Speech Features and Speaker Classfication

CSC401/2511 – Natural Language Computing – Winter 2024 Lecture 9

University of Toronto

Contents

- Today we will
 - Define some common feature vectors for speech processing
 - Use them as input to a GMM-based speaker classification system
- All of this is part of A3

SPEECH FEATURES

CSC401/2511 – Winter 2024

Recall the spectrogram pipeline

Frequency (Hz)

Problems with spectrograms

- As input to speech systems, spectrograms are...
- Too big
 - The discrete signal is usually 16,000 samps/sec
 - 100 frames/sec x 400 samps/frame = 40,000 samps/sec!
- Too linear
 - Pitch perception is log-linear (recall Mels)
 - Lots of coefficients wasted on high frequencies
- Too entangled
 - Speaker and phoneme info is correlated

Filtering

- To reduce the size of the spectra, we filter it with filters from a filter bank
- Each filter is a signal whose spectrum $F_m \in \mathbb{R}^N$ picks out small a range (or **band**) of frequencies
- The bands of the *M* filters are overlapping and span the spectrum
- A filter coefficient is computed as the log of the dot product of the magnitude of the frame X_t and filter F_m spectra: $c_{t,m} = \log \sum_{n=1}^{N} |X_t| [n] |F_m| [n]$
- If there are T frames, this gives us a real-valued feature matrix of size $T \times M$
 - M = 40 is a lot smaller than 400!

The mel-scale filter bank

- The mel-scale triangular overlapping filter bank, or f-bank, is a popular choice
- The filter's vertices are arranged along the mel-scale
 - Ascending frequency = wider bands

CSC401/2511 - Winter 2024

The source-filter model

- In vowels, the sound signal emitted from the glottis g is filtered by the vocal tract v
- The **source-filter model** of speech assumes |X[n]| = |G[n]||V[n]|
- |V| is responsible for the smooth shape (envelope)
- |G| is responsible for all the bumps (F0 harmonics)

The cepstrum

- We can get at |V| by computing the **cepstrum** \hat{x}
- The cepstrum is $\log |X|$ transformed by the inverse DFT
- Because $\log |X| = \log |G| + \log |V|$, and DFT⁻¹ is linear $\hat{x}[n] = \hat{g}[n] + \hat{v}[n]$
- $DFT^{-1} \approx DFT$, so \hat{x} is like the spectrum of $\log|X|$
- |V| is slower-moving than |G|, so v
 [n] is higher for lower n (lower frequency of frequency)

Mel-Frequency Cepstral Coefficients

- MFCCs are the coefficients of the cepstrum of F-bank coefficients
- Altogether

- MFCCs are useful for models which can't handle speaker correlations themselves, like (diagonal) GMMs
- F-banks are better for those which can, like NNs

GAUSSIAN MIXTURES

CSC401/2511 – Winter 2024

Classifying speech sounds

 Speech sounds can cluster. This graph shows vowels, each in their own colour, according to the 1st two formants.

Classify speakers by cluster attributes

- Similarly, all of the speech produced by one **speaker** will cluster differently in the **Mel space** than speech from another speaker.
 - We can
 · decide if a given observation comes from one speaker or another.

Speaker classification

- Speaker classification: *n*. picking the most likely speaker among several speakers given only acoustics.
- Each **speaker** will produce speech according to **different** probability distributions.
 - We train a statistical model, given annotated data (mapping utterances to speakers).
 - We choose the speaker whose model gives the highest probability for an observation.

Fitting continuous distributions

 Since we are operating with continuous variables, we need to fit continuous probability functions to a discrete number of observations.

• If we assume the 1-dimensional data in **this histogram** is Normally distributed, we can fit a continuous Gaussian function simply in terms of the mean μ and variance σ^2 .

Univariate (1D) Gaussians

• Also known as **Normal** distributions, $N(\mu, \sigma)$

•
$$P(x; \mu, \sigma) = \frac{\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)}{\sqrt{2\pi}\sigma}$$

• The parameters we can modify are $\theta = \langle \mu, \sigma^2 \rangle$
• $\mu = E(x) = \int x \cdot P(x) dx$ (mean)
• $\sigma^2 = E\left((x-\mu)^2\right) = \int (x-\mu)^2 P(x) dx$ (variance)

But we don't have samples for all x...

Maximum likelihood estimation

- Given data $X = \{x_1, x_2, ..., x_n\}$, MLE produces an estimate of the parameters $\hat{\theta}$ by maximizing the **likelihood**, $L(X, \theta)$: $\hat{\theta} = \underset{\theta}{\operatorname{argmax}} L(X, \theta)$ where $L(X, \theta) = P(X; \theta) = \prod_{i=1}^{n} P(x_i; \theta)$.
- Since L(X, θ) provides a surface over all θ, in order to find the highest likelihood, we look at the derivative

$$\frac{\delta}{\delta\theta}L(X,\theta)=0$$

to see at which point the likelihood stops growing.

MLE with univariate Gaussians

• Estimate μ :

$$L(X,\mu) = P(X;\mu) = \prod_{i=1}^{n} P(x_i;\theta) = \prod_{i=1}^{n} \frac{\exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)}{\sqrt{2\pi\sigma}}$$
$$\log L(X,\mu) = -\frac{\sum_i (x_i - \mu)^2}{2\sigma^2} - n\log(\sqrt{2\pi\sigma})$$
$$\frac{\delta}{\delta\mu}\log L(X,\mu) = \frac{\sum_i (x_i - \mu)}{\sigma^2} = 0$$
$$\mu = \frac{\sum_i x_i}{n}$$
Similarly, $\sigma^2 = \frac{\sum_i (x_i - \mu)^2}{n}$

Multivariate Gaussians

When data is *d*-dimensional, the input variable is

 $\vec{x} = \langle x[1], x[2], \dots, x[d] \rangle$

the **mean** is

$$\vec{\mu} = E(\vec{x}) = \langle \mu[1], \mu[2], \dots, \mu[d] \rangle$$

the **covariance matrix** is

 $\Sigma[i,j] = E(x[i]x[j]) - \mu[i]\mu[j]$

and

$$P(\vec{x}) = \frac{\exp\left(-\frac{(\vec{x} - \vec{\mu})^{\mathsf{T}} \Sigma^{-1} (\vec{x} - \vec{\mu})}{2}\right)}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}}$$

 A^{T} is the **transpose** of A A^{-1} is the **inverse** of A|A| is the **determinant** of A

Intuitions of covariance

- As values in Σ become larger, the Gaussian spreads out.
- (I is the identity matrix)

Intuitions of covariance

• Different values on the diagonal result in different variances in their respective dimensions

Non-Gaussian observations

- Speech data are generally *not* unimodal.
- The observations below are **bimodal**, so fitting one Gaussian would not be representative.

CSC401/2511 – Winter 2024

Mixtures of Gaussians

• Gaussian mixture models (GMMs) are a weighted linear combination of M component Gaussians, $\langle \Gamma_1, \Gamma_2, ..., \Gamma_M \rangle$:

CSC401/2511 – Winter 2024

Observation likelihoods

- Assuming MFCC dimensions are independent of one another, the covariance matrix is diagonal – i.e., 0 off the diagonal.
- Therefore, the probability of an observation vector given a Gaussian becomes

$$P(\vec{x}|\Gamma_m) = \frac{\exp\left(-\frac{1}{2}\sum_{i=1}^{d}\frac{(x[i] - \mu_m[i])^2}{\sum_m [i]}\right)}{(2\pi)^{\frac{d}{2}} \left(\prod_{i=1}^{d}\sum_m [i]\right)^{\frac{1}{2}}}$$

Imagine that a GMM first chooses a Gaussian, then emits an observation from that Gaussian.

MLE for GMMs

• Let
$$\omega_m = P(\Gamma_m)$$
 and $b_m(\vec{x_t}) = P(\vec{x_t}|\Gamma_m)$, 'component observation
'weight'
$$P_{\theta}(\vec{x_t}) = \sum_{m=1}^{M} \omega_m b_m(\vec{x_t})$$

where $\theta = \langle \omega_m, \overrightarrow{\mu_m}, \Sigma_m \rangle$ for m = 1..M

• To estimate θ , we solve $\nabla_{\theta} \log L(X, \theta) = 0$ where $\log L(X, \theta) = \sum_{t=1}^{T} \log P_{\theta}(\vec{x_t}) = \sum_{t=1}^{T} \log \sum_{m=1}^{M} \omega_m b_m(\vec{x_t})$

MLE for GMMs

• What happens when we try to find a maximum for $\mu_m[n]$? $\frac{\delta \log L(X,\theta)}{\delta \mu_m[n]} = \sum_{t=1}^{T} \frac{\delta}{\delta \mu_m[n]} \log \sum_{m'=1}^{m} \omega_{m'} b_{m'}(\vec{x_t}) = 0$ $\sum_{t=1}^{T} \frac{1}{P_{\theta}(\vec{x_t})} \frac{\delta}{\delta \mu_m[n]} \omega_m b_m(\vec{x_t}) = \sum_{t=1}^{T} \frac{\omega_m b_m(\vec{x_t})}{P_{\theta}(\vec{x_t})} \left(\frac{x_t[n] - \mu_m[n]}{\Sigma_m[n]^2}\right) = 0$ $\mu_{m}[n] = \frac{\sum_{t=1}^{T} \frac{\omega_{m} b_{m}(\vec{x_{t}})}{P_{\theta}(\vec{x_{t}})} x_{t}[n]}{\sum_{t=1}^{T} \frac{\omega_{m} b_{m}(\vec{x_{t}})}{P_{\theta}(\vec{x_{t}})}} = \frac{\sum_{t=1}^{T} P_{\theta}(\Gamma_{m} | \vec{x_{t}}) x_{t}[n]}{\sum_{t=1}^{T} P_{\theta}(\Gamma_{m} | \vec{x_{t}})}$

But this involves $\mu_m[n]!$

Learning mixtures of gaussians

- If we knew which Gaussian generated each sample, then $\langle \overrightarrow{\mu_m}, \Sigma_m \rangle$ can be learned by MLE.
- The MLE of $P(\Gamma_j)$ would likewise be the count $\frac{\# \vec{x_t} \text{ from } \Gamma_j}{\tau}$
- But we **don't** know this!
- Instead, we guess at "soft" mixture assignments $P_{\theta}(\Gamma_m | \vec{x_t})$ from another model...
- ...which we got from a previous round of maximization

Expectation-Maximization for GMMs

- Overall idea:
 - First, initialize a set of model parameters.
 - "Expectation": Compute the expected probabilities of observation, given these parameters.
 - "Maximization": Update the parameters to maximize the aforementioned probabilities.
 - Repeat.

Expectation-Maximization for GMMs

• The **expectation step** gives us:

$$P_{\theta}(\Gamma_{m}|\vec{x_{t}}) = \frac{\omega_{m}b_{m}(\vec{x_{t}})}{P_{\theta}(\vec{x_{t}})}$$

Proportion of overall probability contributed by *m*

• The maximization step gives us:

$$\widehat{\overline{\mu_m}} = \frac{\sum_t P_\theta(\Gamma_m | \overline{x_t}) \overline{x_t}}{\sum_t P_\theta(\Gamma_m | \overline{x_t})}$$

$$\widehat{\Sigma_m} = \frac{\sum_t P_\theta(\Gamma_m | \overline{x_t}) \overline{x_t}^2}{\sum_t P_\theta(\Gamma_m | \overline{x_t})} - \widehat{\overline{\mu_m}}^2$$

$$\widehat{\omega_m} = \frac{1}{T} \sum_{t=1}^T P_\theta(\Gamma_m | \overline{x_t})$$
Recall for the second secon

rom slide

wants:

 $\sum_i x_i$

n

 $(x_i - \mu)^2$

n

Recipe for GMM EM

• For each speaker, we learn a GMM given all *T* frames of their training data.

1. Initialize:	Guess $\theta = \langle \omega_m, \overline{\mu_m}, \Sigma_m \rangle$ for $m = 1M$ either uniformly, randomly, or by <i>k</i> -means clustering.
2. E-step:	Compute $P_{\theta}(\Gamma_m \vec{x_t})$.
3. M-step:	Update parameters for $\langle \omega_m, \overrightarrow{\mu_m}, \Sigma_m \rangle$ with $\langle \widehat{\omega_m}, \overrightarrow{\mu_m}, \widehat{\Sigma_m} \rangle$ as described on slide 29.

