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Today

@ Announcement: HW1 released
@ Decision Trees

» Simple but powerful learning algorithm

» Used widely in Kaggle competitions

» Lets us motivate concepts from information theory (entropy, mutual
information, etc.)

@ Bias-variance decomposition

» Concept to motivate combining different classifiers.

Ideas we will need in today’s lecture

» Trees [from algorithms]
» Expectations, marginalization, chain rule [from probability]
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© Decision Trees
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Lemons or Oranges

Scenario: You run a sorting facility for citrus fruits
@ Binary classification: lemons or oranges

@ Features measured by sensor on conveyor belt: height and width
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Decision Trees @ natum! model we use euelydag!
—> Alice : where do I get lunch odey ?

@ Make predictions by splitting on features according to a tree structure.

J test a feature

edge SPéa'P as
feature VBlLR

hweight>9.50m? ] %eight>6.00m? J

B/vidth > 6.5cm?

Yes

leat Specifies class label.
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Com poneduts ot a decision tree

— test an Jput feature. ot esch rodk.
—  ollow one ec@e coresponding o @ valus of o mput feature.

— each leaxf node corresponds 4o one class.

A natural mode| that we use everyday !



once We built a. DT, aan use K
0 classity a new example .

Decision Trees

@ Make predictions by splitting on features according to a tree structure.

Test example

( [width > 6.50m? J

Yes o

[height>9.50m? ] [height>6.00m? ]
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How do we c/assiﬁ{ an exomple using 2 DT 2

— Start @ rwt 7ode.

— test inpudt Teature wd ollow comesponding  edge.
~ once we reach a leaf node, oca‘ﬁa‘ c/aSS label @t that rode.



Decision Trees—Continuous Features
real- alued.

@ Split continuous features by checking whether that feature is greater
than or less than some threshold.

@ Decision boundary is made up of axis-aligned planes.

contrast +his w/ KNN. © pick o hreshold

- ® perform o binary spift-.
| -

a < Yes No
| Al .o
8 al &¢°
ATl ;

[helght>9.5cm? ][height>640cm? ]
YesA‘lo. YesN |
4.‘ =2 VPV @
" sem | Cnote 4o Alee : swn‘c/nng
o) Yes ¢ No matches -the obagram better: )
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height (cm)
®
%
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Decision Trees

width > 6.5cm?

[height>9.50m? ]\ [height>6.0cm? ]

Yes No Yes No
@ Internal nodes test a feature
@ Branching is determined by the feature value

@ Leaf nodes are outputs (predictions)

Question: What are the hyperparameters of this model?
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nYyper—porsmeters of decision tree

— # of nodes in he tree .

= Max. depth of tee

— # of branches at splt

— min # of examples at- a node.

— maxc # of Festues o consider



Decision Trees—Classification and Regression

@ Fach path from root to a leaf defines a region R,,

of input space 4 rgg,‘ons - H 0
" F IS
o Let {(z0™) 1m0}, (x(m) 1)} be the o e @
training examples that fall into R,, o ® -
@ m = 4 on the right and k is the same across each - .s _—

region
@ Regression tree: . g P,-e d/‘aL /70 use P /‘/\CK '
» continuous output
» leaf value y™ typically set to the mean value in {t(m1) . . ¢(mx)}
o Classification tree (we will focus on this):
» discrete output

> leaf value y™ typically set to the most common value in
{0 )}
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Decision Trees—Discrete Features

@ Will I eat at this restaurant? 7"”‘51‘ ﬂm"wu/ SP)’% :
4 of branches = # of possitle vilues.
an also do binary Split-.

| Reservation? || Fri/Sat? |
No Yes

Alternate?
No
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Decision Trees—Discrete Features

@ Split discrete features into a partition of possible values.

Example Input Attributes Goal

Alt | Bar | Fri | Hun | Pat | Price | Rain | Res | Type Est WillWait
X1 Yes| No| No | Yes| Some| $$8 | No | Yes| French| 0-10 | y; = Yes
X3 Yes| No | No | Yes| Full 3 No | No Thai | 30-60 | y,= No
X3 No | Yes| No | No | Some $ No | No | Burger | 0-10 | ys3= Yes
X4 Yes| No | Yes| Yes Full 3 Yes | No Thai 10-30 | y4 = Yes
X5 Yes | No | Yes| No Full | $3$ | No | Yes| French| >60 | ys= No
Xg No | Yes No | Yes| Some| 3% | Yes| Yes| ltalian | 0-10 | yg= Yes
X7 No | Yes| No | No | None $ Yes | No | Burger | 0-10 | y;= No
Xg No| No| No| Yes| Some| 3§ | Yes| Yes| Thai 0-10 | ys = Yes
Xg No | Yes| Yes| No Full 3 Yes | No | Burger| >60 y9 = No
X190 Yes | Yes| Yes| Yes| Full | $$88  No | Yes| ltalian | 10-30 | yi0= No
X11 No| No| No| No | None 3 No | No Thai 0-10 | yi1 = No
X12 Yes | Yes| Yes| Yes| Full 3 No | No | Burger | 30-60 | yia = Yes

Alternate: whether there is a suitable alternative restaurant nearby.

Bar: whether the restaurant has a comfortable bar area to wait in.

Fri/Sat: true on Fridays and Saturdays.

Hungry: whether we are hungry.

Patrons: how many people are in the restaurant (values are None, Some, and Full)
Price: the restaurant's price range ($, $3$, $$%).

Raining: whether it is raining outside.

Reservation: whether we made a reservation

S © IS < [ > R N

Type: the kind of restaurant (French, Italian, Thai or Burger)

)

WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Features: 4
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Example Input Attributes
Alt | Bar | Fri | Hun  Pat | Price | Rain | Res | Type Est
X1 Yes| No| No| Yes Some| $8§ | No | Yes| French 0-10
Xo Yes| No| No| Yes Full @ § No | No Thai ~ 30-60
X3 No| Yes| No| No Some $§ No | No | Burger 0-10
X4 Yes| No | Yes| Yes  Full ! $ Yes | No Thai  10-30
X5 Yes | No Yes| No  Full | $885 | No | Yes | French >60
X6 No | Yes No Yes| Some| $§ | Yes| Yes |Italian 0-10
X7 No | Yes No | No | None $ Yes | No = Burger 0-10
Xg No| No | No| Yes Some| 3% Yes | Yes Thai 0-10
Xg No | Yes| Yes| No Full | $ Yes | No  Burger >60
X10 Yes | Yes Yes| Yes Full ‘ 388 | No | Yes | ltalian 10-30
X11 No| No| No| No None| §$ No | No Thai 0-10
X12 Yes | Yes Yes| Yes Full ‘ $ No | No | Burger 30-60

+; I'i 514'/6)2/12

AN

Keep
Splrting

LY

Goal CD Pﬂj{'/‘b N

WillWait
= Yes

= Yes
= No
= Yes
yr = No
= Yes
= No
Y10 = No
yi = No
Y12 = Yes

t: 4,12

2,%,9. 10,
ungrg,

'0 :

@ Hungrq/_



similar 4o
s|ide 35 Algorithm 1 Decision Tree Learner (examples, features)

1: if all examples are in the same class then

2 2: return the class label.
bose 3: else if no features left then
4: return the majority decision.
LSS 5: else if no examples left then
6: return the majority decision at the parent node.
R 7: else
TeuwtSIve 8:  choose a feature f.
0: for each value v of feature f do
cse 10: build edge with label v.
11: build sub-tree using examples where the value of f is v.

(D 7o Teatwes left . mubtple examples have The sameo feature  yolues.
oaro. )s moisy.  cliss may be influenced by an uncbserved téature.

(@) 1o exanples lefé . a combination of Teatue Values in NoT presedt
n e dan set



Learning Decision Trees

veny powerfid, con classify any training set perfectly,
bur #his  pvertits !

@ Decision trees are universal function approximators.

» For any training set we can construct a decision tree that has
exactly the one leaf for every training point, but it probably won’t
generalize.

» Example - If all D features were binary, and we had N = 2” unique
training examples, a Full Binary Tree would have one leaf per
example. .

o Finding the smallest decision tree that correctly classifies a training set is
N
NP complete. /s Too WPHWbﬂa//g Wh/& / not Wh 7t

» If you are interested, check: Hyafil & Rivest’76.

@ So, how do we construct a useful decision tree?
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Learning Decision Trees

at each choose he. miost Ifrmative. festuse. Tyt now.
his s gif) becouse. it's not forvward looking.

@ Resort to a gréedy heuristic:

» Start with the whole training set and an empty decision tree.
» Pick a feature and candidate split that would most reduce a loss
» Split on that feature and recurse on subpartitions.

@ What is a loss?

» When learning a model, we use a scalar number to assess whether
we’re on track
» Scalar value: low is good, high is bad

@ Which loss should we use?

optimal choice needs to think cbmat -ite fictue..
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Choosing a Good Split

o Consider the following data. Let’s split on width.
o Classify by majority.

®
T
.| ® | @ l® .
2 lale A lemons.
o | |A
I
width

Intro ML (UofT)
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Choosing a Good Split

e Which is the best split? Vote!

A

B
_e| eoe o eofe
< ® oranges
12 Ae Alo P
2 emons
o A o A
width width

Intro ML (UofT)
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Choosing a Good Split

In general, the foster we can assign a. class label or
reach a leaf node, he better

o A feels like a better split, because the left-hand region is very
certain about whether the fruit is an orange.

e Can we quantify this?

A

B
e ee o oo E—
< oranges
§ A O Al® A lemons
® A [ J A
N vith width
we con elready pick red as he label.

Intro ML (UofT)
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Choosing a Good Split

@ How can we quantify uncertainty in prediction for a given leaf node?

» If all examples in leaf have same class: good, low uncertainty
» If each class has same amount of examples in leaf: bad, high

uncertainty half lemoms , /)a/ﬁ onanges.

@ Idea: Use counts at leaves to define probability distributions; use a
probabilistic notion of uncertainty to decide splits.

@ A brief detour through information theory...
Toke exomples, convert v counts, Hen I a pmbab/‘)ﬁy
distribution. [lse a concept in inﬁr{nm‘ifn Sheory 10
Measute the uncertainty in he distribution,

18 /54
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Entropy - Quantifying uncertainty

@ You may have encountered the term entropy quantifying the state of
chaos in chemical and physical systems,

@ In statistics, it is a property of a random variable,

@ The entropy of a discrete random variable is a number that quantifies
the uncertainty inherent in its possible outcomes.

@ The mathematical definition of entropy that we give in a few slides may
seem arbitrary, but it can be motivated axiomatically.

» If you're interested, check: Information Theory by Robert Ash or
Elements of Information Theory by Cover and Thomas.

@ To explain entropy, consider flipping two different coins...

will not dive nty how people came up w/ emiropy.
will simply take he formula and use -
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We Flip Two Different Coins
Two bissed coins.  How bissed are +hey 7

Each coin is a binary random variable with outcomes Heads (@) or Tails (1)

Sequence 1:
0010000000000 0100 ...7

Sequence 2:
1010111010011 0101...7
16
8 10
Ll
0 1
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Quantifying Uncertainty

@ The entropy of a loaded coin with probability p of heads is given by

binany distributon — _ o o) (1~ p)logy(1 - p)

(P) ""P) JP o
8/9
_3 419 SI9

Py =3

» 7

1/9
loset 5 o i
R ir coin
e 8 e Lt 4 4 5 5 '
9 0g29 9 Og29N2 —§log2§—§log2§%099

@ Notice: the coin whose outcomes are more certain has a lower entropy.

@ In the extreme case p = 0 or p = 1, we were certain of the outcome before
observing. So, we gained no certainty by observing it, i.e., entropy is 0.
P=0 = —0log0—1Ilogl =0
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Quantifying Uncertainty

@ Can also think of entropy as the expected information content of a
random draw from a probability distribution.

entropy 'Fa,;(' GDiﬂ R Wst df%w”— 19
19| predict e outcome of the
next flip. <o the resutt of

|
I
|
0.6} i next -F/I?) giU?S 4 Al
|
|

0.8+

0.4+

bit of informaiton.

0.2+

J

0.2 04 Q% 06 0.8

10 probability p of heads

@ Claude Shannon showed: you cannot store the outcome of a random
draw using fewer expected bits than the entropy without losing
information.

@ So units of entropy are bits; a fair coin flip has 1 bit of entropy.
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Entropy

@ More generally, the entropy of a discrete random variable Y is given by

=2 qwtcomes  H(Y) ==Y p(y)log, p(y)
Pt
e “High Entropy”:

» Variable has a uniform like distribution over many outcomes
» Flat histogram
» Values sampled from it are less predictable

o “Low Entropy”

» Distribution is concentrated on only a few outcomes
» Histogram is concentrated in a few areas
» Values sampled from it are more predictable

[Slide credit: Vibhav Gogate]
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Entropy

is Hs width>6.Sem?  lemon or orange.
Y \}

@ Suppose we observe partial information X about a random variable Y
» For example, X = sign(Y).

@ We want to work towards a definition of the expected amount of
information that will be conveyed about Y by observing X.

» Or equivalently, the expected reduction in our uncertainty about Y
after observing X.

Knowing X gives us nformation about Y, and
Yeduces our unce/‘z"a/‘/dy obout .
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Entropy of a Joint Distribution

e Example: X = {Raining, Not raining}, ¥ = {Cloudy, Not cloudy}

_ - Cloudy |NotCloudy| - when not
when raining, mmhg, iy h:Hg
almost claadzj Raining | 24/100 | 1/100 o }'Mg I’

or Sute. Not Raining| 25/100 | 50/100 be Not Cloudy.

HX,)Y) = => Y pla,y)log, p(x,y)
rzeX yey
_ o4, o 1,01 25, 2 50, 50
= 7100 “®2700 100 ®2700 100 2700 100 %100
~ 1.56bits
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Conditional Entropy

o Example: X = {Raining, Not raining}, ¥ = {Cloudy, Not cloudy}

Cloudy [Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

@ What is the entropy of cloudiness Y, given that it is raining?

HY|X =2) = - plylz)log,p(ylz)
— i raining, yey
. 2 24 1 1
vey hke)g C’Ob(dg = 35 log, 5% 25 log, 5%

~ 0.24bits  Low~ uncertainty

@ We used: p(y|z) = ngg(gag), and p(z) =3, p(z,y) (sum in arow)
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Conditional Entropy
P(ruining)» PCY| rainingy +p(not faining) PCY | not mining )

Cloudy [Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 | 50/100

2P Z P(414) log, P(41X)
@ The expected conditional entropy: («’ y
=2 Z PeOP(YI <)

HY|X) = El + log, P(Y 1%
- Z ( > <Y|X— eg.PCAI)
= _ Z Zp(ac,y) log, p(y|x)
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Commerds on conditional entropy :

— knowing each value of % reduces My uncertunty oboct 4.
— but I connot obcave x yer So 1 can only calculate. the
uncerteinty  reductin i epectation.

~ expectatim 5 over the. prob of observing each yalye of %



Conditional Entropy

e Example: X = {Raining, Not raining}, ¥ = {Cloudy, Not cloudy}

Cloudy [Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

@ What is the entropy of cloudiness, given the knowledge of whether or not
it is raining?
HY|X) = ) p@)HY|X =z)

reX
1 0.4 bits 3
= ZH(Cloudyhs raining) + iH(cloudy\not raining)

~ 0.75 bits
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Conditional Entropy

@ Some useful properties:
» H is always non-negative
» Chain rule: H(X,Y)=HX|Y)+ HY)=HY|X)+ H(X)
» If X and Y independent, then X does not affect our uncertainty
about Y: HY|X)=H(®Y)
» But knowing Y makes our knowledge of Y certain: H(Y|Y) =0

» By knowing X, we can only decrease uncertainty about Y:
H(Y|X) < H(Y)
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mucual o : amount of Mo obtained
Qbout- g yundom Varivble bg vbserving

e other
random Variable. .

Information Gain

Cloudy [Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

@ How much more certain am I about whether it’s cloudy if I'm told
whether it is raining? My uncertainty in Y minus my expected
uncertainty that would remain in Y after seeing X.

@ This is called the information gain IG(Y|X) in Y due to X, or the
mutual information of ¥ and X

IG(Y|X) = H(Y) - H(Y|X) (1)

o If X is completely uninformative about Y: IG(Y|X) =0
e If X is completely informative about Y: IG(Y|X) = H(Y)

Intro ML (UofT) CSC311-Lec02 30 /54



Revisiting Our Original Example

@ Information gain measures the informativeness of a variable,
which is exactly what we desire in a decision tree split!

@ The information gain of a split: how much information (over the training
set) about the class label Y is gained by knowing which side of a split
you're on.
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Information Gain of Split B

@ What is the information gain of split B? Not terribly informative...

B
. e e|e —
= ® oranges
5 Al® L
o emons
o A
width

@ Entropy of class outcome before split:
H(Y) = —2logy(2) — 3 logy(3) ~ 0.86

@ Conditional entropy of class outcome after split:
H(Y|left) ~ 0.81, H(Y|right) ~ 0.92

o IG(split) ~ 0.86 — (% -0.81 + 2 -0.92) ~ 0.006
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L. ® Oe|e
S Ale
N .
width
HY [ sphe) =

blue : 2 2 &

red: & ( ’9)
HOD = = Zlogs — S bg. &
left: ble- 1 /L 2
(4) red : 2 (4’ 4)
right blue: | /L =2

( 7 ogs - Zf/"%?) T (5/05;,3



Information Gain of Split A

@ What is the information gain of split A? Very informative!

A
e ee —
= ® oranges
5 A® L
o emons
o A
width

@ Entropy of class outcome before split:
H(Y) = —2logy(2) — 3 logy(3) ~ 0.86

@ Conditional entropy of class outcome after split:
H(Y|left) =0, H(Y |right) ~ 0.97

o IG(split) ~0.86— (2-0+2-0.97) ~ 0.17!!
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Constructing Decision Trees

lwidth > 6.5cm?

height (cm)

{height >6.0cm? ]

{height >9.5cm?
..'
4 ° ® oranges Yes No Yes No
A lemons

¢ 6widlh (cmi8 " v é v

@ At each level, one must choose:

1. Which feature to split.
2. Possibly where to split it.

@ Choose them based on how much information we would gain from the
decision! (choose feature that gives the highest gain)
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Decision Tree Construction Algorithm

@ Simple, greedy, recursive approach, builds up tree node-by-node

1. pick a feature to split at a non-terminal node
2. split examples into groups based on feature value
3. for each group:

> if no examples — return majority from parent
> else if all examples in same class — return class
> else loop to step 1

@ Terminates when all leaves contain only examples in the same class or
are empty.

@ Questions for discussion:

» How do you choose the feature to split on?
» How do you choose the threshold for each feature?
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Back to Our Example

Example Input Attributes Goal
Alt | Bar | Fri | Hun | Pat | Price | Rain| Res | Type Est WillWait

X1 Yes No | No| Yes| Some| $$% | No | Yes| French| 0-10 | y; = Yes
Xo Yes No  No | Yes Full $ No | No Thai 30-60 | y, = No
X3 No | Yes| No | No | Some k) No | No | Burger| 0-10 | ys3= Yes
X4 Yes No | Yes| Yes Full $ Yes | No Thai 10-30 | y4 = Yes
X5 Yes No | Yes| No| Full | $8%3 | No | Yes| French| >60 | ys= No
Xg No | Yes No | Yes| Some| 3% | Yes| Yes| ltalian | 0-10 | yg= Yes
X7 No | Yes| No | No | None $ Yes | No | Burger| 0-10 | y;= No
Xg No | No No| Yes| Some| 8§ | Yes| Yes| Thai 0-10 | yg = Yes
Xg No | Yes| Yes| No Full $ Yes | No | Burger| >60 yo = No
X10 Yes Yes| Yes| Yes| Full | $$% | No | Yes| ltalian | 10-30 | 310 = No
X11 No | No | No| No | None $ No | No Thai 0-10 | y11 = No
X129 Yes | Yes| Yes | Yes Full k) No | No | Burger| 30-60 | yi2 = Yes

1 Alternate: whether there is a suitable alternative restaurant nearby.

2, Bar: whether the restaurant has a comfortable bar area to wait in.

3 Fri/Sat: true on Fridays and Saturdays.

4. Hungry: whether we are hungry.

5. Patrons: how many people are in the restaurant (values are None, Some, and Full).

6. Price: the restaurant's price range ($, $$, $$$).

7. | | Raining: whether it is raining outside.

8, Reservation: whether we made a reservation.

9. | | Type: the kind of restaurant (French, Italian, Thai or Burger).

Features: 10. WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60). [fromf Russell & Norvig]
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Feature Selection

W8 = e e e
BEHEODE

IG(Y) = H(Y) - H(Y|X)

2 2 4 4
I =1- Y H(Y H(Y H(Y =
Glte) =1~ | FH(VIee) + S5 H( |1t>+12 (o) + {5 HOY o) | =0
2 6 2 4
H(0,1 Hl H —)| =~ 0.541
FHOD+ {5HL0) + HG. )] ~ 05
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Which Tree is Better? Vote!

Patrons?

French Burger

Patrons?

Fri/Sat? |
Yes

[ Reservation? ||
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What Makes a Good Tree?

@ Not too small: need to handle important but possibly subtle distinctions
in data

@ Not too big:

» Computational efficiency (avoid redundant, spurious attributes)
» Avoid over-fitting training examples
» Human interpretability

@ “Occam’s Razor”: find the simplest hypothesis that fits the observations

» Useful principle, but hard to formalize (how to define simplicity?)
» See Domingos, 1999, “The role of Occam’s razor in knowledge
discovery”

@ We desire small trees with informative nodes near the root
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Decision Tree Miscellany

— prune leaves w/ w Iittle drx
— optimal choice ot each step
26 @ ghbally optimal ree.,

» You have exponentially less data at lower levels
» Too big of a tree can overfit the data
» Greedy algorithms don’t necessarily yield the global optimum

@ Problems:

@ Handling continuous attributes

» Split based on a threshold, chosen to maximize information gain

@ Decision trees can also be used for regression on real-valued outputs.
Choose splits to minimize squared error, rather than maximize
information gain.
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KNN versus Decision Trees

Advantages of decision trees over KNNs

@ Simple to deal with discrete features, missing values, and poorly scaled
data

o Fast at test time KNN neds T Mermte hru entire data Set.

@ More interpretable €as }g explam the decision mak/'ng ngg.
Advantages of KNNs over decision trees

@ Few hyperparameters (/()

@ Can incorporate interesting distance measures (e.g. shape contexts)
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@ We've seen many classification algorithms.

@ We can combine multiple classifiers into an ensemble, which is a set of
predictors whose individual decisions are combined in some way to
classify new examples

» E.g., (possibly weighted) majority vote
@ For this to be nontrivial, the classifiers must differ somehow, e.g.

Different algorithm

Different choice of hyperparameters

Trained on different data

Trained with different weighting of the training examples

v vy VvYyy

@ Next lecture, we will study some specific ensembling techniques.
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@ Bias-Variance Decomposition
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e Today, we deepen our understanding of generalization
through a bias-variance decomposition.

» This will help us understand ensembling methods.

e What is generalization?

» Ability of a model to correctly classify /predict from unseen
examples (from the same distribution that the training data was
drawn from).

» Why does this matter? Gives us confidence that the model has
correctly captured the right patterns in the training data and will
work when deployed.
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Bias-Variance Decomposition

@ Overly simple models underfit the data,
and overly complex models overfit.

o We can quantify underfitting and overfitting
in terms of the bias/variance decomposition.
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Basic Setup for Classification

> never observe this

° psample is a data generating distribution.
For lemons and oranges, psample characterizes heights and widths.

e Pick a fixed query point x (denoted with a green x).
We want to get a prediction y at x.

e A training set D consists of pairs (x;,t;) sampled
independent and identically distributed (i.i.d.) from psample-

e We can sample lots of training sets independently from pgample-
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Basic Setup for Classification

e Run our learning algorithm on each training set,
and compute its prediction y at the query point x.

e We can view y as a random variable, where the randomness comes
from the choice of training set.

o The classification accuracy is determined by the distribution of y.

@ Since y is a random variable, we can compute its expectation,
variance, etc.
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Basic Setup for Regression

fit to dataset 1

fit to dataset 2

fit to dataset 3

query location

lots of fits

,M________.._f‘.___“_____________.
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Basic Setup

e Fix a query point x.
@ Repeat:

» Sample a random training dataset D i.i.d. from the data generating
distribution psample-

» Run the learning algorithm on D to get a prediction y at x.

» Sample the (true) target from the conditional distribution p(t|x).

» Compute the loss L(y,t).

Comments: / D / Psample
e Notice: y is independent of ¢. (Why?)

— produced Y using the training set D.
= Comot recover Ry, from D. (3 we could, we
oon't nezol D pygmore. )

Intro ML (UofT) CSC311-Lec02 49 /54






Basic Setup

e Fix a query point x.
o Repeat:

» Sample a random training dataset D i.i.d. from the data generating
distribution psample-

» Run the learning algorithm on D to get a prediction y at x.

» Sample the (true) target from the conditional distribution p(¢|x).

» Compute the loss L(y,t).

Comments:
e Notice: y is independent of t. (Why?)
e This gives a distribution over the loss at x, with expectation
E[L(y,t) | x].
e For each query point x, the expected loss is different. We are
interested in minimizing the expectation of this with respect to

X ~~ Psample-
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Choosing a prediction y

o Consider squared error loss, L(y,t) = 1(y — )%

@ Suppose that we knew the conditional distribution p(t|x).
What value of y should we predict?

» Treat t as a random variable and choose y.
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Choosing a prediction y

o Consider squared error loss, L(y,t) = 1(y — )%

Suppose that we knew the conditional distribution p(t|x).
What value of y should we predict?

» Treat t as a random variable and choose y.

@ Claim: y, = E[t|x] is the best possible prediction.

@ Proof:

E[(y —1)?|x] = E[y* — 2yt + t*|x]
=y® — 2yE[t | x] + E[t*| x]
=y? — 2E[t|x] + E[t | x]? + Var[t|x]
= 4> — 2yy. + 2 + Varlt| x|
= (y —y=)? + Var[t | x]
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How oo we choose Y o minimize. ELCY—)*|n ] 7

EL(Y-¢yxT=EL(F-29yt +¢2) | ]

= ELW(a]- ELoy+|x] +E[t3x]

= Y -2y E[t|x] +E[+*| % ]
(arxI=Exd-EBa)) = Y =~ 2Y ECt|a T +(F [tlx 1)+ Vor L &1

(let Y*=E[#{x1) = (Y= ELHx D)™+ Var Bt/ ]
= (Y-y*y"+ Varlt[x ]
Bujes error

Y camot influence Varl#1x] since Y and T are independent

best choice of Y s Y = Y* =L [+x]

(E Is linear ")

(we choose Y. )




Bayes Optimality

El(y —t)* |x] = (y — y.)* + Var[t| x]

@ The first term is nonnegative, and can be made 0 by setting y = y,.

@ The second term is the Bayes error, or
the noise or inherent unpredictability of the target ¢.

» An algorithm that achieves it is Bayes optimal.
» This term doesn’t depend on y.
» Best we can ever hope to do with any learning algorithm.

@ This process of choosing a single value y, based on p(t|x) is an example
of decision theory.

Intro ML (UofT) CSC311-Lec02 51 /54



Decomposition Continued

Y*=ELt|«]
@ Now let’s treat y as a random variable

(where the randomness comes from the choice of dataset).

@ We can decompose the expected loss further
(suppressing the conditioning on x for clarity):

E[(y — y+)?] + Var(t)

Ely? — 2y.y + y*] + Var(t)

y; — 2y.E[y] + E[y°] + Var(t)

vz — 2y, E[y] + E[y]* + Var(y) + Var(t)
= (y« —E[y])? + Var(y) + Var()
—_—— ——

bias variance Bayes error

E[(y —)’]
exparding e suate. _
lineartty of E.
Var[4]7=ELy2) - EDy7)™
TR4rouping terms,
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Bayes Optimality

El(y —1)°] = (y« — E[y))* + Var(y) + Var(t)

bias variance Bayes error

We split the expected loss into three terms:

@ bias: how wrong the expected prediction is

(corresponds to underfitting) /a,ge bias = mdﬁ%ﬂg,

@ variance: the amount of variability in the predictions

(corresponds to overfitting) [a,ye variance — Dl}efﬁfﬁﬂoﬂ,.

@ Bayes error: the inherent unpredictability of the targets
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Bias and Variance

e Throwing darts = predictions for each draw of a dataset

Low Variance High Variance

Low Bias

High Bias

e Be careful, what doesn’t this capture?
» We average over points x from the data distribution.
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