### A3 Q3: What dataset to use?

- Q602 What dataset to use?
  - Only IMDB dataset. Follow the A3 handout.
  - (the README.md says something different)



## A3 Q4.1 How to load the checkpoint

- Q4.1 requires loading the checkpoints. The checkpoints have GPU tensors. Some methods:
  - Option 1: Launch a Python script on GPU using a slurm job (srun or sbatch). Paste the results into LLM.ipynb.
  - Option 2: Run a jupyter server on teach.cs. Forward a port to visit it.
  - Option 3: Modify the classifier.py script. Save the checkpoint after moving the model to CPU.



## A3 Q4.2 yes/no or positive/negative

- Piazza Q622, Q593, Q592: "This movie review is". Query the tokens "yes"/"no" or "positive"/"negative"?
  - Should be "positive/negative". That is a typo in the handout.
  - but since the handout is already "yes/no", querying yes/no is accepted as well.
  - We encourage you to try multiple prompt formats and see if the model outputs make sense.



## **Information Retrieval**

CSC401/2511 – Natural Language Computing – Winter 2023

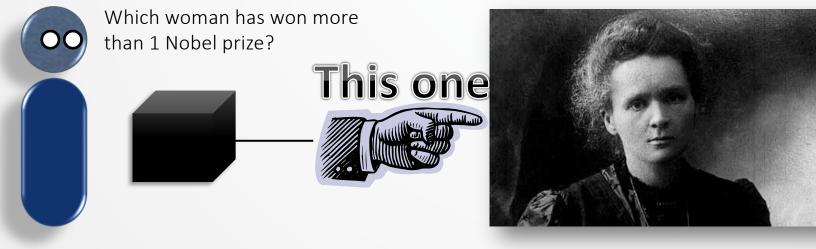
Lecture 11

University of Toronto



### What is Information Retrieval?

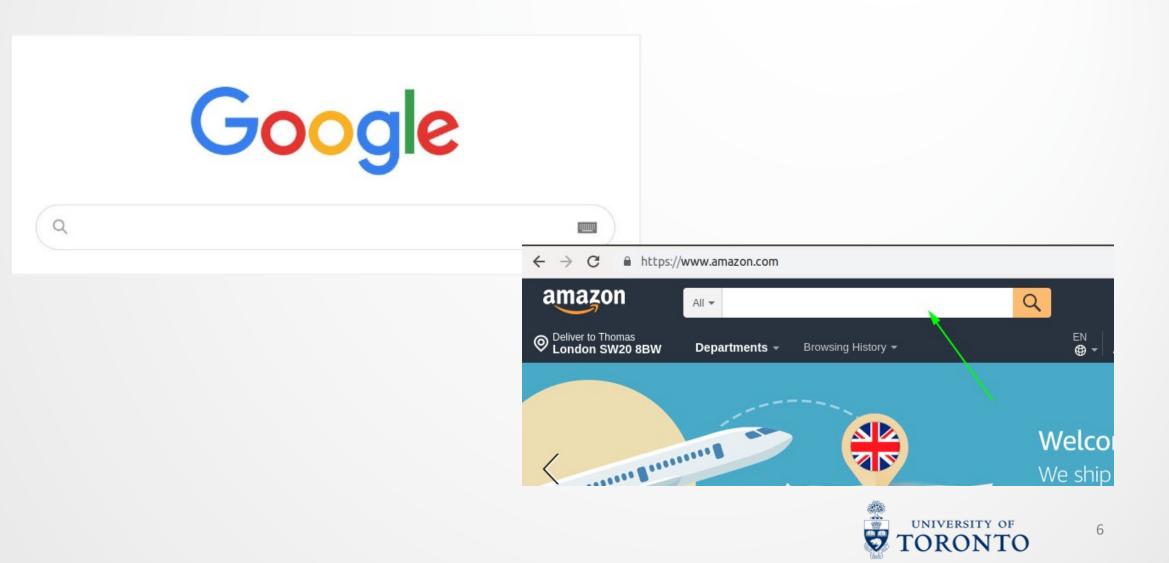
Given a query, search for the most relevant document among a knowledge base.



(Marie Curie)



### **Search Engines are IR systems**



# **Information Retrieval system**

Given a query, search for the most relevant document among a knowledge base.

- Three key problems here:
  - How to represent the query?
  - How to store a knowledge base?
  - How to search efficiently and accurately?
- The problems are closely related. We will look at some popular approaches.



### Scenario 1: SQL

- Structured Query Language (SQL) query
- How to represent the query? SQL queries.
- How to store a knowledge base? Tabular entries with predefined schemas.
- How to search efficiently and accurately? Compile and execute the SQL queries.



## Scenario 2: Max-similarity search

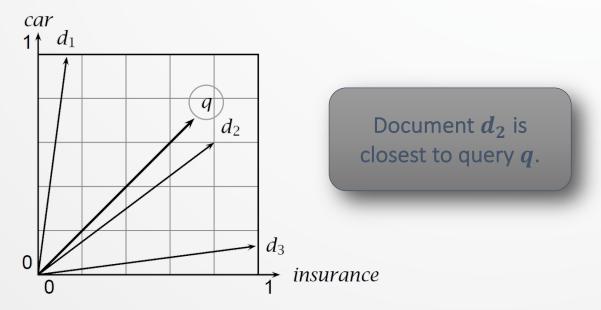
- Find the document that is the most similar to the query.
- How to represent the query? Query is just another text-based document.
- How to store a knowledge base?
  Vectorized documents.
- How to search efficiently and accurately?

Compute the **similarity score** between the query and each document. Return the document with the highest similarity score.



## **Similarity score**

- If the query and the available documents can be represented by vectors, we can determine similarity according to their cosine distance.
  - Vectors that are near each other (within a certain angular radius) are considered relevant.





### Vectorization: tf.idf

- *tf.idf* is a traditional method to vectorize the documents.
- It starts by weighting words in the documents.
  - Term frequency, *tf*<sub>ij</sub>:

number of occurrences of word  $w_i$  in document  $d_j$ .

• Document frequency, df<sub>i</sub>:

number of documents in which  $w_i$  appears.

• Collection frequency, cf<sub>i</sub>:

total occurrences of  $w_i$  in the collection.



## **Term frequency**

- Higher values of tf<sub>ij</sub> (for contentful words) suggest that word w<sub>i</sub> is a good indicator of the content of document d<sub>i</sub>.
  - When considering the relevance of a document d<sub>j</sub> to a keyword w<sub>i</sub>, tf<sub>ij</sub> should be maximized.
- We often **dampen**  $tf_{ij}$  to temper these comparisons.
  - $tf_{dampen} = 1 + \log(tf)$ , if tf > 0.



## **Document frequency**

- The document frequency,  $df_i$ , is the number of documents in which  $w_i$  appears.
  - **Meaningful** words may occur repeatedly in a related document, but **functional** (or less meaningful) words may be distributed evenly over all documents.

| Word   | Collection frequency | Document frequency |
|--------|----------------------|--------------------|
| kernel | 10,440               | 3997               |
| try    | 10,422               | 8760               |

 E.g., *kernel* occurs about as often as *try* in total, but it occurs in fewer documents – it is a more **specific** concept.



### **Inverse document frequency**

- Very specific words,  $w_i$ , would give **smaller** values of  $df_i$ .
- To maximize specificity, the inverse document frequency is  $idf_i = \log\left(\frac{D}{df_i}\right)$

where *D* is the total number of documents and we scale with log (why? next slide)

 This measure gives full weight to words that occur in 1 document, and zero weight to words that occur in all documents.



### **Inverse document frequency**

• The probability of a document containing word *i* is:  $\frac{df_i}{D}$ 

"A document containing word *i*" is an event. Small *p*: this event is more surprising. Therefore, more information

*idf<sub>i</sub>* is the amount of information provided by observing the event.



### tf.idf vectorization of a document

 We combine the term frequency and the inverse document frequency to give us a joint measure of relatedness between words and documents:

$$tf.idf(w_i, d_j) = \begin{cases} (1 + \log(tf_{ij})) \log \frac{D}{df_i} & \text{if } tf_{ij} \ge 1\\ 0 & \text{if } tf_{ij} = 0 \end{cases}$$

• The  $j^{th}$  document is therefore represented by a vector:  $[tf.idf(w_1, d_j), tf.idf(w_2, d_j),$ 

> ..., $tf.idf(w_{|W|}, d_j)]$



### Aside: BM25

- BM25 is a baseline algorithm of IR.
- Given query  $Q = [q_1, q_2, ..., q_n]$ , BM25 computes a similarity score for document  $d_i$  as:

Score(Q) = 
$$\sum_{i=1}^{n} \log \frac{D}{df_i} \times g(tf(q_i, d_j); k_1, b)$$

 $g(\cdot)$  is an engineered function that has hyperparameters  $k_1$  and bNo need to know the details of  $g(\cdot)$ 



## **Scenario 3: Semantic Doc2Vec**

- IR setting: Also using max-similarity search.
- The idea of word2vec can be applied as well.
- Goal: train a document encoder *E*.
- Design optimization goals for *E* so that:
  - If  $d_A$  and  $d_B$  are close to each other, then  $sim\langle E(d_A), E(d_B) \rangle$  should be large.
  - If  $d_A$  and  $d_B$  are far from each other, then  $sim\langle E(d_A), E(d_B) \rangle$  should be small.
- The definitions of closeness vary from algorithm to algorithm.



### **Semantic Doc2Vec**

- Example: How does the <u>Contriever paper</u> define the closeness?
  - Positive samples d<sub>+</sub> for a document is augmented following some heuristics.
  - Negative samples  $d_{-}$  are **randomly sampled** from within the batches.
- A contrastive loss objective is:  $L(q, d_{+}, d_{-}) = \frac{e^{\sin\langle E(q), E(d_{+}) \rangle / \tau}}{e^{\sin\langle E(q), E(d_{+}) \rangle / \tau} + \sum_{i} e^{\sin\langle E(q), E(d_{-}) \rangle / \tau}}$ where  $\tau$  is the temperature of the softmax.



## **Evaluating the retrieval systems**

- Some commonly used metrics include:
  - Precision
  - Recall
  - F-score
  - Precision @ k



### **Precision and Recall**

- **Precision**:  $\frac{N_{\text{relevant & retrieved}}}{N_{\text{retrieved}}}$ 
  - Among all retrieved documents, how many are relevant?
  - Precision in machine learning:  $\frac{TP}{P}$
- **Recall**:  $\frac{N_{\text{relevant & retrieved}}}{N_{\text{relevant}}}$ 
  - Among all relevant documents, how many are retrieved?
  - Recall in machine learning:  $\frac{TP}{T}$
- Note: Precision and recall has some tradeoff.



#### **F-score**

- **F-score** is the weighted harmonic mean of precision and recall: •  $F = \frac{1}{\alpha \frac{1}{p} + (1-\alpha) \frac{1}{r}}$
- Where p is precision, r is recall, and  $\alpha \in [0,1]$ .
- Notes:

• When 
$$\alpha = \frac{1}{2}$$
, we have  $F_1 = \frac{2pr}{p+r}$ 

• If either of precision or recall is 0 (i.e., true positive count TP = 0), then F is arbitrarily set to 0.



### **Precision at k**

- Modern IR systems usually do not just give one result.
  - Even if the 1<sup>st</sup> result is not relevant, the 2<sup>nd</sup>, etc. results could be relevant too.
- People sometimes measure the precision at k (P@k):
  - Among the top k results, how many of them are relevant?
- **P@k** has some potential problems:
  - The  $1^{st}$ ,  $2^{nd}$ , ...,  $k^{th}$  locations have no differences.
  - If there are less than k relevant results, then even the best system can't get P@k=1.



### **Lecture review questions**

By the end of this lecture, you should be able to:

- Describe the procedure of max-similarity search.
- Describe the tf.idf vectorization.
- Describe a contrastive objective function of a semantic doc2vec method.
- Identify some evaluation metrics for IR systems and describe the trade-offs between these metrics.

Anonymous feedback form: https://forms.gle/W3i6AHaE4uRx2FAJA





# **Appendix: Recent challenges of IR**

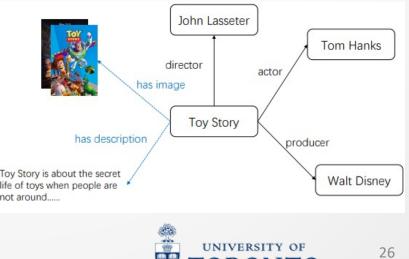
- Structured, relational data
- Multi-modal data



#### **Structured relational data**

- Plain texts are **unstructured**.
- Many modern IR systems use **structured** data.
  - E.g., docs vectorized to the same dimensions.
  - E.g., relational data.
- Benefits & challenges of structured data.

{"name": "Toy Story", "director": "John Lasseter", ...



### **Storing structured data**

- Saving each complex object as a database entry is one option.
- We can also store (or embed) the  $\{R, S, T\}$  triplets.
  - *R* is the **relation** (e.g., "has-director") between:
  - the source S (e.g., "Toy Story") and
  - the target T (e.g., "John Lasseter")

27

#### **Multimodal data**

- Most modern IR systems are multimodal.
- The objects contain more than texts.
  - Images, sounds, even videos are stored too.
  - Choosing the right schemas is very important!

