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Contents
• Today we will

• Define some common feature vectors for speech 
processing

• Use them as input to a GMM-based speaker 
classification system

• All of this is part of A3



SPEECH FEATURES
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Recall the spectrogram pipeline
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Problems with spectrograms

• As input to speech systems, spectrograms are…
• Too big

• The discrete signal is usually 16,000 samps/sec
• 100 frames/sec x 400 samps/frame = 40,000 samps/sec!

• Too linear
• Pitch perception is log-linear (recall Mels)
• Lots of coefficients wasted on high frequencies

• Too entangled
• Speaker and phoneme info is correlated
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Filtering

• To reduce the size of the spectra, we filter it with filters from 
a filter bank

• Each filter is a signal whose spectrum 𝐹𝐹𝑚𝑚 ∈ ℝ𝑁𝑁 picks out 
small a range (or band) of frequencies

• The bands of the 𝑀𝑀 filters are overlapping and span the 
spectrum

• A filter coefficient is computed as the log of the dot product 
of the magnitude of the frame 𝑋𝑋𝑡𝑡 and filter 𝐹𝐹𝑚𝑚 spectra:
 𝑐𝑐𝑡𝑡,𝑚𝑚 = log ∑𝑛𝑛=1𝑁𝑁 𝑋𝑋𝑡𝑡 [𝑛𝑛] 𝐹𝐹𝑚𝑚 𝑛𝑛

• If there are 𝑇𝑇 frames, this gives us a real-valued feature 
matrix of size 𝑇𝑇 × 𝑀𝑀
• 𝑀𝑀 = 40 is a lot smaller than 400!
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The mel-scale filter bank
• The mel-scale triangular overlapping filter bank, or f-bank, is 

a popular choice
• The filter’s vertices are arranged along the mel-scale

• Ascending frequency = wider bands

CSC401/2511 – Winter 2024 7



The source-filter model
• In vowels, the sound signal emitted from the glottis 𝑔𝑔 is 

filtered by the vocal tract 𝑣𝑣
• The source-filter model of speech assumes

|𝑋𝑋 𝑛𝑛 | = 𝐺𝐺 𝑛𝑛 𝑉𝑉 𝑛𝑛
• 𝑉𝑉  is responsible for the smooth shape (envelope)
• 𝐺𝐺  is responsible for all the bumps (F0 harmonics)
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The cepstrum
• We can get at |𝑉𝑉| by computing the cepstrum �𝑥𝑥
• The cepstrum is log 𝑋𝑋  transformed by the inverse DFT
• Because log 𝑋𝑋 = log 𝐺𝐺 + log 𝑉𝑉 , and DFT-1 is linear

 �𝑥𝑥 𝑛𝑛 = �𝑔𝑔 𝑛𝑛 + �𝑣𝑣 𝑛𝑛
• 𝐷𝐷𝐹𝐹𝑇𝑇−1 ≈ 𝐷𝐷𝐹𝐹𝑇𝑇, so �𝑥𝑥 is like the spectrum of log 𝑋𝑋
• |𝑉𝑉| is slower-moving than 𝐺𝐺 , so �v 𝑛𝑛  is higher for lower 𝑛𝑛 

(lower frequency of frequency)
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Mel-Frequency Cepstral Coefficients
• MFCCs are the coefficients of the cepstrum of F-bank 

coefficients
• Altogether

• MFCCs are useful for models which can’t handle speaker 
correlations themselves, like (diagonal) GMMs

• F-banks are better for those which can, like NNs
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GAUSSIAN MIXTURES
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Classifying speech sounds

• Speech sounds can cluster. This graph shows vowels, each in 
their own colour, according to the 1st two formants.

Note: The vowel trapezoid’s
dimensions were physical
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Classify speakers by cluster attributes

• Similarly, all of the speech produced by one speaker will cluster 
differently in the Mel space than speech from another speaker.
• We can ∴ decide if a given observation comes from one 

speaker or another.

Time, 𝒕𝒕
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Speaker classification
• Speaker classification: n. picking the most likely speaker 

    among several speakers given only 
    acoustics.

• Each speaker will produce speech according to different 
probability distributions.
• We train a statistical model, given annotated data 

(mapping utterances to speakers).
• We choose the speaker whose model gives the highest 

probability for an observation.
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Fitting continuous distributions

• Since we are operating with continuous variables, we need to 
fit continuous probability functions to a 
discrete number of observations.

• If we assume the 1-dimensional 
data in this histogram is Normally 
distributed, we can fit a 
continuous Gaussian function 
simply in terms of the mean 𝜇𝜇 
and variance 𝜎𝜎2.
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Univariate (1D) Gaussians

• Also known as Normal distributions, 𝑁𝑁(𝜇𝜇,𝜎𝜎)

• 𝑃𝑃 𝑥𝑥; 𝜇𝜇,𝜎𝜎 =
exp − 𝑥𝑥−𝜇𝜇 2

2𝜎𝜎2

2𝜋𝜋𝜎𝜎

• The parameters we can modify are 𝜽𝜽 = 𝝁𝝁,𝝈𝝈𝟐𝟐
• 𝜇𝜇 = 𝐸𝐸 𝑥𝑥 = ∫ 𝑥𝑥 � 𝑃𝑃 𝑥𝑥 𝑑𝑑𝑥𝑥  (mean)
• 𝜎𝜎2 = 𝐸𝐸 𝑥𝑥 − 𝜇𝜇 2 = ∫ 𝑥𝑥 − 𝜇𝜇 2𝑃𝑃 𝑥𝑥 𝑑𝑑𝑥𝑥 (variance)

But we don’t have samples for all 𝑥𝑥…
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Maximum likelihood estimation

• Given data 𝑋𝑋 = 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 , MLE produces an estimate of 
the parameters �̂�𝜃 by maximizing the likelihood, 𝐿𝐿(𝑋𝑋,𝜃𝜃):

�̂�𝜃 = argmax
𝜃𝜃

𝐿𝐿(𝑋𝑋,𝜃𝜃)

    where 𝑳𝑳 𝑿𝑿,𝜽𝜽 = 𝑷𝑷 𝑿𝑿;𝜽𝜽 = ∏𝑖𝑖=1
𝑛𝑛 𝑃𝑃(𝑥𝑥𝑖𝑖;𝜃𝜃).

• Since 𝐿𝐿(𝑋𝑋,𝜃𝜃) provides a surface over all 𝜽𝜽, in order to find the 
highest likelihood, we look at the derivative

𝛿𝛿
𝛿𝛿𝜃𝜃

𝐿𝐿 𝑋𝑋,𝜃𝜃 = 0
    to see at which point the likelihood stops growing.
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MLE with univariate Gaussians

• Estimate 𝜇𝜇:

𝐿𝐿 𝑋𝑋, 𝜇𝜇 = 𝑃𝑃 𝑋𝑋; 𝜇𝜇 = �
𝑖𝑖=1

𝑛𝑛

𝑃𝑃(𝑥𝑥𝑖𝑖;𝜃𝜃) = �
𝑖𝑖=1

𝑛𝑛 exp − 𝑥𝑥𝑖𝑖 − 𝜇𝜇 2

2𝜎𝜎2

2𝜋𝜋𝜎𝜎

log 𝐿𝐿 𝑋𝑋,𝜇𝜇 = −
∑𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝜇𝜇 2

2𝜎𝜎2
− 𝑛𝑛 log 2𝜋𝜋𝜎𝜎

𝛿𝛿
𝛿𝛿𝜇𝜇

log 𝐿𝐿 𝑋𝑋, 𝜇𝜇 =
∑𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝜇𝜇

𝜎𝜎2
= 0

𝜇𝜇 =
∑𝑖𝑖 𝑥𝑥𝑖𝑖
𝑛𝑛

• Similarly, 𝜎𝜎2 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖−𝜇𝜇 2

𝑛𝑛
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Multivariate Gaussians

• When data is d-dimensional, the 
input variable is

�⃗�𝑥 = 𝑥𝑥 1 , 𝑥𝑥 2 , … , 𝑥𝑥[𝑑𝑑]
the mean is

�⃗�𝜇 = 𝐸𝐸 �⃗�𝑥 = 𝜇𝜇 1 ,𝜇𝜇 2 , … ,𝜇𝜇[𝑑𝑑]
the covariance matrix is

Σ 𝑖𝑖, 𝑗𝑗 = 𝐸𝐸 𝑥𝑥 𝑖𝑖 𝑥𝑥 𝑗𝑗 − 𝜇𝜇 𝑖𝑖 𝜇𝜇 𝑗𝑗
and

𝑃𝑃 �⃗�𝑥 =
exp − �⃗�𝑥 − �⃗�𝜇 ⊺Σ−1 �⃗�𝑥 − �⃗�𝜇

2

2𝜋𝜋
𝑑𝑑
2 Σ

1
2

𝐴𝐴⊺ is the transpose of 𝐴𝐴
𝐴𝐴−1 is the inverse of 𝐴𝐴
𝐴𝐴  is the determinant of 𝐴𝐴
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Intuitions of covariance

• As values in Σ become larger, the Gaussian spreads out.
• (I is the identity matrix)

𝜇𝜇 = 0 0
Σ = I

𝜇𝜇 = 0 0
Σ = 0.6I

𝜇𝜇 = 0 0
Σ = 2.0I
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Intuitions of covariance

• Different values on the diagonal result in different variances 
in their respective dimensions

Σ = 1 0
0 1 Σ = 2 0

0 0.6
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Non-Gaussian observations

• Speech data are generally not unimodal.
• The observations below are bimodal, so fitting one Gaussian 

would not be representative.
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Mixtures of Gaussians
• Gaussian mixture models (GMMs) are a weighted linear 

combination of 𝑀𝑀 component Gaussians, Γ1, Γ2, … , Γ𝑀𝑀 :

𝑃𝑃 �⃗�𝑥 = �
𝑗𝑗=1

𝑀𝑀

𝑃𝑃 Γ𝑗𝑗 𝑃𝑃(�⃗�𝑥|Γ𝑗𝑗)
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Observation likelihoods
• Assuming MFCC dimensions are independent of one another, 

the covariance matrix is diagonal – i.e., 0 off the diagonal.
• Therefore, the probability of an observation vector given a 

Gaussian becomes

𝑃𝑃 �⃗�𝑥|Γ𝑚𝑚 =
exp − 1

2∑𝑖𝑖=1
𝑑𝑑 𝑥𝑥 𝑖𝑖 − 𝜇𝜇𝑚𝑚 𝑖𝑖 2

Σ𝑚𝑚 [𝑖𝑖]

2𝜋𝜋
𝑑𝑑
2 ∏𝑖𝑖=1

𝑑𝑑 Σ𝑚𝑚 [𝑖𝑖]
1
2

• Imagine that a GMM first chooses a Gaussian, then emits an 
observation from that Gaussian.
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MLE for GMMs
• Let 𝝎𝝎𝒎𝒎 = 𝑃𝑃(Γ𝑚𝑚) and   𝒃𝒃𝒎𝒎 𝒙𝒙𝒕𝒕 = 𝑃𝑃(𝑥𝑥𝑡𝑡|Γ𝑚𝑚),

𝑃𝑃𝜃𝜃 𝑥𝑥𝑡𝑡 = �
𝑚𝑚=1

𝑀𝑀

𝜔𝜔𝑚𝑚𝑏𝑏𝑚𝑚(𝑥𝑥𝑡𝑡)

   where 𝜽𝜽 = 𝝎𝝎𝒎𝒎,𝝁𝝁𝒎𝒎,𝚺𝚺𝒎𝒎  for 𝑚𝑚 = 1. .𝑀𝑀

• To estimate 𝜃𝜃, we solve 𝛻𝛻𝜃𝜃 log 𝐿𝐿 𝑋𝑋,𝜃𝜃 = 0 where

log 𝐿𝐿 𝑋𝑋,𝜃𝜃 = �
𝑡𝑡=1

𝑇𝑇

log𝑃𝑃𝜃𝜃 𝑥𝑥𝑡𝑡 = �
𝑡𝑡=1

𝑇𝑇

log �
𝑚𝑚=1

𝑀𝑀

𝜔𝜔𝑚𝑚𝑏𝑏𝑚𝑚 𝑥𝑥𝑡𝑡

‘weight’

‘component observation
likelihood’
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MLE for GMMs
• What happens when we try to find a maximum for 𝜇𝜇𝑚𝑚[𝑛𝑛]?

𝛿𝛿 log 𝐿𝐿(𝑋𝑋,𝜃𝜃)
𝛿𝛿𝜇𝜇𝑚𝑚[𝑛𝑛]

= �
𝑡𝑡=1

𝑇𝑇
𝛿𝛿

𝛿𝛿𝜇𝜇𝑚𝑚[𝑛𝑛]
log �

𝑚𝑚′=1

𝑀𝑀

𝜔𝜔𝑚𝑚′𝑏𝑏𝑚𝑚′ 𝑥𝑥𝑡𝑡 = 0

�
𝑡𝑡=1

𝑇𝑇
1

𝑃𝑃𝜃𝜃 𝑥𝑥𝑡𝑡
𝛿𝛿

𝛿𝛿𝜇𝜇𝑚𝑚[𝑛𝑛]
𝜔𝜔𝑚𝑚𝑏𝑏𝑚𝑚 𝑥𝑥𝑡𝑡 = �

𝑡𝑡=1

𝑇𝑇
𝜔𝜔𝑚𝑚𝑏𝑏𝑚𝑚 𝑥𝑥𝑡𝑡
𝑃𝑃𝜃𝜃 𝑥𝑥𝑡𝑡

𝑥𝑥𝑡𝑡 𝑛𝑛 − 𝜇𝜇𝑚𝑚[𝑛𝑛]
Σ𝑚𝑚 𝑛𝑛 2 = 0

𝜇𝜇𝑚𝑚 𝑛𝑛 =
∑𝑡𝑡=1𝑇𝑇 𝜔𝜔𝑚𝑚𝑏𝑏𝑚𝑚 𝑥𝑥𝑡𝑡

𝑃𝑃𝜃𝜃 𝑥𝑥𝑡𝑡
𝑥𝑥𝑡𝑡[𝑛𝑛]

∑𝑡𝑡=1𝑇𝑇 𝜔𝜔𝑚𝑚𝑏𝑏𝑚𝑚 𝑥𝑥𝑡𝑡
𝑃𝑃𝜃𝜃 𝑥𝑥𝑡𝑡

=
∑𝑡𝑡=1𝑇𝑇 𝑃𝑃𝜃𝜃 Γ𝑚𝑚 𝑥𝑥𝑡𝑡 𝑥𝑥𝑡𝑡[𝑛𝑛]

∑𝑡𝑡=1𝑇𝑇 𝑃𝑃𝜃𝜃 Γ𝑚𝑚 𝑥𝑥𝑡𝑡

But this involves 𝜇𝜇𝑚𝑚 𝑛𝑛 !
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Learning mixtures of gaussians
• If we knew which Gaussian generated each sample, 

then 𝝁𝝁𝒎𝒎,𝚺𝚺𝒎𝒎  can be learned by MLE.

• The MLE of 𝑃𝑃(Γ𝑗𝑗) would likewise be the count 
#𝑥𝑥𝑡𝑡 from Γ𝑗𝑗

𝑇𝑇
• But we don’t know this!
• Instead, we guess at “soft” mixture assignments 𝑃𝑃𝜃𝜃 Γ𝑚𝑚 𝑥𝑥𝑡𝑡  

from another model…
• …which we got from a previous round of maximization
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Expectation-Maximization for GMMs
• Overall idea:

• First, initialize a set of model parameters.
• “Expectation”: Compute the expected probabilities of 

observation, given these parameters.
• “Maximization”: Update the parameters to maximize the 

aforementioned probabilities.
• Repeat.
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Expectation-Maximization for GMMs
• The expectation step gives us:

𝑃𝑃𝜃𝜃 Γ𝑚𝑚 𝑥𝑥𝑡𝑡 =
𝜔𝜔𝑚𝑚𝑏𝑏𝑚𝑚 𝑥𝑥𝑡𝑡
𝑃𝑃𝜃𝜃 𝑥𝑥𝑡𝑡

• The maximization step gives us:

�𝜇𝜇𝑚𝑚 =
∑𝑡𝑡 𝑃𝑃𝜃𝜃 Γ𝑚𝑚 𝑥𝑥𝑡𝑡 𝑥𝑥𝑡𝑡
∑𝑡𝑡 𝑃𝑃𝜃𝜃 Γ𝑚𝑚 𝑥𝑥𝑡𝑡

�Σ𝑚𝑚 =
∑𝑡𝑡 𝑃𝑃𝜃𝜃 Γ𝑚𝑚 𝑥𝑥𝑡𝑡 𝑥𝑥𝑡𝑡

2

∑𝑡𝑡 𝑃𝑃𝜃𝜃 Γ𝑚𝑚 𝑥𝑥𝑡𝑡
− �𝜇𝜇𝑚𝑚

2

�𝜔𝜔𝑚𝑚 =
1
𝑇𝑇
�

𝑡𝑡=1

𝑇𝑇
𝑃𝑃𝜃𝜃 Γ𝑚𝑚 𝑥𝑥𝑡𝑡

Proportion of overall 
probability contributed by 𝑚𝑚

Recall from slide 
18, MLE wants:

𝜇𝜇 =
∑𝑖𝑖 𝑥𝑥𝑖𝑖
𝑛𝑛

𝜎𝜎2 =
∑𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝜇𝜇 2

𝑛𝑛



Recipe for GMM EM
• For each speaker, we learn a GMM given all 𝑇𝑇 frames of their 

training data.

1. Initialize: Guess 𝜃𝜃 = 𝜔𝜔𝑚𝑚,𝜇𝜇𝑚𝑚, Σ𝑚𝑚  for 𝑚𝑚 = 1. .𝑀𝑀 
  either uniformly, randomly, or by k-means 

 clustering.

2. E-step: Compute 𝑃𝑃𝜃𝜃(Γ𝑚𝑚|𝑥𝑥𝑡𝑡).

3. M-step: Update parameters for 𝜔𝜔𝑚𝑚, 𝜇𝜇𝑚𝑚,Σ𝑚𝑚  with 
�𝜔𝜔𝑚𝑚, �𝜇𝜇𝑚𝑚, �Σ𝑚𝑚  as described on slide 29.
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