
CSC 311: Introduction to Machine Learning

Lecture 3 - Bagging, Linear Models I

Rahul G. Krishnan Alice Gao

University of Toronto, Fall 2022

Intro ML (UofT) CSC311-Lec3 1 / 55

Outline

1 Introduction

2 Bias-Variance Decomposition

3 Bagging

4 Linear Regression

5 Vectorization

6 Optimization

7 Feature Mappings

8 Regularization

Intro ML (UofT) CSC311-Lec3 2 / 55

understand generalization .

an ensemble method .

a modular approach to ML.

I

Announcements

HW1 is due next Monday (10% late penalty for each late day, no
credit after 3 days).

We have arranged TA o�ce hours (on website) for the assignment.

Go to the earliest possible ones you can attend.

Manage your time well! If you wait till the last TA session,
you may have a long wait to ask your question.

Intro ML (UofT) CSC311-Lec3 3 / 55

Today

Ensembling methods combine multiple models and can perform better
than the individual members.

I We’ve seen many individual models (KNN, decision trees)

Bagging: Train models independently on random “resamples” of the
training data.

Linear regression, our first parametric learning algorithm.

I Illustrates a modular approach to learning algorithms.

Intro ML (UofT) CSC311-Lec3 4 / 55

1 Introduction

2 Bias-Variance Decomposition

3 Bagging

4 Linear Regression

5 Vectorization

6 Optimization

7 Feature Mappings

8 Regularization

Intro ML (UofT) CSC311-Lec3 5 / 55

Bias/Variance Decomposition

prediction y at a query x is a random variable
(where the randomness comes from the choice of dataset),

y? is the optimal deterministic prediction, and

t is a random target sampled from the true conditional p(t|x).

E[(y � t)2] = (y? � E[y])2| {z }
bias

+ Var(y)| {z }
variance

+ Var(t)| {z }
Bayes error

Intro ML (UofT) CSC311-Lec3 6 / 55

Interpretations

E[(y � t)2] = (y? � E[y])2| {z }
bias

+ Var(y)| {z }
variance

+ Var(t)| {z }
Bayes error

Bias/variance decomposes the expected loss into three terms:

bias: how wrong the expected prediction is
(corresponds to under-fitting)

variance: the amount of variability in the predictions
(corresponds to over-fitting)

Bayes error: the inherent unpredictability of the targets

Often loosely use “bias” for “under-fitting” and “variance” for
“over-fitting”.

Intro ML (UofT) CSC311-Lec3 7 / 55

Overly Simple Model

An overly simple model (e.g. KNN with large k) might have

high bias
(cannot capture the structure in the data)

low variance
(enough data to get stable estimates)

Intro ML (UofT) CSC311-Lec3 8 / 55

E-[loss] = Bias + Variance + Bayes Error

expected
squared loss error

= bias + Variance + Bayes error .

generalization error : average squared length 119-1-112 of the line segment
"residual "

.

bias : average squared length 11ELY] - 9*112 of the line segment
"bias "

.

variance : spread in green ✗ 's .

Bayes error : spread in black ✗ 's .

Overly Complex Model

An overly complex model (e.g. KNN with k = 1) might have

low bias
(learns all the relevant structure)

high variance
(fits the quirks of the data you happened to sample)

Intro ML (UofT) CSC311-Lec3 9 / 55

Bias/Variance Decomposition: Another Visualization

The following graphic summarizes the previous two slides:

A: Bayes error

Intro ML (UofT) CSC311-Lec3 10 / 55

bias : variance :

distance between spread of

middle point
the points .

and target

1 Introduction

2 Bias-Variance Decomposition

3 Bagging

4 Linear Regression

5 Vectorization

6 Optimization

7 Feature Mappings

8 Regularization

Intro ML (UofT) CSC311-Lec3 11 / 55

Main idea : to average many noisy but

approximately unbiased models

and reduce the variance .

Bagging Motivation

Sample m independent training sets from psample.
Compute the prediction yi using each training set.
Compute the average prediction y = 1

m

Pm
i=1 yi.

How does this a↵ect the three terms of the expected loss?
I Bias: unchanged,

since the averaged prediction has the same expectation

E[y] = E
"

1

m

mX

i=1

yi

#
= E[yi]

I Variance: reduced,
since we are averaging over independent predictions

Var[y] = Var

"
1

m

mX

i=1

yi

#
=

1

m2

mX

i=1

Var[yi] =
1

m
Var[yi].

I Bayes error: unchanged,
since we have no control over it

Intro ML (UofT) CSC311-Lec3 12 / 55

E- [InÉ Yi] = 1m£ E-[Yi] = E-[Yi]
it i=\ [↑

linearity of expectation
ith training set is drawn iii. d.
from Psample, so E-[Yi] is the

same for every i.

Each training set i is identically distributed, so

the expectation of an average of the predictions is the same as

the expectation of any one prediction Yi .

Var -19] = Var [tmÉYi] = tmzVar[ÉYi] = m÷ÉVar[Yi]
it

↑
i=\

↑
it

Var [ax] = a2Var[✗] the predictions Yi 's
are independent .

⇒ tm Var[Yi]
↑
each training set is drawn iii. d. from Psampk ,
so Var [Yi] is the same for every i.

If each prediction Yi has the same variance Var[Yi], then

the average of M such predictions has variance In VailYi] .

Bagging: The Idea

In practice, psample is often expensive to sample from. So training
separate models on independently sampled datasets is very
wasteful of data!

Given training set D, use the empirical distribution pD as a proxy
for psample. This is called bootstrap aggregation or bagging .

I Take a dataset D with n examples.
I Generate m new datasets (“resamples” or “bootstrap samples”)
I Each dataset has n examples sampled from D with replacement.
I Average the predictions of models trained on the m datasets.

One of the most important ideas in statistics!
I Intuition: As |D|!1, we have pD ! psample.

Intro ML (UofT) CSC311-Lec3 13 / 55

Bagging Example 1/2

Create m = 3 datasets by sampling from D with replacement.
Each dataset contains n = 7 examples.

Intro ML (UofT) CSC311-Lec3 14 / 55

Bagging Example 2/2

Generate prediction yi using dataset Di.
Average the predictions.

Intro ML (UofT) CSC311-Lec3 15 / 55

Aggregating Predictions for Binary Classification

Classifier i outputs a prediction yi

yi can be real-valued yi 2 [0, 1] or a binary value yi 2 {0, 1}

Average the predictions and apply a threshold.

ybagged = I

1

m

mX

i=1

yi > 0.5

!

Same as majority vote.

Intro ML (UofT) CSC311-Lec3 16 / 55

Bagging Properties

A bagged classifier can be stronger than the average model.
I E.g. on “Who Wants to be a Millionaire”, “Ask the Audience”

is much more e↵ective than “Phone a Friend”.

But, if m datasets are NOT independent, don’t get
the 1

m variance reduction.

Reduce correlation between datasets by introducing
additional variability

I Invest in a diversified portfolio, not just one stock.
I Average over multiple algorithms,

or multiple configurations of the same algorithm.

Intro ML (UofT) CSC311-Lec3 17 / 55

Random Forests

A trick to reduce correlation between bagged decision trees:
For each node, choose a random subset of features
and consider splits on these features only.

Probably the best black-box machine learning algorithm.
I works well with no tuning.
I widely used in Kaggle competitions.

Intro ML (UofT) CSC311-Lec3 18 / 55

Trees are ideal for bagging since they are
low- bias and high- variance models .

Bagging Summary

Reduces over-fitting by averaging predictions.

In most competition winners.
A small ensemble often better than a single great model.

Limitations:

Does not reduce bias in case of squared error.

Correlation between classifiers means less variance reduction.
Add more randomness in Random Forests.

Weighting members equally may not be the best.
Weighted ensembling often leads to better results if members are
very di↵erent.

Intro ML (UofT) CSC311-Lec3 19 / 55

variance

Main Takeaways :
- What is the main idea in bagging ?

- to average multiple noisy but unbiased models to reduce variance .

- does not reduce bias
.

(overfitting)
.

- Describe the bagging procedure .

- Sample multiple data-sets w/ replacement .
- Generate a prediction using each dataset.
- Aggregate the predictions (averaging or -majority voting) .

- How can we reduce correlation between trees in a random forest ?

- For each node
,
choose a subset of the features and

consider splits on these features only .

1 Introduction

2 Bias-Variance Decomposition

3 Bagging

4 Linear Regression

5 Vectorization

6 Optimization

7 Feature Mappings

8 Regularization

Intro ML (UofT) CSC311-Lec3 20 / 55

Linear Regression

Task: predict scalar-valued targets (e.g. stock prices)

Architecture: linear function of the inputs

Intro ML (UofT) CSC311-Lec3 21 / 55

A Modular Approach to ML

choose a model describing relationships between variables

define a loss function quantifying how well the model fits the data

choose a regularizer expressing preference over di↵erent models

fit a model that minimizes the loss function and satisfies the
regularizer’s constraint/penalty, possibly using an optimization
algorithm

Intro ML (UofT) CSC311-Lec3 22 / 55

Supervised Learning Setup

Input x 2 X (a vector of features)

Target t 2 T

Data D = {(x(i), t(i)) for i = 1, 2, ..., N}

Objective: learn a function f : X ! T based on the data
such that t ⇡ y = f(x)

Intro ML (UofT) CSC311-Lec3 23 / 55

- a collection of training examples labeled w/ correct outputs .

Model

Model: a linear function of the features x = (x1, . . . , xD) 2 RD

to make prediction y 2 R of the target t 2 R:

y =f(x) =
X

j

wjxj + b = w>x + b

Parameters are weights w and the bias/intercept b

Want the prediction to be close to the target: y ⇡ t.

Intro ML (UofT) CSC311-Lec3 24 / 55

model : the set of allowable functions that compute
predictions from the inputs .

Y = Wi✗i + WzXz + - - . . + Wp Xp + b

How do we measure this ?

Loss Function

Loss function L(y, t) defines how badly the algorithm’s prediction y fits
the target t for some example x.

Squared error loss function: L(y, t) = 1
2(y � t)2

y � t is the residual, and we want to minimize this magnitude
1
2 makes calculations convenient.

Cost function: loss function averaged over all training examples
also called empirical or average loss.

J (w, b) =
1

2N

NX

i=1

⇣
y(i) � t(i)

⌘2
=

1

2N

NX

i=1

⇣
w>x(i) + b� t(i)

⌘2

Intro ML (UofT) CSC311-Lec3 25 / 55

L : is a function of prediction & target .
doesn't care how you produced the prediction .

small when 9 and t are close together
large when Y and t are far apart .

Model parameters .

The optimization problem : minimize cost functionw.r.tl#

a function of the model parameters w, b and
t .

choose w, b to minimize J.

1 Introduction

2 Bias-Variance Decomposition

3 Bagging

4 Linear Regression

5 Vectorization

6 Optimization

7 Feature Mappings

8 Regularization

Intro ML (UofT) CSC311-Lec3 26 / 55

Loops v.s. Vectorized Code

We can compute prediction for one data point using a for loop:

y = b

for j in range(M):

y += w[j] * x[j]

But, excessive super/sub scripts are hard to work with, and
Python loops are slow.

Instead, we express algorithms using vectors and matrices.

w = (w1, . . . , wD)> x = (x1, . . . , xD)>

y = w>x + b

This is simpler and executes much faster:

y = np.dot(w, x) + b

Intro ML (UofT) CSC311-Lec3 27 / 55

two options option ①

option ②

WZI:D I
XD

Benefits of Vectorization

Why vectorize?

The code is simpler and more readable. No more dummy
variables/indices!

Vectorized code is much faster
I Cut down on Python interpreter overhead
I Use highly optimized linear algebra libraries (hardware support)
I Matrix multiplication very fast on GPU

You will practice switching in and out of vectorized form.

Some derivations are easier to do element-wise

Some algorithms are easier to write/understand using for-loops
and vectorize later for performance

Intro ML (UofT) CSC311-Lec3 28 / 55

shorter more compact

Python is high- level language .
for loops inour interpreteroverhead.

-highly parallelizable .
take time to become comfortable w/ vectorized form

.

practice this intentionally .

Predictions for the Dataset

Put training examples into a design matrix X.

Put targets into the target vector t.

We can compute the predictions for the whole dataset.

Xw + b1 = y

0

BBBB@

x(1)
1 x(1)

2 . . . x(1)
D

x(2)
1 x(2)

2 . . . x(2)
D

...
...

...

x(N)
1 x(N)

2 . . . x(N)
D

1

CCCCA

0

BBB@

w1

w2
...

wD

1

CCCA
+ b

0

BBB@

1
1
...
1

1

CCCA
=

0

B@
y(1)

...
y(N)

1

CA

Intro ML (UofT) CSC311-Lec3 29 / 55

N examples .
D features . D

→
D-dim vector

N-dim vector.

↑

1- example [N
1-(
N)

↑
one feature

✗↑>With"Wz+ - - - + XD
">Wptb

one input dimension
.

Computing Squared Error Cost

We can compute the squared error cost across the whole dataset.

y = Xw + b1

J =
1

2N
ky � tk2

Sometimes we may use J = 1
2ky � tk2, without a normalizer.

This would correspond to the sum of losses, and not the averaged loss.
The minimizer does not depend on N (but optimization might!).

Intro ML (UofT) CSC311-Lec3 30 / 55

ÉH✗w+b1-tÑ= →
Euclidean norm
L2 norm .

Combining Bias and Weights

We can combine the bias and the weights and
add a column of 1’s to design matrix.

Our predictions become

y = Xw.

X =

2

64
1 [x(1)]>

1 [x(2)]>

1
...

3

75 2 RN⇥(D+1) and w =

2

6664

b
w1

w2
...

3

7775
2 RD+1

Intro ML (UofT) CSC311-Lec3 31 / 55

1 Introduction

2 Bias-Variance Decomposition

3 Bagging

4 Linear Regression

5 Vectorization

6 Optimization

7 Feature Mappings

8 Regularization

Intro ML (UofT) CSC311-Lec3 32 / 55

Solving the Minimization Problem

Goal is to minimize the cost function J (w).

Recall: the minimum of a smooth function (if it exists) occurs at a
critical point, i.e. point where the derivative is zero.

rwJ =
@J

@w
=

0

B@

@J
@w1
...

@J
@wD

1

CA

Solutions may be direct or iterative.

Direct solution: set the gradient to zero and solve in closed form
— directly find provably optimal parameters.

Iterative solution: repeatedly apply an update rule that gradually
takes us closer to the solution.

Intro ML (UofT) CSC311-Lec3 33 / 55

Iassume that we combine b into the w vector.)

How do we find

weights w such

that Ew = 0

Minimizing 1D Function

Consider J (w) where w is 1D.

Seek w = w⇤ to minimize J (w).

The gradients can tell us where the maxima and minima of
functions lie

Strategy: Write down an algebraic expression for rwJ (w).
Set rwJ (w) = 0. Solve for w.

<latexit sha1_base64="G4NrL4+FchmdNAyoq1HYtt9oFXI=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7OxmZlZDCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOejjQQ=</latexit>w
<latexit sha1_base64="KD3fVQqxqG3xNoLiu3LBcYSIYFs=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBDEQ9iVoB6DXjxGNA9I1jA7mU2GzM4uM71KWPIJXjwo4tUv8ubfOHkcNLGgoajqprsrSKQw6LrfztLyyuraem4jv7m1vbNb2NuvmzjVjNdYLGPdDKjhUiheQ4GSNxPNaRRI3ggG12O/8ci1EbG6x2HC/Yj2lAgFo2ilu6eH006h6JbcCcgi8WakCDNUO4WvdjdmacQVMkmNaXlugn5GNQom+SjfTg1PKBvQHm9ZqmjEjZ9NTh2RY6t0SRhrWwrJRP09kdHImGEU2M6IYt/Me2PxP6+VYnjpZ0IlKXLFpovCVBKMyfhv0hWaM5RDSyjTwt5KWJ9qytCmk7chePMvL5L6Wck7L5Vvy8XK1SyOHBzCEZyABxdQgRuoQg0Y9OAZXuHNkc6L8+58TFuXnNnMAfyB8/kDAPeNoA==</latexit>

w� <latexit sha1_base64="G4NrL4+FchmdNAyoq1HYtt9oFXI=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7OxmZlZDCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOejjQQ=</latexit>w

<latexit sha1_base64="e+ttoURH58A1MBP09Fly9EgJr3E=">AAACAnicbVA9SwNBEN2LXzF+Ra3EZjEIsQl3EtRGCNqIVQTzAbkjzG02yZK9vWN3zxCOYONfsbFQxNZfYee/cZNcoYkPBh7vzTAzz484U9q2v63M0vLK6lp2PbexubW9k9/dq6swloTWSMhD2fRBUc4ErWmmOW1GkkLgc9rwB9cTv/FApWKhuNejiHoB9ATrMgLaSO38gSvA59AeYjcA3SfAk9txcXhyabfzBbtkT4EXiZOSAkpRbee/3E5I4oAKTTgo1XLsSHsJSM0Ip+OcGysaARlAj7YMFRBQ5SXTF8b42Cgd3A2lKaHxVP09kUCg1CjwTefkTjXvTcT/vFasuxdewkQUayrIbFE35liHeJIH7jBJieYjQ4BIZm7FpA8SiDap5UwIzvzLi6R+WnLOSuW7cqFylcaRRYfoCBWRg85RBd2gKqohgh7RM3pFb9aT9WK9Wx+z1oyVzuyjP7A+fwA2Spar</latexit>

rwJ (w) = 0

<latexit sha1_base64="0rn9DHL8OfJOBsK1YqlkHulpeEM=">AAACAnicbVA9SwNBEN2LXzF+Ra3EZjEIsQl3EtTCImgjVhHMB+SOMLfZJEv29o7dPUM4go1/xcZCEVt/hZ3/xk1yhSY+GHi8N8PMPD/iTGnb/rYyS8srq2vZ9dzG5tb2Tn53r67CWBJaIyEPZdMHRTkTtKaZ5rQZSQqBz2nDH1xP/MYDlYqF4l6PIuoF0BOsywhoI7XzB64An0N7iN0AdJ8AT27HxeHJpd3OF+ySPQVeJE5KCihFtZ3/cjshiQMqNOGgVMuxI+0lIDUjnI5zbqxoBGQAPdoyVEBAlZdMXxjjY6N0cDeUpoTGU/X3RAKBUqPAN52TO9W8NxH/81qx7l54CRNRrKkgs0XdmGMd4kkeuMMkJZqPDAEimbkVkz5IINqkljMhOPMvL5L6ack5K5XvyoXKVRpHFh2iI1REDjpHFXSDqqiGCHpEz+gVvVlP1ov1bn3MWjNWOrOP/sD6/AE0xZaq</latexit>

rwJ (w) < 0
<latexit sha1_base64="sVDRcCuY9m4CGCoZ257ySuJ3c7I=">AAACAnicbVA9SwNBEN2LXzF+Ra3EZjEIsQl3EtRKgjZiFcF8QO4Ic5tNsmRv79jdM4Qj2PhXbCwUsfVX2Plv3CRXaOKDgcd7M8zM8yPOlLbtbyuztLyyupZdz21sbm3v5Hf36iqMJaE1EvJQNn1QlDNBa5ppTpuRpBD4nDb8wfXEbzxQqVgo7vUool4APcG6jIA2Ujt/4ArwObSH2A1A9wnw5HZcHJ5c2u18wS7ZU+BF4qSkgFJU2/kvtxOSOKBCEw5KtRw70l4CUjPC6TjnxopGQAbQoy1DBQRUecn0hTE+NkoHd0NpSmg8VX9PJBAoNQp80zm5U817E/E/rxXr7oWXMBHFmgoyW9SNOdYhnuSBO0xSovnIECCSmVsx6YMEok1qOROCM//yIqmflpyzUvmuXKhcpXFk0SE6QkXkoHNUQTeoimqIoEf0jF7Rm/VkvVjv1sesNWOlM/voD6zPHzfPlqw=</latexit>

rwJ (w) > 0
<latexit sha1_base64="Mfev+lub1upNzjixRRgurHuJrYM=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBItQN2VGSnVZdCOuKtgHtGPJpJk2NJMZkoylDP0PNy4Uceu/uPNvzLSz0NYDgcM593JPjhdxprRtf1u5tfWNza38dmFnd2//oHh41FJhLAltkpCHsuNhRTkTtKmZ5rQTSYoDj9O2N75J/fYTlYqF4kFPI+oGeCiYzwjWRnrsBViPCObJ3aw8Oe8XS3bFngOtEicjJcjQ6Be/eoOQxAEVmnCsVNexI+0mWGpGOJ0VerGiESZjPKRdQwUOqHKTeeoZOjPKAPmhNE9oNFd/byQ4UGoaeGYyTamWvVT8z+vG2r9yEyaiWFNBFof8mCMdorQCNGCSEs2nhmAimcmKyAhLTLQpqmBKcJa/vEpaFxWnVqneV0v166yOPJzAKZTBgUuowy00oAkEJDzDK7xZE+vFerc+FqM5K9s5hj+wPn8ALUSSTw==</latexit>

J (w)
<latexit sha1_base64="Mfev+lub1upNzjixRRgurHuJrYM=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBItQN2VGSnVZdCOuKtgHtGPJpJk2NJMZkoylDP0PNy4Uceu/uPNvzLSz0NYDgcM593JPjhdxprRtf1u5tfWNza38dmFnd2//oHh41FJhLAltkpCHsuNhRTkTtKmZ5rQTSYoDj9O2N75J/fYTlYqF4kFPI+oGeCiYzwjWRnrsBViPCObJ3aw8Oe8XS3bFngOtEicjJcjQ6Be/eoOQxAEVmnCsVNexI+0mWGpGOJ0VerGiESZjPKRdQwUOqHKTeeoZOjPKAPmhNE9oNFd/byQ4UGoaeGYyTamWvVT8z+vG2r9yEyaiWFNBFof8mCMdorQCNGCSEs2nhmAimcmKyAhLTLQpqmBKcJa/vEpaFxWnVqneV0v166yOPJzAKZTBgUuowy00oAkEJDzDK7xZE+vFerc+FqM5K9s5hj+wPn8ALUSSTw==</latexit>

J (w)

Intro ML (UofT) CSC311-Lec3 34 / 55

Direct Solution for Linear Regression

Seek w to minimize J (w) = 1
2kXw � tk2

Taking the gradient with respect to w and setting it to 0, we get:

rwJ (w) = X>Xw �X>t = 0

See course notes for derivation.

Optimal weights:
w⇤ = (X>X)�1X>t

Few models (like linear regression) permit direct solution.

Intro ML (UofT) CSC311-Lec3 35 / 55

NO¥ ,
sum of losses .
↓

✗TX W = ✗Tt

A W = C

a system of D linear equations w/ D unknowns/variables .

Unusual to have a closed- form solution .

in most cases, the system of equations is non-linear
.

and

doesn't have closed-form solutions . only a handful algorithms
in this course have closed form solutions.

D

J = -12 (¥yWj✗j
"
- t
"))

≥

Direct Solution

for

Linear Regression
⇒ ¥j=-É¥"jÉjw;✗¥- + "'1=0
⇒ (É✗j""xÉ)wj - Éxj"'t ")=0

j1=l i=1 1=1

⇒ É /Éxj"> ✗E) Wj ' = Éxj"'t"
"= '

AÉ jᵈ
Ajjiwji = Cj

, -Vj=l , ,D
.

Direct Solution for Linear Regression .
(vectorized form)

.

J = #✗ w - t)TCXw -t)

⇒ %-w=✗T(✗ w-1-7=0
⇒ XTXW - ✗7=0

⇒ ✗W=✗-
⇒ W=(✗TX)-1×7

Iterative Solution: Gradient Descent

Many optimization problems don’t have a direct solution.

A more broadly applicable strategy is gradient descent.

Gradient descent is an iterative algorithm, which means we apply
an update repeatedly until some criterion is met.

We initialize the weights to something reasonable (e.g. all zeros)
and repeatedly adjust them in the direction of steepest descent.

Intro ML (UofT) CSC311-Lec3 36 / 55

that most decreases the cost function .

until the weights converge or stop changing much .
or until we get tired of waiting .

Deriving Update Rule

Observe:
if @J /@wj > 0, then decreasing J requires decreasing wj .
if @J /@wj < 0, then decreasing J requires increasing wj .

The following update always decreases the cost function
for small enough ↵ (unless @J /@wj = 0):

wj wj � ↵
@J

@wj

Intro ML (UofT) CSC311-Lec3 37 / 55

In what direction should 7- update W ?

positive change w in the direction opposite the gradient .

negative

for ID function
,

gradient = slope

Ew<of /÷w>o
i

Setting Learning Rate

Gradient descent update rule:

wj wj � ↵
@J

@wj

↵ > 0 is a learning rate (or step size).

The larger ↵ is, the faster w changes.

Values are typically small, e.g. 0.01 or 0.0001.

We’ll see later how to tune the learning rate.

If minimizing total loss rather than average loss,
needs a smaller learning rate (↵0 = ↵/N).

Intro ML (UofT) CSC311-Lec3 38 / 55

How much should I change W at each step ?

Gradient Descent Intuition

Gradient descent gets its name from the gradient,
the direction of fastest increase.

rwJ =
@J

@w
=

0

B@

@J
@w1

...
@J

@wD

1

CA

Update rule in vector form:

w w � ↵
@J

@w

Update rule for linear regression:

w w �
↵

N

NX

i=1

(y(i) � t(i))x(i)

Gradient descent updates w in the direction of fastest decrease.

Once it converges, we get a critical point, i.e. @J
@w = 0.

Intro ML (UofT) CSC311-Lec3 39 / 55

(steepest ascent)

Gradient Descent Update for Linear Regression .

W← w - ✗ 0¥ or Wj← Wj - ✗

3¥ = ¥É¥" (ÉW; . × - t"))j1=i{
Wj ← Wj - ¥ ÉÉXj") (Wjixji"- t"')

j1=1

µI = # ✗
1-
(✗ w - t)

(vectorized form)

w← w - #✗TIX w - t)

Why Use Gradient Descent?

Applicable to a much broader set of models.

Easier to implement than direct solutions.

More e�cient than direct solution for regression in
high-dimensional space.

I The linear regression direction solution (X>X)�1X>t
requires matrix inversion, which is O(D3).

I Gradient descent update costs O(ND)
or less with stochastic gradient descent.

I Huge di↵erence if D is large.

Intro ML (UofT) CSC311-Lec3 40 / 55

direct solution : exact optimum .

gradient descent : approach the optimum gradually .

closed form solution fora handful of models , , GD as long as
we can compute gradient .

solving a linear system more expensive
than a gradient update .I GD can be

much faster.

⇒ Many software packages can compute gradient automatically .
no need to do it by hand .

& efficiently .

Even if we have direct solution , GD is more practical .

1 Introduction

2 Bias-Variance Decomposition

3 Bagging

4 Linear Regression

5 Vectorization

6 Optimization

7 Feature Mappings

8 Regularization

Intro ML (UofT) CSC311-Lec3 41 / 55

Feature Mapping

Can we use linear regression to model a non-linear relationship?

Map the input features to another space (x) : RD
! Rd.

Treat the mapped feature (in Rd) as the input of a linear
regression procedure.

Intro ML (UofT) CSC311-Lec3 42 / 55

Linear regression sounds pretty limited.

Modeling a Non-Linear Relationship

Intro ML (UofT) CSC311-Lec3 43 / 55

Y = Was ✗
3
+ Wax

≥

-1 W, X + Wo
.

Use linear regression as IX. ×? ✗3) as inputs .

Polynomial Feature Mapping

Fit the data using a degree-M polynomial function of the form:

y = w0 + w1x + w2x
2 + ... + wMxM =

MX

i=0

wix
i

The feature mapping is (x) = [1, x, x2, ..., xM]>.

y = (x)>w is linear in w0, w1,

Use linear regression to find w.

Intro ML (UofT) CSC311-Lec3 44 / 55

not linear in ✗ .

but linear in (1 , X, X2, ✗3,
✗^^)

instead of XTW
.

Polynomial Feature Mapping with M = 0

y = w0

x

t

M = 0

0 1

−1

0

1

[Pattern Recognition and Machine Learning, Christopher Bishop.]

Intro ML (UofT) CSC311-Lec3 45 / 55

Polynomial Feature Mapping with M = 1

y = w0 + w1x

x

t

M = 1

0 1

−1

0

1

[Pattern Recognition and Machine Learning, Christopher Bishop.]

Intro ML (UofT) CSC311-Lec3 46 / 55

Polynomial Feature Mapping with M = 3

y = w0 + w1x + w2x
2 + w3x

3

x

t

M = 3

0 1

−1

0

1

[Pattern Recognition and Machine Learning, Christopher Bishop.]

Intro ML (UofT) CSC311-Lec3 47 / 55

Polynomial Feature Mapping with M = 9

y = w0 + w1x + w2x
2 + w3x

3 + . . . + w9x
9

x

t

M = 9

0 1

−1

0

1

[Pattern Recognition and Machine Learning, Christopher Bishop.]

Intro ML (UofT) CSC311-Lec3 48 / 55

Model Complexity and Generalization

x

t

M = 0

0 1

−1

0

1

x

t

M = 3

0 1

−1

0

1

x

t

M = 9

0 1

−1

0

1

Under-fitting (M=0):
Model is too simple,
doesn’t fit data well.

Good model (M=3):
Small test error,
generalizes well.

Over-fitting (M=9):
Model is too complex,
fits data perfectly.

Intro ML (UofT) CSC311-Lec3 49 / 55

Model Complexity and Generalization

Intro ML (UofT) CSC311-Lec3 50 / 55

Model Complexity and Generalization

x

t

M = 9

0 1

−1

0

1

As M increases, the magnitude of coe�cients gets larger.

For M = 9, the coe�cients have become finely tuned to the data.

Between data points, the function exhibits large oscillations.

Intro ML (UofT) CSC311-Lec3 51 / 55

Feature mapping is useful, but not a silver bullet/magical weapon .
- must choose features in advance

.

not easy to choose good features .

feature engineering takes time and creativity .
- in high dimensions , feature representation can get very large .

We will use neural networks to learn non-linear predictions directly from inputs.
This eliminates the need for hand- engineering of features .

1 Introduction

2 Bias-Variance Decomposition

3 Bagging

4 Linear Regression

5 Vectorization

6 Optimization

7 Feature Mappings

8 Regularization

Intro ML (UofT) CSC311-Lec3 52 / 55

Regularization

The degree M of the polynomial controls the model’s complexity.

The value of M is a hyperparameter for polynomial expansion,
just like k in KNN. We can tune it using a validation set.

Restricting the number of parameters / basis functions (M) is a
crude approach to controlling the model complexity.

Another approach: keep the model large, but regularize it
I Regularizer: a function that quantifies how much we prefer one

hypothesis vs. another

Intro ML (UofT) CSC311-Lec3 53 / 55

L2
(or `2) Regularization

Encourage the weights to be small by choosing the L2 penalty
as our regularizer.

R(w) = 1
2kwk

2
2 =

1

2

X

j

w2
j .

The regularized cost function makes a tradeo↵
between the fit to the data and the norm of the weights.

Jreg(w) = J (w) + �R(w) = J (w) +
�

2

X

j

w2
j

If you fit training data poorly, J is large.
If the weights are large in magnitude, R is large.

Large � penalizes weight values more.

� is a hyperparameter we can tune with a validation set.

Intro ML (UofT) CSC311-Lec3 54 / 55

L2
(or `2) Regularization

The geometric picture:

Intro ML (UofT) CSC311-Lec3 55 / 55

L2
Regularized Least Squares: Ridge regression

For the least squares problem, we have J (w) = 1
2N kXw � tk2.

When � > 0 (with regularization), regularized cost gives

wRidge
� = argmin

w
Jreg(w) = argmin

w

1

2N
kXw � tk22 +

�

2
kwk22

=(X>X + �NI)�1X>t

The case � = 0 (no regularization) reduces to
least squares solution!

Can also formulate the problem as

argmin
w

1

2
kXw � tk22 +

�

2
kwk22

with solution
wRidge

� = (X>X + �I)�1X>t.

Intro ML (UofT) CSC311-Lec3 56 / 55

Direct solution for Ridge Regression .

Jreglw) = 12 Wjxji) - t + ¥?É
,

WE

¥w=Éj(?w;¥?- t '")xj" + dwi = 0

¥¥ / Wjix ×
;
")) + ✗Wj = Ét

""
×
,

!"

i⇒

Direct Solution for Ridge Regression (vectorized form)

Jreglw) = -1211 ✗ w - t 112+1-11WIT

2Jreg

-2W
= ✗

+

(✗W - t) + XW = 0

⇒ ✗TXW - ✗Tt + XW = 0 .

⇒ XTXW - ✗Tt + ✗I w = 0 ,
I is an identity matrix .

(Iw = W)
⇒ (✗TX + RI) w = ✗Tt

.

⇒ w = (✗TX +XI)
-'
✗Tt

.

Gradient Descent under the L2
Regularization

Gradient descent update to minimize J :

w w � ↵
@

@w
J

The gradient descent update to minimize the L2 regularized cost
J + �R results in weight decay:

w w � ↵
@

@w
(J + �R)

= w � ↵

✓
@J

@w
+ �

@R

@w

◆

= w � ↵

✓
@J

@w
+ �w

◆

= (1� ↵�)w � ↵
@J

@w

Intro ML (UofT) CSC311-Lec3 57 / 55

Conclusions

Linear regression exemplifies recurring themes of this course:

choose a model and a loss function

formulate an optimization problem

solve the minimization problem using one of two strategies
I direct solution (set derivatives to zero)
I gradient descent

vectorize the algorithm, i.e. represent in terms of linear algebra

make a linear model more powerful using features

improve the generalization by adding a regularizer

Intro ML (UofT) CSC311-Lec3 58 / 55

