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Neural models of language

CSCA401/2511 — Natural Language Computing — Winter 2023
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Logistics

Assignment 1: due Feb 10, 2023
Assignment 2: release Feb 11, 2023
Lectures:
* Reading week break: Feb 20-24 (no lectures, OHs)
Final exam: planned in-person

Lecture feedback:
®* Anonymous
* Please share any thoughts/suggestions

Questions?
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Lecture plan: Neural networks

Lecture 5 (L5): Neural models of language (2 sessions)
* Introduction

Word-level representations

Neural language models

* Recurrent neural networks (RNN, LSTM)

* Contextual word embeddings

® Lecture 6 (L6): Machine translation (MT) (3 sessions)

* Sequence-to-sequence (seq2seq) and attention models
* Transformers

® Lecture 7 (L7): More neural LMS (1 session)
* Trends, popular foundation models, implications etc.

With material from Phil Blunsom, Piotr Mirowski, Adam Kalai, and James Zou &

UNIVERSITY OF
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Artificial neural networks

* Artificial neural networks (ANNs) were (kind of) inspired
from neurobiology (Widrow and Hoff, 1960).
® Each unit has many inputs (dendrites), one output (axon).
®* The nucleus fires (sends an electric signal along the axon)
given input from other neurons.
* ‘Learning’ occurs at the synapses that connect neurons,
either by amplifying or attenuating signals.

Dendrites

e

Nucleus S
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Perceptron: an artificial neuron

® Each neuron calculates a weighted sum of its inputs and
compares this to a threshold, 7. If the sum exceeds the
threshold, the neuron fires.
* Inputs a; are activations from adjacent neurons, each
weighted by a parameter w;.

~Ifx>1,5:=1
Else, S :=0

257
McCullogh-Pitts model b
grd

UNIVERSITY OF
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Perceptron output

® Perceptron output is determined by activation functions,
g (), which can be non-linear functions of weighted input.
® Popular activation functions include tanh and the sigmoid:

gx) =o(x) = T

* The sigmoid’s derivative is the easily computable ¢’ = ¢ - (1 — 0)

sigmoid .. 1

Output

- = y = cosh(x)
ey = tanh(x) |

101 From Wikipedia o — —
Input Input =
UNIVERSITY OF
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Rectified Linear Units (RelLUs)

* Since 2011, the ReLU S = g(x) = max(0, x) has become
more popular.

* More biologically plausible, sparse activation, limited (vanishing)
gradient problems, efficient computation.

Nonlinearit =5

* A smooth approximation is . Sotous
the softplus log(1 + e*),
which has a simple
derivative 1/(1 +e™)

Output

* Why do we care about the | _
deriVG tiVES ? h h ’ : I : 1 ‘ From iNikiped‘:a
nput

X Glorot, A Bordes, Y Bengio (2011). Deep sparse rectifier neural networks. AISTATS.
7 =

UNIVERSITY OF
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Perceptron learning

* Weights are adjusted in proportion to the error (i.e., the
difference between the desired, y, and the actual output, 5.
* The derivative g’ allows us to assign blame proportionally.

* Given a small learning rate, « (e.g., 0.05), we can repeatedly
adjust each of the weight parameters by

Assumes
. = E mean-square
W] W] Errl 'g (xl) a][ ] error objective

where Err; = (y; — S ) among R training examples.

\'437\1

UNIVERSITY OF
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Threshold perceptra and XOR

* Some relatively simple logical functions cannot be learned by
threshold perceptra (since they are not linearly separable).

"". UNIVERSITY OF
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Artificial neural networks

®* Complex functions can be represented by layers of
perceptron (multi-layer perceptron, MLPs).

® Inputs are passed to the

* Activations are propagated
through hidden layers
to the output layer.

°* MLPs are quite robust to noise,
MLP and are trained specifically to
reduce error.

e

::‘ UNIVERSITY OF
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output layer

‘hidden’ representations are learned here

Can we find hidden patterns in words?

UNIVERSITY OF

&
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Words

* Given a corpus with D (e.g., = 100K) unique words, the
classical approach is to uniquely assign each word with an
index in D-dimensional vectors (‘one-hot’ representation).

W, o o o . o PEMo |- o |
D

* Classic word-feature representation assigns features
to each index in a much denser vector.
* E.g., psychology based features ‘cheerful’, ‘emotional-tone’.

1 |08 [25 [os |. |99 |
K

 Can we learn a dense representation? What will it give us?

&
y UNIVERSITY OF
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https://docs.receptiviti.com/frameworks/liwc

Learning word semantics

"You shall know a word by the company it keeps."
— J.R. Firth (1957)

P(w, = lugubrious|w,_q = feeling,w;,_, = been, ...)
been feeling  lugubrious all day

felt a lugubrious  sadness in

Here, we're predicting the center word given the context.
This is called the ‘continuous bag of words’ (CBOW) model-.

! Mikolov T, Corrado G, Chen K, et al. Efficient Estimation of Word Representations in Vector Space. Proc (ICLR 2013) 2013;:1-12.
https://code.google.com/p/word2vec/ i
UNIVERSITY OF
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https://code.google.com/p/word2vec/

Continuous bag of words (1 word context)

hV4
8
W
o
v
[0,0,0, ... 1, ..., 0]
feeling
feeling  lugubrious all
a lugubrious  sadness

CSC401/2511 — Winter 2023

Note: we have two

vector representations of
each word:

v, = x' W (W row of W)
V., = W2y (Wt col of W)

D = 100K

[0,1,0, ...,0, ...,0]
lugubrious

exp(V.,) v,
‘softmax’: P(Wolwi) = ZW p( W(EVVTVL) )
Where w=1 EXPlhw

1, is the ‘input’ vector for word w,
I, is the ‘output’ vector for word w,

&
UNIVERSITY OF

14 % TORONTO




Continuous bag of words (¢ words context)

Xo1

* |f we want to use more context, C, .
we need to change the network
architecture somewhat.

* Each input word will produce one ™
of C embeddings =

 We just need to add an
intermediate layer, usually this

just averages the embeddings.

‘ Y

been feeling lugubrious all

[ T TIJCL T T T T TT]

[ |
[LTTT]
y abdyany
A\

[ [ [ [ ]

I

[

felt a lugubrious  sadness o

LI T TTTTTTI
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Skip-grams

* Skip-grams invert the task — we predict
context words given the current word.

* According to Mikoloy,
Skip-gram: works well with small amounts
of training data, represents rare words.

CBOW: several times faster to train, slightly
better accuracy for frequent words

Mikolov T, Corrado G, Chen K, et al. Efficient Estimation of Word
Representations in Vector Space. Proc (ICLR 2013) 2013;:1-12.
https://arxiv.org/pdf/1301.3781.pdf

CSC401/2511 — Winter 2023 16
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https://arxiv.org/pdf/1301.3781.pdf

Actually doing the learning

* Given H-dimensional embeddings, and V word types, our

parameters, 0, are:

_ va -

Vaardvark

Vzymurgy
8 — V
a

Vaardvark

L szmurgy |

CSC401/2511 — Winter 2023 17

= ]RZVXH

e

UNIVERSITY OF

% TORONTO




Actually doing the learning

We have many options. Gradient descent is popular.
Given T tokens of training data, optimize objective:

1(9>—Tz D logP(wi W)

—c<j<c,j#0

And we want to update vectors VWHJ. then v, within 6
H(new) - H(OZd) — ](9)

So, we’ll need to take the of the (log of the) softmax

function:
exp(Vy, V,)

Zyv;l eXp(VV\IUWi)

Where v, is the ‘input’ vector for word w,
and 1/, is the ‘output’ vector for word w,

.(‘7@

P(wolw;) =

UNIVERSITY OF
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Actually doing the learning

We need the derivative of the (log of the) softmax function:

S exp(V), . Vw,)
log P(Weyj|we) = —— ]
5th o5 (Wt+]|Wt) 6th ngw:l eXp(VMEth)

0 T v T
= T [log exp (th th) — log szlexp(vwvw )]
| e i ) |
10 w . l
— VWH] —E 50 log Ew_lexp(l/wvw ) :
I

Svw, 8z 6V,

More details: http://arxiv.org/pdf/1411.2738.pdf n
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http://arxiv.org/pdf/1411.2738.pdf

Using word representations

Without a latent space,
lugubrious = [0,0,0, ...,0,1,0, ...,0], &
sad = 10,0,0,...,0,0,1, ...,0] so
Similarity = cos(x,y) = 0.0

EMBEDDING

D = 100K

vy = X' W,

H =300

In latent space,
lugubrious = [0.8,0.69,0.4, ...,0.05] 4, & e dor.
sad = [0.9,0.7,0.43, ...,0.05]4 so u-v

cos(u,v) =

Similarity = cos(x,y) = 0.9 [lul|x]v]]

U OF

NIVERSITY
CSC401/2511 — Winter 2023 20 ¥ TORONTO




Skip-grams with negative sampling

* The default process is inefficient.
* For one —what a waste of time!
We don’t want to update H XD weights!
* For two — we want to avoid confusion!
‘Hallucinated’ (negative) contexts should be
minimized.

* For the observed (true) pair (lugubrious, sadness),

only the output neuron for sadness should be 1, and
all D — 1 others should be 0.

e Mathematical Intuition:

T
exp(v; V)
® j—
P (W |WC) ZD_ exp(vTV ) Computationally
w=1 wrc infeasible
CSC401/2511 — Winter 2023 21

Xy

| 1]

I

L1

o

v
| [ |

Ly T T T T T 1]

1

[T [ 1]

1

-

UNIVERSITY OF

TORONTO




Skip-grams with negative sampling

* We want to maximize the association of
observed (positive) contexts:
lugubrious sad
lugubrious feeling
lugubrious tired

[T T T T]

1

I

L ]|

!
l

* We want to minimize the association of
‘hallucinated’ contexts:
lugubrious happy
lugubrious roof
lugubrious truth

[ T

[ T 11

l

l

Yv.c

I

e
e
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Skip-grams with negative sampling

* Choose a small number k of ‘negative’ words, and just
update the weights for the ‘positive’ word plus the k

‘negative’ words.
e 5 <k < 20 canwork in practice for fewer data.

e ForD = 100K, we only update 0.006%

of the weights in the output layer. X
Kk X4

J©) =log o(vlve) + ) Ejpawlloga(—v] ve)]

i=1 Unigram dist.

N

L[|

e Mimno and Thompson (2017) choose the top

k words by modified unigram probability:

3
C(Wet1)4

2w C (W)ZSL

Mimno, D., & Thompson, L. (2017). The strange geometry of skip-gram with negative sampling. EMNLP 2017. [link]
o

P*(Wey1) =

UNIVERSITY OF
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https://doi.org/10.18653/v1/d17-1308

Smell the GloVe

* GloVe (‘Global Vectors’) is an alternative method of
obtaining word embeddings.

Instead of predicting words at particular positions, look at the
co-occurrence matrix.

I like enjoy deep learning NLP flying .
I 0 2 1 0 0 0 0 0 | /
like 2 0 0 1 0 1 0 0
enjoy 1 0 0 0 0 0 1 0 Word w; occurs
x_ der |0 1 0 0 1 0 0 0 - Xij(=X)
learning 0O O 0 1 0 0 0 1 times with word Wi
i 0 1 0 0 0 0 0 1 within some context
window (e.g., 10 words,
g 0 0 1 0 0 0 0 1 a sentence, ...).
0 0 0 0 1 1 1 0 |

Pennington J, Socher R, Manning CD. (2014) GloVe: Global Vectors for Word Representation.
Proc EMINLP 2014:1532-43. https://nlp.stanford.edu/projects/glove/ & (4

CSC401/2511 — Winter 2023 24 @ TORONTO



https://nlp.stanford.edu/projects/glove/

Smell the GloVe

* Populating the co-occurrence matrix requires a complete
pass through the corpus, but needs only be done once.

Let Pi,j — P(W]‘Wl) a Xi,j/Xi'

Table 1: Co-occurrence probabilities for target words ice and steam with selected context words from a 6
billion token corpus. Only in the ratio does noise from non-discriminative words like water and fashion
cancel out, so that large values (much greater than 1) correlate well with properties specific to ice, and
small values (much less than 1) correlate well with properties specific of steam.

Probability and Ratio | &k = solid k = gas k = water k = fashion
P(klice) 1.9%x10™* 6.6x107° 3.0x107° 1.7x107
P(k|steam) 22x107° 78x107* 22x1073 1.8x 107
P(klice)/P(k|steam) 8.9 8.5 x 1072 1.36 0.96

Pennington J, Socher R, Manning CD. (2014) GloVe: Global Vectors for Word Representation.
Proc EMINLP 2014. https://nlp.stanford.edu/projects/glove/ &
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https://nlp.stanford.edu/projects/glove/

Aside — smell the GloVe

2
. . T 1+ h — ..
Minimize | = ZU 1f(XlJ) (vwiij + b; + b; logXlJ)
where, b; and bj are input and output bias terms associated
with w; and wj, respectively

* Weighting function f(Xi,j):

function, it should vanish as x — 0 fast

Fx) = { (X/Xmax)®  1f X < Xmax 1. f(0) = 0. If f is viewed as a continuous
enough that the lim,_, f(x) log? x is finite.

1 otherwise .

1oy ; 2. f(x) should be non-decreasing so that rare

08 : co-occurrences are not overweighted.
06 | .
f(Xi) : 3. f(x) should be relatively small for large val-

04
ues of x, so that frequent co-occurrences are

02 i ]
’ not overweighted.

o0 . . e Xij

Weighting function f with alpha = %, X;,. = 100 &
vy UNIVERSITY OF
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Aside — evaluation

* Intrinsic evaluation: popular
to cherry-pick a few k-neares

expectations.

. frog

frogs

toad

litoria
leptodactylidae
rana

lizard
eleutherodactylus

NOUNAKNN O

3. litoria 4. leptodactylidae

* Extrinsic evaluation: embed resulting vectors into a variety of

t neighbours examples that match

ethod was

7. eleutherodactylus

taSkS[l’z]. ox SuperGLUE .z GLUE Leaderboard Version: 2.0
[
Rank Name Model URL Score BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC AX-b AX-g
‘ 1 Liam Fedus SS-MoE 91.0 92.3 96.9/98.0 99.2 89.2/65.2 95.0/94.2

’ 2 Microsoft Alexander v-team  Turing NLR v5

| 3 FRNIF Team - Raidu FRNIF 3.0

1 https://gluebenchmark.com/tasks
2 https://super.gluebenchmark.com/tasks

CSC401/2511 — Winter 2023 27
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90.9 92.0 95.9/97.6

an A 91.0 986/99 2

935 774 96.6 72.3 96.1/94.1

98.2 88.4/63.0 96.4/95.9 94.1 774 97.3 67.8 93.3/95.5

97 4 8RR A/RR2 94.7/94 2 92 6 774 973 AR A 927/947

e

e
e
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Linguistic regularities in vector

space

] 1 1 L] ] I ]

China«
Beijing
1.5 F Russia« ]
Japan«
1} Moscow i
Turkeyx Ankara *Tokyo
056 | 4
Polandk
0F Germgny‘ .
France Warsaw
» Berlin
05 | Italy Paris -
Athens
Greece "
1} Spainx Rome y
X Madrid
-1.5 | Portugal Lishon
_2 1 1 1 1 1 L 1
-2 -15 -1 05 0 0.5 1 15 2
Trained on the Google news corpus with over 300 billion words.
™ UNIVERSITY OF
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Linguistic regularities in vector space

05 | I I ] 1 1 | [ |
_ _ — — slowest
0.4} === T _
_ “slower _ _ _ _ — — —-shortest
P B
03k 7~ “’shorter ]
' slow « -
7
e
short«
0.2 _
0.1 ]
o 7 stronger — T T — — — — — — - strongest |
7
/ _~louder =~ T T T - - —— - _ _
strong < P loudest
-0.1} loud,.~_ _ .
P Clearer =~ = = 7 = = = = - — — — _ — clearest
~softer = T — — - — — - _ _
L2 0 TTTT-=-=s softest
-0.2 AR -
: clear =~ .~ darker =~ -~ - - - _ _ _ _ _ dark
soft ~ - arkest
dark ~
-0.3 | | | | | | | | |
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 05 4 06

UNIVERSITY OF
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Linguistic regularities in vector space

Paris — France + ltaly Rome
Bigger — big + cold Colder
Sushi —Japan + Germany bratwurst
Cu — copper + gold Au

Windows — Microsoft + Google Android

Analogies: apple:apples :: octopus:octopodes
Hypernymy: shirt:clothing :: chair:furniture
Semantic: gueen — king = womanh — man

grd
y UNIVERSITY OF
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Importance of in-domain data
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%\i@ﬁfﬂ&sm easickness
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gleafn ‘xophthalmr%swnI rarhg imﬁ(ﬁwme
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iplegia ‘atatorg" tias
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@ngina  gomatose emopnhnilia . faclor
infertili - occidioidomycosis ermatitis @"ythromyc
e feigifvulation ® @soriasis @lleray
sataract gorticollis ycosis getonuria

igstarvation
@rteriosclerosig sthanol
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Wang, Liu S, Afzal N, et al. (2018) A Comparison of Word Embeddings for the Biomedical
Natural Language Processing. 2018;:1-21. http://arxiv.org/abs/1802.00400

‘oiter

on . .
L yrotemurla
.‘!Ibumin
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http://arxiv.org/abs/1802.00400

Biases: let’s talk about gender

tote reading recbrds clip commit o0

brow?itng sites Zg'conds slow arrival tactical biased
crafts credifs ,
trimester tanning  User arts drop reel firepower
ultrasound ~ PUsy  y d hoped command
o beautiful ‘housing €qUSETil crimmage
modelmg. eautiful  4i|s .Self”ge! looks zeal puilder  drafted
. However, in word2vec trained on Google News, B
man:woman::programmer:homemaker.
sassy vases irmly < bur
homemaker dancer folks friend —
lamb, "0 t. beard
Y™ " witch “witches ~ " gads boys cousin chan boyhood he
queen girlfriends girlfriend 1 SONSSON prothers
sTters grandmother wife dadc{y nephew
adies daughters flancee : okay

Bolukbasi T, Chang K, Zou J, et al. Man is to Computer Programmer as Woman is to Homemaker?

Debiasing Word Embeddings. In: NIPS. 2016. 1-9. &
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Biases: let’s talk about gender

Man is to Computer Programmer as Woman is to
Homemaker? Debiasing Word Embeddings

Tolga Bolukbasi', Kai-Wei Chang”, James Zou’, Venkatesh Saligrama'?, Adam Kalai’
"Boston University, 8 Saint Mary’s Street, Boston, MA
2Microsoft Research New England, 1 Memorial Drive, Cambridge, MA
tolgab@bu.edu, kw @kwchang.net, jamesyzou @ gmail.com, srv@bu.edu, adam.kalai @ microsoft.com

Abstract

The blind application of machine learning runs the risk of amplifying biases present
in data. Such a danger is facing us with word embedding, a popular framework to
represent text data as vectors which has been used in many machine learning and

Extreme she Extreme he Geiderstereot Eo ke ko
1. homemaker 1. maestro o Sl i s i P
%) G 5 @pisn s sewing-carpentry ‘regls'tered n'urse—phyu'cmn housewife-shopkeeper
: R y pp nurse-surgeon interior designer-architect softball-baseball
3. receptionist 3. protege blond-burly feminism-conservatism cosmetics-pharmaceuticals
4. 11br.ar1lan 4. phllosopher giggle-chuckle  vocalist-guitarist petite-lanky
5. socialite 5. captain sassy-snappy diva-superstar charming-affable
6. hairdresser 6. architect volleyball-football cupcakes-pizzas lovely-brilliant
7. nanny 7. financier . )
8. bookkeeper 8. warrior " ngdell; apﬁ)roprlate she-he analoghles s
9. stylist 9. broadcaster | 4U¢N-KINE SISIGEIIOCT IMGICERUIES
s waitress-waiter ~ ovarian cancer-prostate cancer convent-monastery
10. housekeeper 10. magician
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Solution?

1. Hand-pick words S, that are ‘gender definitional’.
‘Neutral” words are the complement, N =1\ S,.

.. blue

. rogrammer
S Prog smart
he ™. pink
king M cute

" homemaker

she
queen ™
218 gender-definitional words

Linear SVM

E
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Solution?

2. Project away gender subspace from gender-neutral words,
w:=w—w-Bforw € N, where B is the gender subspace.

blue
programmer .
he B pink
king cute
homemaker
B,
she
queen

5y
UNIVERSITY OF
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Solution?

2. Project away gender subspace from gender-neutral words,
w:=w—w-Bforw € N, where B is the gender subspace.

“hard debiasing”
ink
blub
cute
s B smart
homemaker
king 0 er 299 dimensions
B,
she
queen

5y
UNIVERSITY OF

CSC401/2511 — Winter 2023 37 @ TORONTO




Results

 Generate many analogies, see which ones preserve gender

stereotypes. He:Blue ::She: 7 irrelevant.
He:Doctor - She: ? Stereotypic. He:Doctor-> She:
He:Brother - She: ? Appropriate. he:brother -> she:sister
30 - - - ' ! ' ! O 80 Y T T T
® - e before d e e before
25 || = hard-debiased ._.' 0H . hard-debiased e °- ]
21 .o' | 60 | . / |
# stereotypi o . sl
=OtyYPIG,| . # appropriate’
, !
analogies | d | analogies
-., // 30|
5t . ‘/ e | 20}
e B W T W & T 0 i
# analogies generated # analogies generated
‘{"‘\ UNIVERSITY OF
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NEURAL LANGUAGE MODELS
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Trigram models

* CBOW: prediction of current word w; given w;_;.
® Let’s reconsider predicting w; given multiple w;_;?
*° |.e., let’s think about language modelling.
(i.e., the size of the vocabulary)

MLP b
h=gWx+c) hy = gWi[We_z; we_q] + ©)
y=Woh+b P = softmax(Wyh; + b)

trigram b

Here:

* w; is a one-hot vector,
* p; isadistribution, and
* |wil = lpl = V|

&
y UNIVERSITY OF
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Sampling from trigram models

* Since p;y ~ P(w¢|we_, wi_q), we just feed forward and
sample from the output vector.

approaching

were

I

Pt+1

two HdU ride
UNIVERSITY OF

=
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Training trigram models

®* Here’s one approach:

Randomly choose a batch (e.g., 10K consecutive words)
Propagate words through the current model

Obtain word likelihoods (loss)

Back-propagate loss

Gradient step to update model

Go to (1)

R

:;‘ UNIVERSITY OF
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Training trigram models

* The typical training objective is the cross entropy (see Lecture 4)
of the corpus C given the model M:

F=HCM) =- logz”’;ﬁm

Minimize

Maximize T

log; Py (€) = log; 1_[ Pwe) = ) logz P(wo)

log, P(w;) =

(et d

he = gWi[we_2;we_q1] +¢)  Here:
P = softmax(Woh; + b) * w; is a one-hot vector, and
* p;isadistribution.

&‘#
= UNIVERSITY OF

CSC401/2511 — Winter 2023 43 @ TORONTO




Training trigram models

: : log, Pp(C
°* Compute our gradients, using F = gZIICII\I/I( )and
log, P(w;) = and back-propagate.
oF 1 ocost; Op;
oWp IC|| &¢ Epe Wy
oF 1 ocosty Op; Oh;
oW ICI| &=t 6pe She 6W;

he = gWi[we_2;we_q1] +¢)  Here:
P = softmax(Woh; + b) * w; is a one-hot vector, and
* p;isadistribution.
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So what?

* © Neural language models of this type:
® Can generalize better than MLE LMs to unseen n-grams,
® Can use semantic information as in word2vec.

P(the cat sat on the mat) = P(the cat sat on the rug)

* ® Neural language models of this type:
® Can take relatively long to train. “GPUs kill the Earth.”
* Number of parameters scale poorly with increasing
context.

Let’s improve both of these issues...

et
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Dealing with that bottleneck

* Traditional datasets for neural language modeling include:
°* AP News (14M tokens, 17K types)
°* HUB-4 (1M tokens, 25K types)
* Google News (6B tokens, 1M types)
* Wikipedia (3.2B tokens, 2M types)

* Datasets for medical/clinical LM include:
°* EMRALD/ICES (3.5B tokens, 13M types)

®* Much of the computational effort is in the initial
embedding, and in the softmax.
* Can we simplify and speed up the process?
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Dealing with that bottleneck

* Replace rare words with <out-of-vocabulary> token.
* Subsample frequent words.

®* Hierarchical softmax. _
®* Noise-contrastive estimation.
* Negative sampling.

[Morin & Bengio, 2005, Mikolov et al, 2011, 2013b;
Mnih & Teh 2012, Mnih & Kavukcuoglu, 2013]

e
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Hierarchical softmax with grouping

* Group words into distinct classes, ¢, e.g., by frequency.
* E.g., c; is top 5% of words by frequency, ¢, is the next 5%, ...

* Factorize p(w, |w;) = p(clwi)p(W,|w;, c)

exp(GYw) exp(V, Vw,)
2cexp(cvy,)  Lwec exp(Vitw,)

exp(VT Vip:)

‘softmax’: P(w, |w;) = — MT/‘
Where Z =1 €xp(VyVw; )
v, is the ‘input’ vector for word w,
1, is the ‘output’ vector for word w,

[Mikolov et al, 2011, Auli et al, 2013]

m
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Logistics & Q/A

* Assignment 1: due Feb 10, 2023

* Assignment 2: release Feb 11, 2023

® Lectures:

* Reading week break: Feb 20-24 (no lectures, OHs)
® Final exam: planned in-person

® Lecture feedback:
®* Anonymous

* Please share any thoughts/suggestions

®* Questions?

CSC401/2511 — Winter 2023
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RECURRENT NEURAL NETWORKS
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Statistical language models

* Probability is conditioned on (window of) n previous words®

* A necessary (but incorrect) Markov assumption: each
observation only depends on a short linear history of
length L.

P(wn|wi.(n-1)) ®= P(WnlWm-r+1):(n-1))

®* Probabilities are estimated by computing unigrams and
bigrams

t
t
P(s) = HP(Wi|Wi_1) P(s) = L[P(Wi|Wi_2Wi_1)

e

*From Lecture 2 -
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Statistical language models

® Using higher n-gram counts (with smoothing) improves
performance*

®* Computational burden: too many n-grams (combinations)
* Infeasible RAM requirements

®* RNN intuition:
® Use the same set of weight parameters for each word

(or across all time steps)
* Condition the neural network on all previous words (or

time steps)
®* Memory requirement now scales with number of words

e

*From Lecture 2 &
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Recurrent neural networks (RNNs)

°* An RNN has feedback connections in its structure so that it
‘remembers’ previous states, when reading a sequence.

Ground Truth

Backpropagate

|

Elman network feed hidden units back

Jordan network (not shown) feed output units back

)
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RNNSs: Unrolling the h;

* Copies of the same network can be applied (i.e., unrolled) at
each point in a time series.
®* These can be applied to various tasks.

PRP ADJ NN

You lovely person

he = gWi[he—q;x] + )
Y = WOht +b % UNIVERSITY OF
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RNNs: One time step snapshot

Two riders .. approaching .. horses.
* Given a list of word vectors X: X4, X5, ..., X¢, X141y ooy XT

approaching

* At a single time-step:

he = g([(Whnhe—q + X +¢)
ht = g(WI [ht—l; xt] + C) (equivalent notation)

= softmax ( h,; + b)

import numpy as np

def softmax(x):
f_x = np.exp(x) / np.sum(np.exp(x))
return f_x

class RNN:
# ...
def step(self, x, is_normalized=False):
# update the hidden state
self.h = np.tanh(np.dot(self.W_hh, self.h) + np.dot(self.w_xh, x))

# compute the output vector
were y = np.dot(self.v_hy, self.h)

return softmax(y) if is_normalized else y

P(xt+1 = vj|xt; vy X1) = Vt,j
UNIVERSITY OF

CSC401/2511 — Winter 2023 55 é TORONTO

Eo




RNNs: Training

Two riders .. approaching .. horses.
* Given a list of word vectors X: X4, X5, ..., X¢, X141y ooy XT

approaching

y € R!"l'is a probability distribution
over the vocabulary

The output y; ; is the word (index) prediction
of the next word (X,1)

Evaluation

- Same cross-entropy loss function
\4 Ground truth

JO(6) = Eytjlogyt,

were prediction
- Perplexity: 2 (Iower is better)

;'?‘d

P(xt+1 = vj|xt, v X1) = Yt j
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Sampling from a RNN LM

° If |h;| < |V|, we’ve already reduced the number of
parameters from the trigram NN.
®° In ‘theory’, information is maintained in h; across arbitrary
lengths of time...

were

I

approaching

(e

riders were
h, = Wynlhy_q; x|+ cC Karpathy (2015),
' _g([ s t] ) The Unreasonable Effectiveness of Recurrent Neural Networks
= softmax (\V,,, hy + b) &
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http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNNs and retrograde amnesia

* Unfortunately, catastrophic forgetting is common.
° E.g., the relevant context in “The sushi the sister of your
friend’s programming teacher told you about was...”
has likely been overwritten by the time hq3 is produced.

Informational bottleneck

e S

The sushi

Bengio Y, Simard P, Frasconi P. (1994) Learning Long-Term Dependencies with Gradient Descent
is Difficult. IEEE Trans. Neural Networks.;5:157-66. doi:10.1109/72.279181 S

CSC401/2511 — Winter 2023 58 é TORONTO




RNNs and retrograde amnesia

®* One challenge with RNNs is that the gradient decays quickly
as one pushes it back in time. Can we store relevant
information?

W ) ®
t t

A
(" N\ N\ )
—> > —>
. O
A A
L Neural Network Pointwise
j ) ) kl ) Layer Operation
Here, ‘A’ represents identical recurrent cell blocks. Vi
Transfer Concatenate Copy

Imagery and sequence from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

5y
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long short-term memory (LSTM)

* Within each recurrent unit or cell:
* Self-looping recurrence for cell state using vector C
* Information flow regulating structures called gates

—®— Pointwise multiplication

& _.Q Sigmoid neural net layer

5y
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LSTM — core ideas

® In each cell (i.e. recurrent unit) in an LSTM, there are four
interacting neural network layers.

&
T

D,

A

e )

—>

~

®

[gtanh

ﬂ’

Ci_1

—

!
®

&
T

~

—
J

Vo
L4
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Neural Network
Layer

O

Pointwise
Operation

— > <

Vector
Transfer

Concatenate

Copy

The cell state is a special vector stream that
runs through the entire chain and stores the
long-term information.

.'437\}
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LSTM — core ideas

* In each cell (i.e. recurrent unit), there are four interacting
neural network layers.

&
T

D,

&
T

A
N\ N\ )
- — D T > —p O
A ¥ P Neural Network Pointwise
> el > L Layer Operation
\l J J \I J
© ® © — > I

Vector

ncatenat
Transfer SULERERTRE

Copy

—®_

Gates decide what information should be withheld in the cell state.
They are a sigmoid followed by a pointwise X.
Values near 0 block information; values near 1 pass information.

e
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LSTM step 1: decide what to forget

* The forget gate layer compares h;_; and the current input x;
to decide which elements in cell state C;_4 to keep and which

to turn off.
* E.g., the cell state might ‘remember’ the number (sing./plural) of the
current subject, in order to predict appropriately conjugated verbs,

but decide to forget it when a new subject is mentioned at x;.
* (There’s scant evidence that such information is so explicit.)

° previous cell state
0 forget gate output
»
© >
fe F ?
© >
l |
Ty

ft = U(Wf'[ht—hﬂ?t] T bf) ’
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LSTM step 2: decide what to store

* The input gate layer has two steps.
° First, a sigmoid layer o decides which cell units to update.

°* Next, a layer creates new candidate values C;.

®* E.g., the o can turn on the ‘number’ units, and the tanh can push
information on the current subject.

®* The o layer is important — we don’t want to push information on
units (i.e., latent dimensions) for which we have no information.

, it =0 (Wi-[hi—1,2¢] + b;)
ét — tanh(W(;-[ht_l,xt] + bc)

hi—1
Tt l
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LSTM step 3: update the cell state

* Update C;_1 to C;.
° First, forget what we want to forget: multiply C;_4 by f;.

* Then, create a ‘mask vector’ of information we want to store, i, XCy.
* Finally, write this information to the new cell state C;.

OO0 -0 -000.-0-000-0- 000 -0
Ce-1 Xft O0.0 Ct

i, xC,

Ct -1 ~
—(X) O, >

ftT ‘% Ci = fiXCpq + iy XC;

;437\1.
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LSTM step 4: output and feedback

® Output something, o;, based on the current x; and h;_,.

* Combine the output with the cell to give your h;.
* Normalize cell C; on [-1,1] using tanh and combine with o,

* In some sense, C; is long-term memory and h; is the short-term
memory (hence the name).

hi A\
Ganh>
04 X) Of = O'(VVO [ht_p xt] + bo)
he—1 5 L

h; = o;xtanh(C;)

e
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Variants of LSTMs

®* There are many variations on LSTMSs.
* ‘Bidirectional LSTMs’ (and bidirectional RNNs generally),

o

S
]| |0
BOAG0] [AEAAS

Structure overview

(a) unidirectional RNN
(b) bidirectional RNN

Schuster, Mike, and Kuldip K. Paliwal. (1997) Bidirectional recurrent neural networks. Signal
Processing, IEEE Transactions on 45(11) (1997): 2673-2681.2.

era
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Variants of LSTMs

* Gers & Schmidhuber (2000) add ‘peepholes’ that allow
all sigmoids to read the cell state.

ft =0 (Wg-[Cro1,hi—1,2¢] + by)
it =0 (W;-[Cy=1,hi—1, 2] + b;)
-—

or =0 (Wy-[C¢, he—1,2¢] + bo)

* We can couple the ‘forget’ and ‘input’ gates.
* Joint decisioning is more efficient.

P@-’ Ct:ft*ct—1+(1_ft)*ét

e
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Aside - Variants of LSTMs

* Gated Recurrent units (GRUs; Cho et a/ (2014)) go a step
further and also merge the cell and hidden states.

hi
I} 2zt =0 (W, - [hi—1,2¢]) Update gate

re = o (W; - [he—1,2¢]) Reset gate (0: replace units in hy_;
o = b (17 [ el with those in x;)

ht:(l—zt)*ht—l‘i‘zt*ﬁt

Which of these variants is best? Do the differences matter?

e Greff, et al. (2015) do a nice comparison of popular variants,

finding that they’re all about the same

e Jozefowicz, et al. (2015) tested more than ten thousand RNN

architectures, finding some that worked better than LSTMs on

certain tasks.

CSC401/2511 — Winter 2023
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http://arxiv.org/pdf/1503.04069.pdf
http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf
https://arxiv.org/pdf/1406.1078v3.pdf

CONTEXTUAL WORD EMBEDDINGS

:;: UNIVERSITY OF
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Deep contextualized representations

* What does the word p/lay mean?

AllenNLP

Peters ME, Neumann M, lyyer M, et al. (2018) Deep contextualized word representations.
Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/%bs/1802.05365
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http://arxiv.org/abs/1802.05365

ELMo: Embeddings from Language Models

* Instead of a fixed embedding for each word type, ELMo
considers the entire sentence before embedding each token.
® |t uses a bi-directional LSTM trained on a specific task.
® Qutputs are softmax probabilities on words, as before.

The play exhausted the actors

Peters, Mathew E., et al. "Deep contextualized word representations. (2018)." arXiv preprint arXiv:1802.05365 (2018).

UNIVERSITY OF

e
CSC401/2511 — Winter 2023 72 é TORONTO



https://arxiv.org/pdf/1802.05365.pdf

ELMo: Embeddings from Language Models

For each token, a L-layer biLM computes (2L+1) representations:

_>
Ry = {xk;Ma hﬁ{ya;LML? aL}
{hgj 17 =0,...,L},

* Task specific weighting produces the final embedding for
word token k.

ELMOtask (R @task taskz task:hLM

* where R is the set of all L hidden layers, hy ;

Stask

J

vtk is a weight on the entire task &

UNIVERSITY OF
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ELMo: Embeddings from Language Models

=

1. Concatenate

play 2. Multiply by weight vectors

-

! / task
h 1 h 1 X SZ

3. Sum: ELMOL%Sk

Final task
<‘ ;ELMO
p/ay embedding: L% o] UNIVERSITY OF
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ELMo: Embeddings from Language Models

* What does the word p/lay mean?

Source Nearest Neighbors

playing, game, games, played, players, plays, player,
Play, football, multiplayer

Chico Ruiz made a spec- | Kieffer , the only junior in the group , was commended
tacular play on Alusik ’s | for his ability to hit in the clutch , as well as his all-round
grounder {...} excellent play .

Olivia De Havilland | {...} they were actors who had been handed fat roles in
signed to do a Broadway | a successful play , and had talent enough to fill the roles
play for Garson {...} competently , with nice understatement .

GloVe play

biLM

Table 4: Nearest neighbors to “play” using GloVe and the context embeddings from a biLM.

Peters ME, Neumann M, lyyer M, et al. (2018) Deep contextualized word representations.
Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/gps/1802.05365
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http://arxiv.org/abs/1802.05365

ELMo: Embeddings from Language Models

INCREASE
TASK PREVIOUS SOTA OUR ELAAOLE (ABSOLUTE/

BASELINE BASELINE RELATIVE)

Q&ASQuAD | Liu et al. (2017) 844 | 81.1 85.8 4.7 124.9%
Textual entailment SNLI Chen et al. (2017) 88.6 || 88.0 88.7 £0.17 0.7/5.8%
Semantic role labelling SRL He et al. (2017) 81.7 || 81.4 84.6 3.2/17.2%
Coreference resolution Coref | Lee et al. (2017) 67.2 || 67.2 70.4 3.2/9.8%
Name entity resolution NER Peters et:al. (2017) 91.93 £ 0.19 || 90.15 9222 +£0.10 2.06/21%
Sentiment analysisSST-5 | McCann et al. (2017) 53.7 || 51.4 54.7+0.5 3.3/6.8%

Table 1: Test set comparison of ELMo enhanced neural models with state-of-the-art single model baselines across
six benchmark NLP tasks. The performance metric varies across tasks — accuracy for SNLI and SST-5; F; for
SQuAD, SRL and NER; average F; for Coref. Due to the small test sizes for NER and SST-5, we report the mean
and standard deviation across five runs with different random seeds. The “increase” column lists both the absolute
and relative improvements over our baseline.

-
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Neural networks research

_— |

~ *® Research in neural networks is exciting, expansive, and
~ explorative.
_®* We have many hyperparameters we can tweak
- (e.g., activation functions, number and size of layers).
* We have many architectures we can use
(e.g., deep networks, LSTMs, attention mechanisms).

| * Given the fevered hype, it’s important to retain our scientific
skepticism. o~ 7

* What are our biases and expectations?

®* When are neural networks the wrong choice?
°* How are we actually evaluating these systems?




