - AIT ...

WHERLE? [Moton,
Soatiel Relotionahipe) WHAT? (Ferm, Color} seteyonical judgments,
fParictal stream) [nferctemporal atream| lecison making

L (s <] AIT, N\
©) “q jcr N

'.) .'
faces, ohjacts

T ———— o spmal cord

ee———oWgermusde . 0 —160-220ms
130-26) ms

[picture from Simon Thorpe]

LATRE 4L)

[Gallant & Van Essen]
14 * Now Yok Univers

Hierarchical Structure: Vision

pixel -> edge -> texton -> motif -> part -> object

Several (deep) approaches mimic a similar structure

high-level parts ﬁ oo o é O

mid-level parts

low level parts

- Efficiency via compositionality
| | - Compositionality and knowledge
Input image : f-~ % i ! == transfer via feature sharing

Lee et al. “Convolutional DBNs...” ICML 09

Hierarchical Structure: Vision

pixel -> edge -> texton -> motif -> part -> object

Several (deep) approaches mimic a similar structure

epresentation

e ee Example 2

Iearn'-srj\lng 06@:91 00
866620 Layer 2
/0802000

@ | projection+ M

> ""; ‘.'. .‘Ij ® ?r‘;ﬁ’l co
00930600536

QAOOSS000DTLGVOD

nnnnnn

credit: R. Girshuck 16 Leonardis et al. “Learning hierarchical representations...” ISRR 07

Hierarchical Structure: Vision

pixel -> edge -> texton -> motif -> part -> object

Several (deep) approaches mimic a similar structure

eX
N
W) | N
/) '._/) and-nod
(’“3 or-nad
e =P = E] leat-node
P - ™ N
(handh)ocoeen-d T — L qnmvens)
7 r n \'\
ands 2 hards l . Aratyc R E p | 3
h i Aok B xampie
d Q! @O0 &) i

OtLan
- ‘.‘ r “ . -
{ { \()
\ \ J \ J \ (A ' '
/ / e \ AN / MV e 0 N - g .
sand frame numbere
A ‘ 1
N e e

Zlour y FamaR | Secon oD R, S / £ £ %
t Yo a2 Y o1 Vg 12)
Cpand, g X) . S5) l\.I’ i, /‘\’_/‘_/
/;’ "\“ I/— -
|

Zhu et al. “A stochastic grammar of images...” FTCGV 06

credit: R. Girs

Hierarchical Structure

Speech Recognition

sample -> spectral band -> formant -> motit -> phone -> word

NLP
character -> word -> NP/VP/... -> clause -> sentence -> story

18

Deep Learning in Practice

ibe for as low 25 $1 a week x

Culture Rooks

Rissiness & Tech

Fumaor

THE

NEW YORKER

Cartoons Magazin= \"deo Padcas|

RITHMIA

|§ “OEEP LEARNING” A REVOLUTION IN e

ARTIFICIAL INTELLIGENCE?

2
O

0000

By Gary Marcus Nowember 25, 2012

Deep Learning Matters

WRERIAD

S=HARE

many of its predecesso
recognise svllables and
good reason to be skep
reports that “advances

intelligence techneclog)

~
=
== .
—
o= .
—
=
—
o
——
—
—
~
e
ey
_——

LEARNING TOOR OVER THIE
INFERNET

2016: The Year That Deep Learning Took Ov‘er.t i C i a I I nte I I ige n Ce

WHY DEEP LEARNING IS SUDDENLY
CHANGING YOUR LIFE

Decades-old discoveries are now electrifying the computing industry
and will soon transform corporate America.

Deep Learning in Practice

World's LargestiSelfit

%

A hﬁ)’wered bﬂLumia 7308
v

-
=\
- X n VT
y B
f A
Heeees

» ¥
vy

y SIS - L
Hu et al. “Finding tiny faces” 2016

'I-i T Coter Cettly ' ’.a Shabee Ghier

We Thaty nage 1) Sandzy night «plem>

Google

Translate

English Italilan Spanish Detectlanguage -~ :
He et al. “Mask R-CNN”

2017
20 Ge | &

ﬂ SEANE Neghes
-

B8

Recap

Deep Learning = Methods to Learn Hierarchical
Models.

When data has intrinsic hierarchical structure, it's
natural to use model with similar inductive bias.

Hierarchical Models are a usetul tool for building Al.

Lots of successtul applications.

How many deep learning methods are out there?

21

THE SPACE OF ML METHODS

CNN
B
Neural Net
B
RNN
B
CNN + GAN
B
deep VAE
. Sum-Product Net
B
DBN
B

Boosting
Kernel-SVM
@
@
linear SVM Perceptron
B
@ @
auto-encoder k-means ‘
word2vec
&
‘ sparse-codin
RBM @ P ng
GMM
@
VAE

Disclaimer: this is an over-simplified illustration!

CNN
B
RNN
B
CNN + GAN
]
deep VAE
B

DEEP|SHALLOW

Neural Net

Sum-Product Net

DBN

Kernel-SVM

auto-encoder

RBM

VAE

Boosting
linear SVM
k-means
' sparse-coding
GMM

Perceptron

word2vec

DEEP|SHALLOW

Boosting
CNN
‘ Kernel-SVM
Neural Net
linear SVM AL
SUPERVISED
D..‘Q...OQ....0.0.... e 6 6 6 6 6 6 6 o & o o & o o o oo °o o o o
CNN + GAN e 2
& auto-encoder k-means '
word2vec
deep VAE ' sparse-coding
& Sum-Product Net RBM &
B @ GMM
DBN VAE

DEEP|SHALLOW

Boosting

CNN for image classification
‘ Kernel-SVM

@
The same model may be trained
with different losses and amount of supervision

reivepuuil

linear SVM
CNN used as
SUPERVISED
D..‘Q.......C........ e 6 6 6 6 6 o6 o6 o6 & o o o o e 6 6 o o o
CNN + GAN for image generation
& auto- encoder k-means B
word2vec
deep VAE ' sparse-coding
3 Sum-Product Net RBM &
B @ GMM
DBN VAE

DEEP|SHALLOW

Boosting

‘ Kernel-SVM
Neural Net

linear SVM AL

o SUPERVISED
UNSUPERVISED

CNN + GAN
. auto-encoder k-means .
word2vec
&
decpivaZ . sparse-coding
& Sum-Product Net RBM &
3 & GMM
D we PROBABILISTIC

DEEP|SHALLOW

@
Neural Net
@
RNN
o‘ ooooooooooooooooo
CNN + GAN
B
deep VAE
' Sum-Product Net
B
DBN
B

Boosting

Kernel-SVM

linear SVM AL

SUPERVISED

l.!NSUPE.RVISED

auto-encoder k-means .
word2vec
@
. sparse-coding
RBM &

. GMM
we PROBABILISTIC

Some of the methods we are going to discuss

Recap

Hierarchical models are a good tool for Al
There are many ways to structure hierarchical models.
Depending on the application (properties of the data
and task to solve), hierarchical models may need to

be more or less deep, and they may have particular
structure / constraints.

The amount of supervision strongly determines the
training method.

28

Software Packages

Caffe2: https://caffe?.ai/

pyTorch: http://pytorch.org/

TensorFlow: hitps://www.tensorflow.org/

Theano: http://deeplearning.net/software/theano/

Torch: http://torch.ch/

29

https://caffe2.ai/
http://pytorch.org/
https://www.tensorflow.org/
http://deeplearning.net/software/theano/
http://torch.ch/

Software Packages

Caffe2: https://caffe?.ai/

pyTorch: http://pytorch.org/

TensorFlow: hitps://www.tensorflow.org/

Theano: http://deeplearning.net/software/theano/

Torch: http://torch.ch/

30

https://caffe2.ai/
http://pytorch.org/
https://www.tensorflow.org/
http://deeplearning.net/software/theano/
http://torch.ch/

€« = C | @ pyworchorg

PYTORCH Get Started

Tensors and Dynamic neural networks in Python
with strong GPU acceleration.

PyTorch is a deep learning framework that puts Python first.

We are in an early-release Beta. Expect some adventures.

o)

Get Started. -

< C | © pytorch.org/tutorials/

Pylorch Tutorials

Docs » Welcome to PyTorch Tutorials View page source
6
0.1.12.2 Welcome to PyTorch Tutorials
| Sezrchdocs \l
o / To get started with leaming PyTorch, start with our Beginner Tutorials. The 60-minute blitzis the

mcst common starting point, and gives ycu a quick introduction to PyTorch. If you 'ike learning by

examples, youwill like the tutorial Learning PyTorch with Examples

Deep Learning with PyTorch: A 60
Minute Blitz If you would likc te do the tutorials intcractively via IPython / Jupytcer, cach tutorial has adownload

PyTorch for former Torch users link for a Jupyter Notebook and Python source code.

Learning PyTorch with Examples . . . L. . . . _
We also provide a lot of high-quality examples covering image classification, unsupervised learning,
Transfer Leamning tutorial reinforcement learning, machine translat'on anc many other applications at

Data Loading and Processing Tutorial https://github.com/pytorch/examples/

Deep Learning for NLP with Pytorch

You can find reference documentaricn for PyTorch's APl and layers at http:/docs pytorch.org or via

inline help.
Classifying Names with a Character-
Level RNN)) . . . i

If you would like the tutoria's section improved, please ogen a github issue here with your feedback:
Generating Names with a Character- https://github.com/pvytorch/tutorials
Level RNN
Trans/ation with a Sequenceto B »
Sequence Network and Attention Beglnner TUtorlaIS
Reinforcement Learning (DQN) tutorial

4
Neural Transfer with PyTorch b
Creating extensions using numpy and P Y T R C H : tOqu
BExamples

pyto-ch.ora/tutorials/#

J

— C | & GitHub, Inc. [US] https://github.com/pytorch/examples

PyTorch Examples

A repository showcasing examples of using pytorch

« MNIST Convnets

» Word level Language Modeling using LSTM RNNs

« Training Imagenet Classifiers with Residual Networks

» Generative Adversarial Networks (DCGAN)

« Variational Auto-Encoders

» Superresolution using an efficient sub-pixel convolutional neural network

» Hogwild training of shared ConvNets across multiple processes on MNIST

» Training a CartPole to balance in OpenAl Gym with actor-critic

» Natural Language Inference (SNLI) with GloVe vectors, LSTMs, and torchtext

» Time sequence prediction - create an LSTM to learn Sine waves
Additionally, a list of good examples hosted in their own repositories:

e Neural Machine Translation using sequence-to-sequence RNN with attention (OpenNMT)

33

Outline

PART 0 [lecture 1]
e Motivation
* Training Fully Connected Nets with Backpropagation
Part 1 [lecture 1 and lecture 2]
* Deep Learning for Vision: CNN
Part 2 [lecture 2]
* Deep Learning for NLP
Part 3 [lecture 3]

 Modeling sequences

34

Outline

PART 0 [lecture 1]
e Motivation
- Training Fully Connected Nets with Backpropagation
Part 1 [lecture 1 and lecture 2]
* Deep Learning for Vision: CNN
Part 2 [lecture 2]
* Deep Learning for NLP
Part 3 [lecture 3]

 Modeling sequences

35

Neural Networks

Assumptions (for the next few slides):
= The input image is vectorized (disregard the spatial layout of pixels)
» The target label is discrete (classification)

Question: what class of functions shall we consider to map the input
into the output?

Answer: composition of simpler functions.

Follow-up questions: Why not a linear combination? What are the
“simpler” functions? What is the interpretation?

Answer: later...

36

Neural Networks: example

| 11202 (0, W' x)

X Input
h1 1-st layer hidden units

h? 2-nd layer hidden units
O output

Example of a 2 hidden layer neural network (or 4 layer network,
counting also input and output).

37

Forward Propagation

Def.: Forward propagation is the process of computing the
output of the network given its input.

38

Forward Propagation

- | 1102 (0, W' x)

D D

w'le RV

XER bIERNl hIERNl

h'=max(0,W'x+b")

! 1-stlayer weight matrix or weights
p! 1-stlayer biases

The non-linearity u =max (0,1i$ called ReLU in the DL literature.
Each output hidden unit takes as input all the units at the previous
layer: each such layer is called “fully connected”. ’

39

Forward Propagation

| 1120 (0, W' x)

N

hW'er" w?er"™™ per": Repr":
h*=max(0,W°h'+b*)

W* 2-nd layer weight matrix or weights
p> 2-nd layer biases

40

Forward Propagation

— | 0 (0, W' x)

N

nerR" wierR"™" p*eR" oeRrY:

o=max(0,W>h*+b")

w3 3-rd layer weight matrix or weights
p> 3-rd layer biases

41

Alternative Graphical Representation

k |
k+1 '
h h -
. h
k+1 i 1
: h;;
: h,

42

Interpretation

Question: Why can't the mapping between layers be linear?

Answer: Because composition of linear functions is a linear function.
Neural network would reduce to (1 layer) logistic regression.

Question: What do RelLU layers accomplish?
Answer: Piece-wise linear tiling: mapping is locally linear.

Montufar et al. “On the number of linear regions of DNNs” arXiv 2014

43

[0/1]

[0/1]

RelLU layers do local linear approximation. Number of planes grows
exponentially with number of hidden units. Multiple layers yield exponential
savings in number of parameters (parameter sharing).

- [0/1] [0/1] [0/1]
.
°
' 4 [0/1] [0/1] [0/1]

G

Montufar et al. *On number of linear regions of DNNs” arXiv 2014

44

Interpretation

Question: Why do we need many layers?

Answer: When input has hierarchical structure, the use of a
hierarchical architecture is potentially more efficient because
iIntermediate computations can be re-used. DL architectures are
efficient also because they use distributed representations which
are shared across classes.

[0010000100110010...] truck feature

Exponentially more efficient than a
1-of-N representation (a la k-means)

45

Interpretation

1100010100001 101..] motorbike

001000010011 0010..] truck

46

Interpretation

prediction of class

high-level
parts

= distributed representations

mid-level « feature sharing
parts = compositionality
low level
parts
Input image !

r_' = ,,‘:“‘,_-"_:_:;-_’ ‘_-

Lee et al. “Convolutional DBN's ...” ICML 2009

47

oy lorch demo

import torch

import torch.nn as nn

from torch.autograd import Variable
import numpy as np

import matplotlib

import matplotlib.pyplot as plt

ndim = 1
nhid = 200
nout = 1

nsamples = 1000
net = torch.nn.Sequential(nn.Linear(ndim, nhid), nn.RelLLU(),
nn.Linear(nhid, nhid), nn.ReLU(), nn.Linear(nhid, nout))
print(net)
inputs = torch.arange(-3,3,0.01).view(-1, 1)
outputs = net.forward(Variable(inputs))

fig, ax = plt.subplots()

ax.plot(inputs.squeeze().numpy(), outputs.data.squeeze().numpy())
plt.show()

48

Interpretation

Question: What does a hidden unit do?
Answer: It can be thought of as a classifier or feature detector.

Question: How many layers? How many hidden units?

Answer: Cross-validation or hyper-parameter search methods are the
answer. In general, the wider and the deeper the network the more
complicated the mapping.

Question: How do | set the weight matrices?

Answer: Weight matrices and biases are learned.
First, we need to define a measure of quality of the current mapping.
Then, we need to define a procedure to adjust the parameters.

Disclaimer: these are just suggestive conjectures. In practice, a fully connected
net (as deep as you wish) has never worked well in vision/audio processing. We

will shortly discuss how and what ankes this work in practice...

How Good is a Network?

X

max (0, W' x)

y=[00..010..0]

Probability of class k given input (softmax):

0

e
p(ck:1|x): C

e
Jj=1

(Per-sample) Loss; e.g., negative log-likelihood (good for classification of
small number of classes):

k

L(x, y;e)z—Zj y;log p(c,|x) Cross-Entropy Loss

50

Training

Learning consists of minimizing the loss (plus some regularization
term) w.r.t. parameters over the whole training set.

P
0" =arg mineZ:n:1 L(x",y";0)

Question: How to minimize a complicated function of the parameters?

Answer: Chain rule, a.k.a. Backpropagation! That is the procedure to
compute gradients of the loss w.r.t. parameters in a multi-layer neural
network.

Rumelhart et al. “Learning internal representations by back-propagating..” Nature 1986

51

Derivative w.r.t. Input of Softmax

e’
ple=lx)=—
2., ¢
L(x,y,'O)Z—Zj v;log p(c;|x) y=[00..010..0]

By substituting the first formula in the second one, and taking
the derivative w.r.t. 0 we get:

a_L— (C|X)—
ao_p y

HOMEWORK: prove it!

52

Backward Propagation

1 2 a—L
max (0, W' x) max (0, W* h') W~ h

Y

Given 0 L/0 o and assuming we can easily compute the
Jacobian of each module, we have:

oL 0L Oo
ow® 0o oW’

53

Backward Propagation

1 2 a—L
max (0, W' x) max (0, W* h') W~ h

Y

Given 0 L/0 o and assuming we can easily compute the
Jacobian of each module, we have:

oL 0L Oo
ow? do aw’
oL
= (plc|x)—y) 1"

oW’

o4

Backward Propagation
0L

1 2 —
X h h - 00
max (0, W' x) max (0, W* h') W h

Y

Given 0 L/0 o and assuming we can easily compute the
Jacobian of each module, we have:

oL 9L do oL 0L do
ow? do aw’ on: 00 on
oL

= (plc|x)—y) B

oW’

95

Backward Propagation

1 2 a—L
max (0, W' x) max (0, W* h') W~ h @

Y

Given 0 L/0 o and assuming we can easily compute the
Jacobian of each module, we have:

oL 9L do oL 0L do
ow? do aw’ on: 00 on
oL oL
= (plc|x)—y) B =W (plc|x)—y)

oW’ Oh’

56

Backward Propagation

! oL oL
X ;
h 8h ~
Y
. oL
Given ~We can compute now:
oOh
oL _ 0L Ok O0L oL ok

ow?* on’ ow? T An on

S/

Backward Propagation

oL oL oL
x 1 2

Y

Given oL

oh'

0L OL Oh'
ow' oh' ow'

we can compuie now:

58

Backward Propagation

Question: Does BPROP work with ReLU layers only?
Answer: Nope, any a.e. differentiable transformation works.

Question: What's the computational cost of BPROP?

Answer: About twice FPROP (need to compute gradients w.r.t. input
and parameters at every layer).

Note: FPROP and BPROP are dual of each other. E.g.,:

FPROP BPROP
= <--x
) | I
7)) '

COPY
A

59

Optimization
more GPU friendly

/

Stochastic Gradient Descent (on mini-batches):

0L

0—0 nae

)ne(oﬂl)

Stochastic Gradient Descent with Momentum:

0—0-—nA

oL

Note: there are many other variants...

60

Optimization

Stochastic Gradient Descent (on mini-batches):

oL works always surprisingly well;
,NE (O, 1) learning rate should be annealed
00 over time.

0—0—n

Stochastic Gradient Descent with Momentum:

0—0-—nA

accelerates initial convergence
0L at the beginning of training.

Note: there are many other variants...

there are 2nd order methods which take into
account curvature, but so far they have never
worked consistently better in terms of generalization.
61 Optimization is surprisingly easy.

Recap

Neural Net is a chain of non-linear operations,
implementing highly non-linear functions.

Forward pass computes the error.

Backward pass computes gradients w.r.t. inputs at
each layer and parameters.

Optimization done by vanilla stochastic gradient
descent.

62

import torch
from torch.autograd import Variable

class TwolayerNet(torch.nn.Mcdule):
def __init__(self, D_in, H, D_out):

def

In the constructor we instantiate two nn.Linear modules and assign them as
member variables.

super(TwoLayerNet, self).__init_ ()

self.linearl = torch.nn.Linear(D_in, H)

self.linear2 = torch.nn.Linear(H, D_out)

forward(self, x):

In the forward function we accept a Variable of input data and we must return
a Variable of output data. We can use Modules defined in the constructor as
well as arbitrary operators on Variables.

"wauwn

h_relu = self.linearl(x).clamp(min=0@)
y_pred = self.linear2(h_relu)
return y_pred

N is batch size; D_in is input dimension;
H is hidden dimension; D _out is output dimension.
N, D_in, H, D_out = 64, 1000, 1@, 10

#
X
y
#

Create random Tensors to hold inputs and outputs, and wrap them in Variables

Variable(torch.randn(N, D_in))
Variable(torch.randn(N, D_out), requires_grad=False)

Construct our model by instantiating the class defined above
model = TwolLayerNet(D_in, H, D_out)

Construct our Loss function and an Optimizer. The call to model.parameters()
in the SGD constructor will contain the Learnable parameters of the two

nn.Linear modules which are members of the model.

criterion = torch.nn.MSELoss(size_average=False)

optimizer = torch.optim.SGD(model.parameters(), lr=le-4)

for t in range(500):

Forward pass: Compute predicted y by passing x to the model
y_pred = model(x)

Compute and print Loss
loss
print(t, loss.data[@])

= criterion(y_pred, y)

Zero gradients, perform a backward pass, and update the weights.
optimizer.zero_grad()

loss.backward()

optimizer.step()

Question: How does all of this apply to vision?

64

Outline

PART 0 [lecture 1]
e Motivation
* Training Fully Connected Nets with Backpropagation
Part 1 [lecture 1 and lecture 2]
- Deep Learning for Vision: CNN
Part 2 [lecture 2]
* Deep Learning for NLP: word embeddings
Part 3 [lecture 3]

 Modeling sequences: RNNs and Graph Transformer Networks

65

Fully Connected Layer

Example: 200x200 image
40K hidden units
‘ ~2B parameters!!!

- Spatial correlation is local
- Waste of resources + we have not enough
training samples anyway..

606

Locally Connected Layer

Example: 200x200 image
40K hidden units
Filter size: 10x10

4M parameters

Note: This parameterization is good
when input image is registered (e.g.,
= ‘ face recognition).

67

Locally Connected Layer

STATIONARITY? Statistics is similar at

W, . different locations

Example: 200x200 image
40K hidden units

€ Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g.,
. face recognition).

Convolutional Layer

Share the same parameters across
different locations (assuming input is

stationary):
% nvolutions with learned kernels

69

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

NN A\

Convolutional Layer

Convolutional Layer

NMARRAA

Convolutional Layer

”"‘»‘

Convolutional Layer

Convolutional Layer

N\ AN

Convolutional Layer

Convolutional Layer

DN\ R

Convolutional Layer

Convolutional Layer

N\ N L\ A

Convolutional Layer

Convolutional Layer

Convolutional Layer

86

Convolutional Layer

Learn multiple filters.

E.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters

37

Convolutional Layer

n__ K n—1 n
h';)=max (0, Zkzl he *wi)

/

output input kernel
feature map feature map

Conv.
layer

88

Convolutional Layer

n__ K n—1 n
h';/=max (0, Zkzl he *wi)

/

output input kernel
feature map feature map

89

Convolutional Layer

n__ K n—1 n
h';)=max (0, Zkzl he *wi)

/

output input kernel
feature map feature map

90

Convolutional Layer

Question: What is the size of the output? What's the computational
cost?

Answer: It is proportional to the number of filters and depends on the
stride. If kernels have size KxK, input has size DxD, stride is 1, and
there are M input feature maps and N output feature maps then:

- the input has size M@DxD

- the output has size N@(D-K+1)x(D-K+1)

- the kernels have MxNxKxK coefficients (which have to be learned)

- cost: M*K*K*N*(D-K+1)*(D-K+1)

Question: How many feature maps? What's the size of the filters?

Answer: Usually, there are more output feature maps than input
feature maps. Convolutional layers can increase the number of hidden
units by big factors (and are expensive to compute).

The size of the filters has to match the size/scale of the patterns we
want to detect (task dependent).

91

Key Ideas

A standard neural net applied to images:
- scales quadratically with the size of the input
- does not leverage stationarity

Solution:
- connect each hidden unit to a small patch of the input
- share the weight across space

This is called: convolutional layer.
A network with convolutional layers is called convolutional network.

LeCun et al. “Gradient-based learning applied to document recognition” IEEE 1998

92

Pooling Layer

Let us assume filter is an “eye” detector.

Q.: how can we make the detection robust to
the exact location of the eye?

. ‘
T

N \\.-"‘
- - 3
& %

on
N
N

N

A) ANV AN

e

RO\

Pooling Layer

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location
of features.

94

Pooling Layer: Examples

Max-pooling: most popular version

H n—1/_ —
hj(x’y):maxxeN(x),j;eN(y)hj (X,y)

95

Pooling Layer

Question: What is the size of the output? What's the computational
cost?

Answer: The size of the output depends on the stride between the
pools. For instance, if pools do not overlap and have size KxK, and the
iInput has size DxD with M input feature maps, then:

- output is M@ (D/K)x(D/K)

- the computational cost is proportional to the size of the input
(negligible compared to a convolutional layer)

Question: How should | set the size of the pools?

Answer: It depends on how much “invariant” or robust to distortions we
want the representation to be. It is best to pool slowly (via a few stacks
of conv-pooling layers).

96

Pooling Layer: Interpretation

Task: detect orientation L/R

_:'14

\s

5

Conv layer: \);
| =

linearizes manifold

97

Pooling Layer: Interpretation

Task: detect orientation L/R

Conv layer:
linearizes manifold

Pooling layer:
collapses manifold

98

Pooling Layer: Receptive Field Size

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size: (P+K-

1)x(P+K-1)

VAN A\

99

Pooling Layer: Receptive Field Size

hn hn+1

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size: (P+K-

1)x(P+K-1)

100

ConvNets: Typical Stage

One stage (zoom)

Rectification
.+.
Contrast
Normalization

Filter Bank Pooling
courtesy of

K. Kavukcuoglu

101

ConvNets: Typical Stage

One stage (zoom)

Conceptually similar to: SIFT, HoG, etc.

102

Note: after one stage the number of feature maps is usually increased
(conv. layer) and the spatial resolution is usually decreased (stride in
conv. and pooling layers). Receptive field gets bigger.

Reasons:
- gain invariance to spatial translation (pooling layer)
- Increase specificity of features (approaching object specific units)

Rectification
+
Contrast
Normalization

Filter Bank
courtesy of

K. Kavukcuoglu

103

ConvNets: Typical Architecture

One stage (zoom)

Whole system

Input
Image
—

Class
Fully Conn. [Labels

Layers

1! stage 2" stage 3" stage

104

ConvNets: Typical Architecture

Whole system

Input Class
Image | FuIIy Conn. | Labels
Layers
1%t stage 2" stage 3" stage

Conceptually similar to:

SIFT — K-Means — Pyramid Pooling — SVM
Lazebnik et al. “...Spatial Pyramid Matching...” CVPR 2006

SIFT — Fisher Vect. — Pooling —» SVM

Sanchez et al. “Image classifcation with F.V.: Theory and practice” IJCV 2012

Note: all of them derive from...

105

ConvNets & Signal Processing

Recall a discrete wavelet transform:

~ 3
coefficients
—»| gln] 02— bin] |—>(12—>
— g[n] —»@——» h[n] —>@—> Level 2
= coefficients
.(:) > Level 1
{
k[n] h[n] coefficients

and its generalization (wavelet packet —m

decomposition): — [D[Hl @D
—] gfn] (12—

—{ gln] >0 2)——»{ bln] >0 2——»{ bin] > 2)—>

—»{ o[n] »@ >

—»{ eln] @2 bin] > 2)—

— eln] (12—

credit: wikipedia x[n]-—»| bln] (@2 bin] 2] bin] }>(12—>

Why ConvNets work?

* Natural image properties:
e spatial correlations are local
* spatial stationarity
e scale invariance

* Natural inductive bias:

e Use convolutional filters of different sizes.. or even better (much more efficient in terms of
compute and memory): cascade filter banks like in wavelet packet decomposition

* Precursors of “deep” nets, except that they were linear

 CNNs extend wavelet packets by making the processing non-linear (makes the whole system
more powerful and robust to noise) and by slightly adapting the filters to the task & data.

* Note: even (small) random filters have frequency/orientation selectivity!

Bruna et al. “A mathematical motivation for complex-valued convolutional networks” Neural Comp. 2016

Why ConvNets work?

* Natural image properties:
e spatial correlations are local
* spatial stationarity
e scale invariance

* Natural inductive bias:

e Use convolutional filters of different sizes.. or even better (much more efficient in terms of
compute and memory): cascade filter banks like in wavelet packet decomposition

* Precursors of “deep” nets, except that they were linear

 CNNs extend wavelet packets by making the processing non-linear (makes the whole system
more powerful and robust to noise) and by slightly adapting the filters to the task & data.

* Note: even (small) random filters have frequency/orientation selectivity!

This is the most successtul story of deep learning

ConvNets: Training

All layers are differentiable (a.e.).
We can use standard back-propagation.

Algorithm:
Given a small mini-batch
- F-PROP
- B-PROP
- PARAMETER UPDATE

109

oy Torch example of a CNN

Note: After several stages of convolution-pooling, the spatial resolution is
greatly reduced (usually to about 5x5) and the number of feature maps is
large (several hundreds depending on the application).

It would not make sense to convolve again (there is no translation
iInvariance and support is too small). Everything is vectorized and fed into
several fully connected layers.

If the input of the fully connected layers is of size Nx5x5, the first fully
connected layer can be seen as a conv. layer with 5x5 kernels.

The next fully connected layer can be seen as a conv. layer with 1x1
kernels.

C3: 1, maps 16@10x10
C1: {feature maps S4:1. maps16@5x5

INPUT 6@28x28
S2:f. maps 05 layer ;:5 layer OUTPUT

32x32
6@14x14

| Full connection Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

LeCun et al. “Gradient based learning applied to document recognition” IEEE 1998

H hidden units /
Hx1x1 feature maps

NxMxM, M small

Fully conn. layer /
Conv. layer (H kernels of size NxMxM)

112

K hidden units /
Kx1x1 feature maps

H hidden units /
Hx1x1 feature maps

NxMxM, M small

AP

/

Fully conn. layer /
Conv. layer (H kernels of size NxMxM) ®

Fully conn. layer /
Conv. layer (K kernels of size Hx1%1)

113

Viewing fully connected layers as convolutional layers enables efficient
use of convnets on bigger images (no need to slide windows but unroll
network over space as needed to re-use computation).

TRAINING TIME

Input S
Image °
TEST TIME
input 25,
Image ;R‘:’:’:

114

Viewing fully connected layers as convolutional layers enables efficient
use of convnets on bigger images (no need to slide windows but unroll
network over space as needed to re-use computation).

TRAINING TIME

Input
Image

TEST TIME CNNSs work on any image size!

Inpu
Imag

Unrolling is order of magnitudes more eficient than sliding windows!

115

ConvNets: Test

At test time, run only is forward mode (FPROP).

Fully
connected
500 weights)

24 @6x6
1Q0

2@96x96

v
6x6

v
3x3

5x5 -
subsampling convolution

convolution . l Tt rg:onvolution
ernels
(16 kernels) () (%400 kernels)

116

| atest & Greatest CNNSs:
BatchNormalization

* Before a non-linearity, this layer ensures that features are well scaled.
* |Improves optimization (convergence speed) and generalization.

Input: Values of z over a mini-batch: B = {z1. ., };
Parameters to be learned: ~, 3

Output: {y; = BN, g(z;)}

1 m
— — i // mini-batch
hB < — ;Zl x mini-batch mean
1 m
2 2 . .
— — i = /! -batch
op < — ;:1 (z; — puB) mini-batch variance
T; < Ti — b5 // normalize
\/a% + €
y; < 7Z; + B = BN, g(z;) // scale and shift

loffe et al. “Batch Normalization: ...” ICML 2015

| atest & Greatest CNNSs:
BatchNormalization

* Before a non-linearity, this layer ensures that features are well scaled.
* |Improves optimization (convergence speed) and generalization.

Input: Values of z over a mini-batch: B = {z1. ., };
Parameters to be learned: ~, 3

Output: {y; = BN, g(z;)}

m

Up i Z T; // mini-batch mean

m At test time, use running

, 1&) averages of mean and std.
— — i — // mini-batch vari

op < — z2:;(11: UB) mini-batch variance
T; < Ti — b5 // normalize

\/a% + €
y; < ¥Z; + B = BN, s(z;) // scale and shift

loffe et al. “Batch Normalization: ...” ICML 2015

| atest & Greatest CNNSs:
ResNet

e After each conv. layer, a batch norm. layer
e after N conv. layers, a skip connection is

weight layer summed at the output
F(x) jrelu X * No pooling layer, just strided convolutions.
ight | . . : : : :
welght ayer identity Whenever convolution is strided, increase

number of feature maps accordingly
No fully connected layers
Much deeper nets (>100 layers)

w 158 /1 J

¥

=) core, 128

=) core. 128

l
[
[
L

He et al. “Deep Residual Learning for image recognition” arXiv 2015

| atest & Greatest CNNSs:
ResNet

weight layer °
F(x) l relu i
weight layer identity

Figure 2. Residual learning: a building block.
output of 2nd block: Fo(Fi(x) + x) + Fi(x) + «

¥

=) core. 128
=) core 128

l
[

Skip connections let gradients flow
Features are refined at every block
There is no massive number of
parameters at the topmost layers (better
generalization)

Striding (as opposed to pooling) may
introduce slight aliasing, but it does not
matter and makes processing faster.

He et al. “Deep Residual Learning for image recognition” arXiv 2015

| atest & Greatest CNNSs:
ResNet

CNN started winning

0.3 ro7s
§ 0.26
ImageNet competition § %
(1M images, 1K categories): g2
(T 0.036
6 0.03

2010 2011 2012 2013 2014 2015 2016
ILSVRC year I

ResNet

He et al. “Deep Residual Learning for image recognition” arXiv 2015

| atest & Greatest CNNSs:
Mask R-CNN

A much more challenging task: instance segmentation

For every object predict:
* Predict bounding box
* Predict class label

* Predict mask

I RolAlign| 1

He et al. “Mask R-CNN” arXiv 2017

| atest & Greatest CNNSs:
Mask R-CNN

TR - “3 f

2 ersont. OO ersom-«@O‘ efison.98
i 2 "'w =ga surfb%ard1 00

i o e 00 g, MRS o

3
- p—‘

sufflboard1.0h -xsurfboard.g& b‘urfboard_ﬂ_ PerSons

t—v
g &
.—'

Restedne1.00 oy

He et al. “Mask R-CNN” arXiv 2017

| atest & Greatest CNNSs:

person1.00

Mask R-CNN

|
' , erson.88
*persBU.Oﬁ)} B YT RN =
| 3 T ‘ |

|

bottle.97

-

| wine glass.99 &
dining table.95 wine glas‘"s1.00‘“,"' 1
| 'l

| "
wine glass1.d0 L

iz

wa i VB
He et al. “Mask R-CNN” arXiv 2017

Fancier Architectures: Multi-Modal

shared representation

Text
Embedding

Frome et al. “Devise: a deep visual semantic embedding model” NIPS 2013

125

Fancier Architectures: Multi-Modal

shared representation

Text
Embedding

T

tiger

A\~ We will discuss more recent works
N2 during the 3rd lecture!

Frome et al. “Devise: a deep visual semantic embedding model” NIPS 2013

126

Fancier Architectures: Multi-Task

Attr. 1

Attr. 2
iImage Kooy, Conv Conv Conv
BN Norm Norm Norm Norm
Pool Pool Pool Pool

Attr. N

Zhang et al. “PANDA..” CVPR 2014

127

Fancier Architectures: Generic DAG

Any DAG of differentialble
modules is allowed!

Andreas et al. “Learning to compose neural networks for Q&A” NAACL 2016
Johnson et al. “Inferring and executing programs for visual reasoning” arXiv 2017

Fancier Architectures: Generic DAG

If there are cycles (RNN), one needs to un-roll it.

Pinheiro, Collobert “Recurrent CNN for scene labeling” ICML 2014
Graves “Offline Arabic handwriting recognition..” Springer 2012

129

CNNs for Image Generation

S

- _'3-3‘-} Jh . - e N ! . : | '1?';3 _’ T“‘ :
g‘ e NI~ e | |
by - v . S, N " ' i s o =t '4

Radford et al. “Unsupervised representation learning...” ICLR 2016

CNNs for Image Generation

Tips of the trade

Choosing the Architecture

 |t’s totally task dependent. What works for recognition is rather different than
generation, for instance.

o For classification of natural images, ResNet is probably the best bet, as of
today.

 |f the task is related to classification of natural looking images and data is
scarce, it's usually a good idea to initialize from a pre-trained model. CNNs

features generalize surprisingly well!
« Ultimately, one needs to cross-validate.

 The more labeled data is available, the more layers and the more filters usually
vield better accuracy. Computational resources should be taken into account.

* Leverage domain knowledge to design the architecture, be creative :)

133

How To Optimize [nonissue]

« SGD (with momentum) usually works very well

» Pick learning rate by running on a subset of the data
Bottou “Stochastic Gradient Tricks” Neural Networks 2012
s Start with large learning rate and divide by 2 until loss does not diverge
s Decay learning rate by a factor of ~1000 or more by the end of training

« Use _/ non-linearity

« Initialize parameters so that each feature across layers has
similar variance. Avoid units in saturation.

134

Improving Generalization

« Weight sharing (greatly reduce the number of parameters)
« Data augmentation (e.qg., jittering, noise injection, etc.)

» Dropout
Hinton et al. “Improving Nns by preventing co-adaptation of feature detectors” arxiv
2012

« Weight decay (L2, L1)
» Sparsity in the hidden units

« Multi-task (unsupervised learning)

135

Good To Know

« Check gradients numerically by finite differences

« Visualize features (feature maps need to be uncorrelated)
and have high variance.

samples

hidden unit

Good training: hidden units are sparse across samples
and across features.

136

Good To Know

« Check gradients numerically by finite differences

s Visualize features (feature maps need to be uncorrelated)
and have high variance.

i n
.
L
r

.'-I:‘ I

hidden unit

Bad training: many hidden units ignore the input and/or
exhibit strong correlations.

137

Good To Know

» Check gradients numerically by finite differences

» Visualize features (feature maps need to be uncorrelated)
and have high variance.

= Visualize parameters

BAD

r::i E 5“1

too noisy too correlated Iack structure

Good training: learned filters exhibit structure and are uncorrelated.

Zeiler, Fergus “Visualizing and understanding CNNs” arXiv 2013
Simonyan, Vedaldi, Zisserman “Deep inside CNNs: visualizing image classification models..” ICLR 2014

138

Good To Know

« Check gradients numerically by finite differences

s Visualize features (feature maps need to be uncorrelated)
and have high variance.

= Visualize parameters

= Measure error on both training and validation set.

« [rain and test on a small subset of the data and check that the
error goes to 0 quickly.

139

What If It Does Not Work?

= Training diverges:
= |_earning rate may be too large — decrease learning rate
= BPROP is buggy — numerical gradient checking

» Parameters collapse / loss is minimized but accuracy is low
= Check loss function:
= |s it appropriate for the task you want to solve?
» Does it have degenerate solutions? Check “pull-up” term.

» Network is underperforming
= Compute flops and nr. params. — if too small, make net larger
= Visualize hidden units/params — fix optmization

s Network Is too slow
s Compute flops and nr. params. — GPU,distrib. framework, make net
smaller

140

Questions?

Acknowledgements

| would like to thank Ross Girshick for providing slide
material about ResNet & Mask R-CNN, and Arthur
Szlam for sharing his insights about why CNNs work.

142

