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What is optimization?

Informally:
Minimizing (or maximizing) some quantity of interest.
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Example Applications

e Engineering: Minimize fuel consumption of an automobile.

o Economics: Maximize returns on an investment.

Supply Chain Logistics: Minimize time taken to fulfill an order.

o Life: Maximize happiness.
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Formal definition of Optimization

Goal: find 0* = argming f(6), (possibly subject to constraints on 6).

e O € R™: optimization variable

o f:R"™ — R: objective function
Maximizing f(6) is equivalent to minimizing — f(6), so we can treat
everything as a minimization problem.
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Assumptions

We make some assumptions to find the best method for solving an
optimization problem:

e Is f discrete or continuous?
e What form do constraints on 6 take (if any)?

o Is f “well-behaved” (linear, differentiable, convex, etc.)?
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Optimization for Machine Learning

Often in machine learning, we are interested in learning the
parameters, 6 of a model.
Goal: minimize some loss function.

o If we have data (z,y), we may want to maximize the probability
P(ylz,0).

e Equivalently, we can minimize —P(y|z,0).

We can solve the same optimization problem equivalently by applying
any monotonic transformation to the objective function.

@ So equivalently, we can minimize — log P(y|z, 0).

e Taking log can help for numerical reasons.
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Gradient Descent

Gradient Descent is one method for solving an optimization problem.
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Gradient Descent: Motivation

From calculus, we know that the minimum of f must lie at a point

where its derivative vanishes, i.e. % = 0.

e Sometimes, we can solve this equation analytically for 6.

e Mostly, we are not so lucky and must resort to iterative methods.
Recall the Gradient:
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Gradient Descent: Motivation
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Gradient Descent Algorithm Review

Let n be the learning rate and T" be the number of iterations:

o Initialize 6y randomly.
e fort=1:T

° 0y = —77V0t_1f
0 0y < 011+ 6

Choice of learning rate matters:
e Too big: the objective function will blow up.

@ Too small: the algorithm with take a long time to converge.
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Gradient Descent with Line Search

Let n be the learning rate and T" be the number of iterations:
o Initialize 6y randomly.
e Fort=1:T
o Find a step size 1, such that f(0; — Vo, ,) < f(6r)

° 0y = —ﬁtvet,lf
0 Oy« 01+ 6

Requires a line-search step at every iteration.
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Gradient Descent with Momentum

Let 1 be the learning rate and 7" be the number of iterations. We
introduce a momentum coefficient « € [0, 1) so that the updates have
“memory”:
o Initialize 6y randomly.
e Fort=1:T
° 0y =-—nVy, ,f+ad_1
° 9t — Gt—l + 6t
Momentum is a nice trick that can help speed up convergence.

Generally, it is useful to try values between 0.8 and 0.95, but the choice
is problem dependent.
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Convergence Criterion

Instead of choosing a fixed number of iterations, we can define some
convergence criterion, which is a condition upto which we would like to

run the algorithm.
o Initialize 6y randomly.

e Until convergence criterion is satisfied

° 4 = —Uvﬁt_lf
0 Oy« 041+ 6
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Example Convergence Criteria

e Change in objective function value is close to zero (or less than
some threshold): |f(011) — f(6:)] < e.

o Gradient norm is smaller than some threshold: ||Vyf|| < e.

e Validation error starts to increase: also known as Early Stopping.
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Gradient Descent Updates
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Exercise: Gradient Exercise Intuition

Suppose we are trying to optimize the loss function f(x) = %xTAaz,

0 1 1
iterates of gradient descent, with a learning rate n = 0.17

where z € R%. Let A = 4 0] and zg = ! . What are the first two
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Stochastic Gradient Descent (SGD)

o Each iteration of Gradient Descent requires that we sum over the
entire dataset to compute the gradient.

e SGD idea: at each iteration, sub-sample a small (mini-)batch of
data (even just 1 point can work) and use that to estimate the
gradient.

e Each update is noisy, but very fast!

@ It can be shown that this method produces an unbiased estimate
of the true gradient.
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Stochastic Gradient Descent (SGD)

e Batch-learning: computing gradients using the full dataset (which
can be a huge, very high-dimensional matrix, e.g. 1 million images
of size 224x224x3).

e Mini-batch learning: computing gradients using subsets of data at
every iteration.
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SGD Intuition

e SGD works because similar data yields similar gradients.

o If there is enough redundancy in the data, the noise from
subsampling isn’t too bad.

Tips:
@ Step sizes need to be tuned to different problems.

e Divide the log-likelihood estimate by the mini-batch size. Then
learning rate is invariant to mini-batch size.

e Subsample without replacement so that each point is visited
during an epoch of training.
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Convexity

A function f is convex if for any two points #; and 2 and any t € [0, 1],

f(t01 4+ (1 —=t)02) <tf(01)+ (1 —1t)f(02)

Geometric Intuition: If you draw a line segment between the two

points and it lies above the function curve, then the function is said to
be convex.
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Compositions of Convex Functions

We can compose convex functions such that the resulting function is
also convex:

e If f is convex, then so is af for a > 0.
o If f1 and f5 are both convex, then so is f1 + fo.
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Why do we care about convexity?

@ Any local minimum is a global minimum.

e This makes optimization a lot easier because we don’t have to
worry about getting stuck in a local minimum.

 Convex / \  Non-convex |
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Examples of Convex Functions

e Quadratic Functions
o Negative Logarithms

e Cross-entropy Loss Function
Check out the colab!
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Exercise: Sum of Convex Functions

Prove that the sum of two convex functions is convex.
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