Speech Features and Speaker Classfication

CSC401/2511 - Natural Language Computing - Winter 2024
Lecture 9

Contents

- Today we will
- Define some common feature vectors for speech processing
- Use them as input to a GMM-based speaker classification system
- All of this is part of A3

SPEECH FEATURES

Recall the spectrogram pipeline

Problems with spectrograms

- As input to speech systems, spectrograms are...
- Too big
- The discrete signal is usually 16,000 samps/sec
- 100 frames/sec x 400 samps/frame $=40,000$ samps/sec!
- Too linear
- Pitch perception is log-linear (recall Mels)
- Lots of coefficients wasted on high frequencies
- Too entangled
- Speaker and phoneme info is correlated

Filtering

- To reduce the size of the spectra, we filter it with filters from a filter bank
- Each filter is a signal whose spectrum $F_{m} \in \mathbb{R}^{N}$ picks out small a range (or band) of frequencies
- The bands of the M filters are overlapping and span the spectrum
- A filter coefficient is computed as the log of the dot product of the magnitude of the frame X_{t} and filter F_{m} spectra:

$$
c_{t, m}=\log \sum_{n=1}^{N}\left|X_{t}\right|[n]\left|F_{m}\right|[n]
$$

- If there are T frames, this gives us a real-valued feature matrix of size $T \times M$
- $M=40$ is a lot smaller than 400 !

The mel-scale filter bank

- The mel-scale triangular overlapping filter bank, or f-bank, is a popular choice
- The filter's vertices are arranged along the mel-scale
- Ascending frequency = wider bands

The source-filter model

- In vowels, the sound signal emitted from the glottis g is filtered by the vocal tract v
- The source-filter model of speech assumes

$$
|X[n]|=|G[n]||V[n]|
$$

- $|V|$ is responsible for the smooth shape (envelope)
- $|G|$ is responsible for all the bumps (FO harmonics)

The cepstrum

- We can get at $|V|$ by computing the cepstrum \hat{x}
- The cepstrum is $\log |X|$ transformed by the inverse DFT
- Because $\log |X|=\log |G|+\log |V|$, and DFT^{-1} is linear

$$
\hat{x}[n]=\hat{g}[n]+\hat{v}[n]
$$

- $D F T^{-1} \approx D F T$, so \hat{x} is like the spectrum of $\log |X|$
- $|V|$ is slower-moving than $|G|$, so $\hat{\mathrm{v}}[n]$ is higher for lower n (lower frequency of frequency)

Gold et al (2011)

Mel-Frequency Cepstral Coefficients

- MFCCs are the coefficients of the cepstrum of F-bank coefficients
- Altogether

- MFCCs are useful for models which can't handle speaker correlations themselves, like (diagonal) GMMs
- F-banks are better for those which can, like NNs

GAUSSIAN MIXTURES

Classifying speech sounds

Note: The vowel trapezoid's dimensions were physical

- Speech sounds can cluster. This graph shows vowels, each in their own colour, according to the $1^{\text {st }}$ two formants.

Classify speakers by cluster attributes

- Similarly, all of the speech produced by one speaker will cluster differently in the Mel space than speech from another speaker.
- We can \therefore decide if a given observation comes from one speaker or another.

Observation matrix

Speaker classification

- Speaker classification: n. picking the most likely speaker among several speakers given only acoustics.
- Each speaker will produce speech according to different probability distributions.
- We train a statistical model, given annotated data (mapping utterances to speakers).
- We choose the speaker whose model gives the highest probability for an observation.

Fitting continuous distributions

- Since we are operating with continuous variables, we need to fit continuous probability functions to a discrete number of observations.
- If we assume the 1-dimensional data in this histogram is Normally distributed, we can fit a continuous Gaussian function simply in terms of the mean μ and variance σ^{2}.

Univariate (1D) Gaussians

- Also known as Normal distributions, $N(\mu, \sigma)$
- $P(x ; \mu, \sigma)=\frac{\exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)}{\sqrt{2 \pi} \sigma}$

- The parameters we can modify are $\boldsymbol{\theta}=\left\langle\boldsymbol{\mu}, \boldsymbol{\sigma}^{2}\right\rangle$

$$
\begin{aligned}
& \mu=E(x)=\int x \cdot P(x) d x \text { (mean) } \\
& \sigma^{2}=E\left((x-\mu)^{2}\right)=\int(x-\mu)^{2} P(x) d x \text { (variance) }
\end{aligned}
$$

Maximum likelihood estimation

- Given data $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, MLE produces an estimate of the parameters $\hat{\theta}$ by maximizing the likelihood, $L(X, \theta)$:

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmax}} L(X, \theta)
$$

where $\boldsymbol{L}(\boldsymbol{X}, \boldsymbol{\theta})=\boldsymbol{P}(\boldsymbol{X} ; \boldsymbol{\theta})=\prod_{i=1}^{n} P\left(x_{i} ; \theta\right)$.

- Since $L(X, \theta)$ provides a surface over all $\boldsymbol{\theta}$, in order to find the highest likelihood, we look at the derivative

$$
\frac{\delta}{\delta \theta} L(X, \theta)=0
$$

to see at which point the likelihood stops growing.

MLE with univariate Gaussians

- Estimate μ :

$$
\begin{gathered}
L(X, \mu)=P(X ; \mu)=\prod_{i=1}^{n} P\left(x_{i} ; \theta\right)=\prod_{i=1}^{n} \frac{\exp \left(-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right)}{\sqrt{2 \pi} \sigma} \\
\log L(X, \mu)=-\frac{\sum_{i}\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}-n \log (\sqrt{2 \pi} \sigma) \\
\frac{\delta}{\delta \mu} \log L(X, \mu)=\frac{\sum_{i}\left(x_{i}-\mu\right)}{\sigma^{2}}=0 \\
\mu=\frac{\sum_{i} x_{i}}{n}
\end{gathered}
$$

- Similarly, $\sigma^{2}=\frac{\sum_{i}\left(x_{i}-\mu\right)^{2}}{n}$

Multivariate Gaussians

- When data is \boldsymbol{d}-dimensional, the input variable is

$$
\vec{x}=\langle x[1], x[2], \ldots, x[d]\rangle
$$

the mean is

$$
\vec{\mu}=E(\vec{x})=\langle\mu[1], \mu[2], \ldots, \mu[d]\rangle
$$

the covariance matrix is

$$
\Sigma[i, j]=E(x[i] x[j])-\mu[i] \mu[j]
$$

and

$$
P(\vec{x})=\frac{\exp \left(-\frac{(\vec{x}-\vec{\mu})^{\top} \Sigma^{-1}(\vec{x}-\vec{\mu})}{2}\right)}{(2 \pi)^{\frac{d}{2}}|\Sigma|^{\frac{1}{2}}}
$$

A^{\top} is the transpose of A A^{-1} is the inverse of A $|A|$ is the determinant of A

Intuitions of covariance

$$
\begin{gathered}
\mu=\left[\begin{array}{ll}
0 & 0
\end{array}\right. \\
\Sigma=\mathrm{I}
\end{gathered}
$$

$$
\begin{gathered}
\mu=\left[\begin{array}{ll}
0 & 0
\end{array}\right] \\
\Sigma=0.6 I
\end{gathered}
$$

$$
\begin{gathered}
\mu=\left[\begin{array}{ll}
0 & 0
\end{array}\right] \\
\Sigma=2.0 I
\end{gathered}
$$

- As values in Σ become larger, the Gaussian spreads out.
- (I is the identity matrix)

Intuitions of covariance

$$
\Sigma=\left[\begin{array}{cc}
2 & 0 \\
0 & 0.6
\end{array}\right]
$$

- Different values on the diagonal result in different variances in their respective dimensions

Non-Gaussian observations

- Speech data are generally not unimodal.
- The observations below are bimodal, so fitting one Gaussian would not be representative.

Mixtures of Gaussians

- Gaussian mixture models (GMMs) are a weighted linear combination of M component Gaussians, $\left\langle\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{M}\right\rangle$:

Observation likelihoods

- Assuming MFCC dimensions are independent of one another, the covariance matrix is diagonal - i.e., 0 off the diagonal.
- Therefore, the probability of an observation vector given a Gaussian becomes

$$
P\left(\vec{x} \mid \Gamma_{m}\right)=\frac{\exp \left(-\frac{1}{2} \sum_{i=1}^{d} \frac{\left(x[i]-\mu_{m}[i]\right)^{2}}{\Sigma_{m}[i]}\right)}{(2 \pi)^{\frac{d}{2}}\left(\prod_{i=1}^{d} \Sigma_{m}[i]\right)^{\frac{1}{2}}}
$$

- Imagine that a GMM first chooses a Gaussian, then emits an observation from that Gaussian.

MLE for GMMs

- Let $\omega_{m}=P\left(\Gamma_{m}\right)$ and $b_{m}\left(\overrightarrow{x_{t}}\right)=P\left(\overrightarrow{x_{t}} \mid \Gamma_{m}\right)$,

$$
P_{\theta}\left(\overrightarrow{x_{t}}\right)=\sum_{m=1}^{M} \omega_{m} b_{m}\left(\overrightarrow{x_{t}}\right)
$$

where $\boldsymbol{\theta}=\left\langle\boldsymbol{\omega}_{m}, \overrightarrow{\boldsymbol{\mu}_{m}}, \boldsymbol{\Sigma}_{m}\right\rangle$ for $m=1 . . M$

- To estimate θ, we solve $\nabla_{\theta} \log L(X, \theta)=0$ where

$$
\log L(X, \theta)=\sum_{t=1}^{T} \log P_{\theta}\left(\overrightarrow{x_{t}}\right)=\sum_{t=1}^{T} \log \sum_{m=1}^{M} \omega_{m} b_{m}\left(\overrightarrow{x_{t}}\right)
$$

MLE for GMMs

- What happens when we try to find a maximum for $\mu_{m}[n]$?

$$
\begin{gathered}
\frac{\delta \log L(X, \theta)}{\delta \mu_{m}[n]}=\sum_{t=1}^{T} \frac{\delta}{\delta \mu_{m}[n]} \log \sum_{m^{\prime}=1}^{M} \omega_{m^{\prime}} b_{m^{\prime}}\left(\overrightarrow{x_{t}}\right)=0 \\
\sum_{t=1}^{T} \frac{1}{P_{\theta}\left(\overrightarrow{x_{t}}\right)} \frac{\delta}{\delta \mu_{m}[n]} \omega_{m} b_{m}\left(\overrightarrow{x_{t}}\right)=\sum_{t=1}^{T} \frac{\omega_{m} b_{m}\left(\overrightarrow{x_{t}}\right)}{P_{\theta}\left(\overrightarrow{x_{t}}\right)}\left(\frac{x_{t}[n]-\mu_{m}[n]}{\Sigma_{m}[n]^{2}}\right)=0 \\
\mu_{m}[n]=\frac{\sum_{t=1}^{T} \frac{\omega_{m} b_{m}\left(\overrightarrow{x_{t}}\right)}{P_{\theta}\left(\overrightarrow{x_{t}}\right)} x_{t}[n]}{\sum_{t=1}^{T} \frac{\omega_{m} b_{m}\left(\overrightarrow{x_{t}}\right)}{P_{\theta}\left(\overrightarrow{x_{t}}\right)}}=\frac{\sum_{t=1}^{T} P_{\theta}\left(\Gamma_{m} \mid \overrightarrow{x_{t}}\right) x_{t}[n]}{\sum_{t=1}^{T} P_{\theta}\left(\Gamma_{m} \mid \bar{x}_{t}\right)}
\end{gathered}
$$

But this involves $\mu_{m}[n]$!

Learning mixtures of gaussians

- If we knew which Gaussian generated each sample, then $\left\langle\overrightarrow{\mu_{m}}, \Sigma_{m}\right\rangle$ can be learned by MLE.
- The MLE of $P\left(\Gamma_{j}\right)$ would likewise be the count $\frac{\# \overrightarrow{x_{t}} \text { from } \Gamma_{j}}{T}$
- But we don't know this!
- Instead, we guess at "soft" mixture assignments $P_{\theta}\left(\Gamma_{m} \mid \overrightarrow{x_{t}}\right)$ from another model...
- ...which we got from a previous round of maximization

Expectation-Maximization for GMMs

- Overall idea:
- First, initialize a set of model parameters.
- "Expectation": Compute the expected probabilities of observation, given these parameters.
- "Maximization": Update the parameters to maximize the aforementioned probabilities.
- Repeat.

Expectation-Maximization for GMMs

- The expectation step gives us:

$$
P_{\theta}\left(\Gamma_{m} \mid \overrightarrow{x_{t}}\right)=\frac{\omega_{m} b_{m}\left(\overrightarrow{x_{t}}\right)}{P_{\theta}\left(\overrightarrow{x_{t}}\right)}
$$

Proportion of overall probability contributed by m

- The maximization step gives us:

$$
\begin{gathered}
\widehat{\overrightarrow{\mu_{m}}}=\frac{\sum_{t} P_{\theta}\left(\Gamma_{m} \mid \overrightarrow{x_{t}}\right) \overrightarrow{x_{t}}}{\sum_{t} P_{\theta}\left(\Gamma_{m} \mid \overrightarrow{x_{t}}\right)} \\
\widehat{\sum_{m}}=\frac{\sum_{t} P_{\theta}\left(\Gamma_{m} \mid \overrightarrow{x_{t}}\right){\overrightarrow{x_{t}}}^{2}}{\sum_{t} P_{\theta}\left(\Gamma_{m} \mid \overrightarrow{x_{t}}\right)}-{\widehat{\overrightarrow{\mu_{m}}}}^{2} \\
\widehat{\omega_{m}}=\frac{1}{T} \sum_{t=1}^{T} P_{\theta}\left(\Gamma_{m} \mid \overrightarrow{x_{t}}\right)
\end{gathered}
$$

Recall from slide 18, MLE wants:

$$
\begin{gathered}
\mu=\frac{\sum_{i} x_{i}}{n} \\
\sigma^{2}=\frac{\sum_{i}\left(x_{i}-\mu\right)^{2}}{n}
\end{gathered}
$$

Recipe for GMM EM

- For each speaker, we learn a GMM given all T frames of their training data.

1. Initialize: Guess $\theta=\left\langle\omega_{m}, \overrightarrow{\mu_{m}}, \Sigma_{m}\right\rangle$ for $m=1 . . M$ either uniformly, randomly, or by k-means clustering.
2. E-step: Compute $P_{\theta}\left(\Gamma_{m} \mid \overrightarrow{x_{t}}\right)$.
3. \mathbf{M}-step: Update parameters for $\left\langle\omega_{m}, \overrightarrow{\mu_{m}}, \Sigma_{m}\right\rangle$ with $\left\langle\widehat{\omega_{m}}, \widehat{\mu_{m}}, \widehat{\nu_{m}}\right\rangle$ as described on slide 29.
