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@ Softmax Regression
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Summary

Soft-max Reyress?m

— @ muti-class gen eralization of legistc  regressivn.
. epply Linear- furction Fist.

2. “Hhen aply e softmax acHVation FUncHon.

= #/m//g , USe CIvss— emiropy gs the loss Tunction.

— Def/‘ue the gmd/‘em‘- descertt @dafe rule r Softmax r@reszbﬂ.



Multi-class Classification

Task is to predict a discrete(> 2)-valued target.
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Targets in Multi-class Classification

o Targets form a discrete set {1,..., K}.

@ Represent targets as one-hot vectors or one-of-K encoding;:

t=(0,...,0,1,0,...,0) e RE

entrgp is 1
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Linear Function of Inputs

Vectorized form:

z=Wx+bor
z = Wx with dummy zg =1

Non-vectorized form:

D
2L = Zwijj +bp for k=1,2,...,. K
j=1

o W: K x D matrix. KXD DX l K)q K)‘,

e x: D x 1 vector.

e b: K x 1 vector. W X + b =(Z

e z: K x 1 vector.
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Generating a Prediction

Interpret z; as how much the model prefers the k-th prediction.

1, if¢=argmax 2 2 0

Yi = { k %7_ 0

0, otherwise ; N :

predict closs o largest Zx. 2k 1
2 0

How does the K = 2 case relate to the binary linear classifiers?
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Generating a Prediction

51

Logistic. Kegression : { , 7220 P
9 9 9=10 ! 3320 A .
Interpret z; as how much the model prefers the k-th prediction. 0 i‘.,
1, if i = argmax 2 Z 0
Yi = ok 2y 0
0, otherwise . :
. % H
Ze 1
2k 0

How does the K = 2 case relate to the binary linear classifiers?

prob/em: cannat optimize <hres hold unction.
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The K=2 (ase .

D+l
ZK:'ZWKJXJ , k'—"-’)o?

J=I

c{‘i‘P Z|>/Z'),,’H\en HI:L gz:
Dtherwise , 2 < Z_L/ Y=0, Y,=|

2,27 _:>zw - -
| % Za 0% 2 ZWZJX —QZ(WU Wo)%; 2
J=t ~~——

W?

\ JX 4
% 'L‘F JZTWJ X5 20, predict class 4

ptherwise, predict class 2.



Softmax Regression H'{

_—-_/é

Soften the predictions for optimization. 0 2

A natural activation function is the softmax function,
a generalization of the logistic function:

ek

yr = softmax(z1,..., 2Kk = e
k;/

Inputs z; are called the logits.

Interpret outputs as probabilities.

If z; is much larger than the others,
then softmax(z); ~ 1 and it behaves like argmax.

What does the K = 2 case look like?
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~ went probs, one or each class,
~ take each %, calulate e, rormalize get a prob dist.

— predict class w/ highest prob

— Smooth, differentinble, con apply gradient descent
— appraimates e Theshold Tuncton,

= e(gw‘va/enf T the /ogzts’h‘c +unction for K = o



Softmax is equivalent 1o logistic function when K=o

/<=°2) D': I
Z,=W)7f ) Z,2=W2.X.

2
Y= —t—r =
L ey | + &%
_ [ _ [ /
- WoX—~Wix W= W)X~ —(W—s
+ )X
W

\

[+ W



Cross-Entropy as Loss Function

Use cross-entropy as the loss function.

Lcr(y,t Z trlogyr = —t' (logy),

where the log is applied element-wise. One — hd’t yecstor-.

Often use a combined softmax-cross-entropy function.

CSC311 Intro ML (UofT) LecO5 Linear Models 3, Neural Nets 1 9/ 51



Gradient Descent Updates for Softmax Regression

Softmax Regression:

z = Wx

y = softmax(z)
Lcg = —t " (logy)

Gradient Descent Updates:
OLcg _ OLce Oz

8Wk 8zk 8Wk

N
1 (1) _ ()5
Wi € Wi — o ;(yk — 1t )x®

= (yp — tr) - x
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Gradient Descent Updates for Softmax Regression

Softmax Regression: genem//‘z'}aﬁan 070 /091‘37’721 /E\g/PSI\Oﬂ
z=Wx  Tor mubiple classes

y = softmax(z)
Lop = —t" (logy)
Gradient Descent Updates:

0Lcw _ OLcp Oz
8Wk - 821C 8wk

= (yr —tr) - X
LS, () 0y
Wi € Wi — o Z(yk — 1t )x®

=1 T
Softmax ( Wx)
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© Convexity
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Summary

Convexh’y :
- TP the loss funcion is convex i the model parameters,
then every critical poirt 5 a ghbal spiimum.
(gradient descent works  well. )

A comvex set: ony Convex combinativn of two pints in Hhe set
olso Jles in the set.
A convex function :  FONX+ (1= N Y) < AL %) +(1=D)F(Y.

For which models are #he loss function convex in w and b ?
~ linear~ regression, - logistie. regression, - Softmax regression



When are Critical Points Optimal?

o Gradient descent finds a critical point, but is it a global optimum?

o In general, a critical point may be a local optimum only.

e If a function is convex, then every critical point is a global
optimum.

critical
point

critical
point

local
maximum

local
minimum

critical
point

global
minimum
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Convex Sets

A set S is convex if
any line segment connecting two points in S lies entirely within S.

X1,X2€S
= M +(1-A)x2€8 for0< A< 1.

Weighted averages or convex combinations of points in S lie within S.

X{,...,XN €S
S MxX1+- - +AIANXNES for Ay >0, M +--- Ay =1.
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Convex Functions

A function f is convex if

o the line segment between any two points on f’s graph
lies above f’s graph between the two points.

o the set of points lying above the graph of f is convex.

e for any x¢,x; in the domain of f,

S = Nxo +Axy) < (1 =N f(x0) +Af(x1)
—_— N T

e f is bowl-shaped. \ /

(2) i
(%)

(1= NfGo)|
+M (@)

J(1 = Nzo
+ A1) o\

AN
G oo @

+ Ay
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Convex Loss Functions

For linear models, z = w' x + b is a linear function of w and b.
If the loss function is a convex function of z, then it is also
a convex function of w and b.

Which loss functions are convex?

3.0 — zero-one )
—— |east squares

2.51 — logistic + LS A
= logistic + CE \//
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@ Tracking Model Performance
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Summahf

Trac king Model  Performance
— AHhough we chose lbss functions 4> be easy 1o optimize,
we may Still wart B Hack other metris 1o measuwre performance.

Medtries for Classifization :

—How can we. measute  accuracy of a Classihier ?

~ Mg Is accuracy s lea c//'/zg under class mbalance ?

— What ate sensitivity and specittedty of a binary clssifrer?

— As e criterion velue changes, fow b Sensiivity b Specitivity change?
~ How can we quantity e trade- off between sensitivizy and

spea‘ﬁ‘a‘ﬁj usi/;; Hu ROC curve ?




Progress During Learning

o Track progress during learning by plotting training curves.

@ Chose the training criterion (e.g. squared error, cross-entropy)
partly to be easy to optimize.

e May wish to track other metrics to measure performance
(even if we can’t directly optimize them).
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Tracking Accuracy for Binary Classification

We can track accuracy, or fraction correctly classified.

e Equivalent to the average 01 loss, the error rate,
or fraction incorrectly classified.

o Useful metric to track even if we couldn’t optimize it.

Another way to break down the accuracy:

A TP +TN TP+TN
cc = =
P+N — (TP+FN)+ (TN + FP)
\_—V"

P N +

@ P=num positive; N=num negative;

[

o TP=true positives; TN=true negatives

0
FP=false positive or a type I error y 0 TN FN
FP

FN=false negative or a type II error

CSC311 Intro ML (UofT) LecO5 Linear Models 3, Neural Nets 1 18 / 51



Accuracy is Highly Sensitive to Class Imbalance

Suppose you are screening patients for a particular disease.
It’s known that 1% of patients have that disease.

e What is the simplest model that can achieve 99% accuracy?
predicts that everyone has no disease.

e You can run a diagnostic test. A patient who has the disease
is 10 times more likely to have a positive test result
than a patient without the disease.

Does this improve your accuracy? Ng
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You can run a diagnostic test. A patient who has the disease
is 10 times more likely to have a positive test result /)4

no 9 S
than a patient without the disease. dis%e_ 0. 7 ool 6{/:5 5

R( Positive [ has disease) /\

=B ( positive | no disease) posHiUe.  Negotive psifve. negpfive

0.0/ 099 a(o 09

— — — AN

Our Pedrietve Mode! -
tested fegative — predict o disease
Yested positive —> predict disease

‘ Wworse. than preditting
Accamcg of our predictie modk/: everjone has 7o olisease.

99% +(1—15) + |G+ lo = .78/ 1 0.00] = 0.781) = 78.1/7



Sensitivity and Specificity
Useful metrics even under class imbalance! I

TP s
TP1rN |1rue positive rate]

Sensitivity =

Specificity = % [True negative rate]

What happens if our problem is not linearly separable?
How do we pick a threshold for y = o(x)?
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What happens if our problem is not linearly separable?
How do we pick a threshold for y = o(x)?

- DePinitely have FP and FN. Cxmot achieve perfect clossification.
— Senshive 1o Chosen thres hold values

Pred/\c_h\on — I} %)0 y 2 ‘MrPSﬁoo( )
0, ' Y< threshold.

Consdor- Logiste regression.

z=Wx, Y- q(2) ’ Chosen hreshold.

j /A
Prediction = f I, #£Y=05
0, # Y<oc



Designing Diagnostic Tests

@ A binary model to predict whether someone has a disease.

e What happens to sensitivity and specificity
as you slide the threshold from left to right?

Criterion value

1

Without

disease With

disease

FN [P

Testresult
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test value..

\L SenSrHUﬁy TP# FN -

P spem‘ﬁwy =



With disease

BN

test value..

as criferion value T

R4 2
sty = o rFuy

s WU
seoificity = iy rpy T




Tradeoff between Sensitivity and Specificity

As we increase the criterion value (i.e. move from left to right),
how do the sensitivity and specificity change?

Specificity
True Negative rate

True Positive rate
Sensitivity

Criterion value
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Receiver Operating Characteristic (ROC) Curve

Area under the ROC curve (AUC) can quantify if a binary classifier
achieves a good tradeoff between sensitivity and specificity.

dotted line
Corresponds
o ranoom
classifier.

True Positive rate (Sensitivity)

1004
80 -
60 -
aof

20

1] = S I IR TR B
0 20 40 60 80 100

False Positive rate (100-Specificity)
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aN

/™

N

SenS/\‘/fo@ = [00% j /

specificity = 1007

- S

T the 4wo distributions db not overlop,
and we choose +he threshold valw n 74
middle, ~en we are ot e fop left
comner- of plot W/ sen. =<pe. =loo],



Confusion Matrix for Multi-Class classification

o Visualizes how frequently certain classes are confused.

e K x K matrix; rows are true labels, columns are predicted labels,
entries are frequencies

e What does the confusion matrix for a perfect classifier look like?

O - N M 10 © N~ 0 O
0.0 2 0 1 4 0 0 0 olo7
-~ 10 o0 0o 2 0o 0o 3 o0{112
.mke moﬁe #me 2t 1 -.4 1 1 1 4 6 14113
N 3002.0110132107
70 @(P/a//) "’}lls. §41 4 3 0.1 o o o 7 {100
®
252 1 1 3 48 2 0 6 1475
m6304006.00099
73011010.0 3 {101
80 3 5 4 0 7 0 1 2 {97
991 2 2 0o 5 0 0 5!-99
52288883888

predicted class
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@ Limits of Linear Classification
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XOR is Not Linearly Separable

Some datasets are not linearly separable, e.g. XOR.

Visually obvious, but how can we prove this formally?
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Proof That XOR is Not Linearly Separable

Proof by Contradiction:

o Half-spaces are convex. That is, if two points lie in a half-space,
the line segment connecting them also lie in the same half-space.

Suppose that the problem is feasible.

If the positive examples are in the positive half-space,
then the green line segment must be as well.

Similarly, the red line segment must lie in the negative half-space.

But, the intersection can’t lie in both half-spaces. Contradiction!

Z2

Ty
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Classifying XOR Using Feature Maps

Sometimes, we can overcome this limitation using feature maps,
e.g., for XOR.

w1 @ | (%) Pa(x) a(x) |t

0 0] 0 0 0 |0

1 0o 1| 0 1 0 |1

Yx)=| o 1 0| 1 0 0o |1
Tr1T2

1 1] 1 1 1 |o

e This is linearly separable. (Try it!)
@ Designing feature maps can be hard. Can we learn them?
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Classifying XOR Using Feature Maps

Sometimes, we can overcome this limitation using feature maps,
e.g., for XOR.

w1 @ | (%) Pa(x) a(x) |t

0 0] 0 0 0 |0

1 0o 1| 0 1 0 |1

Yx)=| o 1 0| 1 0 0o |1
Tr1T2

1 1] 1 1 1 |o

e This is linearly separable. (Try it!)
@ Designing feature maps can be hard. Can we learn them?

| 270
Z:’)(,+4(7,—Z/X,l\(,, g {0 j_z<0
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© Introducing Neural Networks
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Neurons in the Brain

Neurons receive input signals and accumulate voltage.

After some threshold, they will fire spiking responses.

Action potential

+40
Na* ions in
S/ 13 @
= °
_ ~ |2
S o 9 & £
£ S % K ions out
o =3
<) 9 | ©
@ Q 5
=
g .
Threshold | Failed e
-55[———————initiations
~\ Resting state
270 | e—— -

e Stimulus "“-""”-_"-"-":,_'_”_
@ . /O
Hyperpolarization

0] 1 2 3 4
Time (ms)

[Pic credit: www.moleculardevices.com]
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A Simpler Neuron

For neural nets, we use a much simpler model for neuron, or unit:

output output weights bias

e J= o (wTx+ i)

inputs \
I 9 x
3 activation function inputs

o Similar to logistic regression: y = o(w'x 4 b)
e By throwing together lots of these simple neuron-like processing
units, we can do some powerful computations!
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A Feed-Forward Neural Network
Kecyrrent.

an output
unit

o cycles
\

e A directed acyclic graph

(DAG)
o Units are grouped into .
layers 2 hﬁﬁe"

a connection

depth an input
unit
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second hidden layer

first hidden layer

input layer
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Multilayer Perceptrons

e A multi-layer network consists of fully connected layers.

o In a fully connected layer, all input units are connected to
all output units.

e Each hidden layer ¢ connects IN;_1 input units to IV; output units.
Weight matrix is N; x N;_;.

o The outputs are a function of the input units:

y=[f(x) =¢(Wx+b)

¢ is applied component-wise.
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Some Activation Functions

Identity Rectified Linear Unit
(ReLU)
Y=z
y = max(0, 2)
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Soft ReLU

y=1logl+e*

34 / 51



More Activation Functions

Hard Threshold

_ 1 ifz>0
Y=Y 0 ifz<o0

311 Intro ML (UofT)

Logistic
1

Ve
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Hyperbolic
Tangent
(tanh)

e —e %

y:€Z+e—Z
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Computation in Each Layer

Each layer computes a function.

h(®) = fD(x) = s(WUx + bD) y [©OO O

h® = f@OnM) = g(WOn® 4 p?) f(L)
' (3)
y = P !
h® O O O
£

If task is regression: choose h(l) O OO

y = fO D) = (wE) ThE-D 4 p(F)
v—v’\/
If task is binary classification: choose
y = FOMID) = (w0 440y X (D QO O

CSC311 Intro ML (UofT) Lec05 Linear Models 3, Neural Nets 1 36 / 51




A Composition of Functions

The network computes (3)
a composition of functions. f

Modularity: We can implement each layer’s
computations as a black box. h(l) O O O

f(l)
x| OOO
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Feature Learning

Neural nets can be viewed as a way of learning features:

linear regressor.
/ clasifier

The goal:
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Feature Learning

@ Suppose we're trying to classify images of handwritten digits.
e Each image is represented as a vector of 28 x 28 = 784 pixel values.
e Each hidden unit in the first layer acts as a feature detector.

e We can visualize w by reshaping it into an image.
Below is an example that responds to a diagonal stroke.
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Features for Classifying Handwritten Digits

Features learned by the first hidden layer of a handwritten digit
classifier:

Unlike hard-coded feature maps (e.g., in polynomial regression),
features learned by neural networks adapt to patterns in the data.
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@ Expressivity of a Neural Network
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Expressivity

@ A hypothesis space H is the set of functions that can be
represented by some model.

o Consider two models A and B with hypothesis spaces H 4, Hp.

o If Hgp C H 4, then A is more expressive than B.
A can represent any function f in Hp.

e Some functions (XOR) can’t be represented by linear classifiers.
Are deep networks more expressive?
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Expressive Power of Linear Networks

o Consider a linear layer: the activation function was the identity.
The layer just computes an affine transformation of the input.

e Any sequence of linear layers is equivalent to a single linear layer.
y = WOWOwWW
—_——
AW/

@ Deep linear networks can only represent linear functions
— no more expressive than linear regression.
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Expressive Power of Non-linear Networks

e Multi-layer feed-forward neural networks
with non-linear activation functions

@ Universal Function Approximators:
They can approximate any function arbitrarily well,
i.e., for any f: X — T there is a sequence f; € H with f; — f.

@ True for various activation functions
(e.g. thresholds, logistic, ReLU, etc.)
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Designing a Network to Classify XOR

Assume a hard threshold activation function.

1

1 ‘@ 1
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Designing a Network to Classify XOR

h1 computes x1 V xo
I[z1 4+ 22 — 0.5 > 0]
ho computes z1 A xo
I[z1 4+ 22 — 1.5 > 0]
y computes hy A (—hg) = z1 @ 2

H[hl —hy — 0.5 > 0]
=1I[h1 + (1 — hg) — 1.5 > 0]
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Universality for Binary Inputs and Targets

@ Hard threshold hidden units, linear output
o Strategy: 2” hidden units, each of which responds to one
particular input configuration

-1 -1 1| -1

-1 1 1 l

@ Only requires one hidden layer, though it is extremely wide.

CSC311 Intro ML (UofT) Lec05 Linear Models 3, Neural Nets 1 47 / 51




Expressivity of the Logistic Activation Function

e What about the logistic activation function?
e Approximate a hard threshold by scaling up w and b.

10
08+
0.6
0.4-

0.2

o

=4 3 -2 -1 o 1 2 3 4 =4 -3 -2 -

y=olx) y = o(52)

e Logistic units are differentiable, so we can learn weights with
gradient descent.
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What is Expressivity Good For?

e May need a very large network to represent a function.
e Non-trivial to learn the weights that represent a function.

e If you can learn any function, over-fitting is potentially
a serious concern!

For the polynomial feature mappings, expressivity increases with
the degree M, eventually allowing multiple perfect fits to the
training data. This motivated L? regularization.

-5.0
-50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50

e Do neural networks over-fit and how can we regularize them?
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Regularization and Over-fitting for Neural Networks

e The topic of over-fitting (when & how it happens, how to
regularize, etc.) for neural networks is not well-understood, even

by researchers!
» In principle, you can always apply L? regularization.
» You will learn more in CSC413.

@ A common approach is early stopping, or stopping training early,
because over-fitting typically increases as training progresses.

Generalization error

Prediction Error

."'-».,iEarly stopping _

Training error

Training Iterations

e Don’t add an explicit R(€) term to our cost.
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Conclusion

Multi-class classification

Convexity of loss functions

Selecting good metrics to track performance in models

From linear to non-linear models
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