
Huggingface Transformers:
A short introduction

CSC401/2511 – Natural Language Computing – Winter 2023
University of Toronto

1

Logistics
• Today’s lecture will only last 35 minutes

• 10am session: The last 15 minutes is a survey.
• 11am session: The first 15 minutes is a survey.

• Contents: sentiment analysis with a huggingface model.
• I’ll introduce some key features of huggingface.

• After today’s lecture, you will be able to start working on
Assignment 3.

2

Assignment 3 update 1: cuda
• In the test() function for classifier.py: change args.use_cuda to

args.use_gpu

3

Change to use_gpu

Assignment 3 update 2: package
• Currently, the package importlib-metadata is not present on the

wolf server – I asked the instruction support to install.

• A walkaround is to modify the lines in utils.py:
• Comment out line 14 “import importlib_metadata”
• Change line 20 into _torch_version = torch.__version__

4

Recap: Sentiment Analysis
• Is this IMDB movie review a positive one?

5

This is not a movie for fans of the usual eerie Lynch stuff. Rather, it's for those
who either appreciate a good story, or have grown tired of the run-of-the-mill
stuff with overt sentimentalism […]

The story unfolds flawlessly,
and we are taken along a journey that, I believe, most of us will come to
recognize at some time. A compassionate, existentialist journey where we
make amends for our past when approaching ourt inevitable demise.

Acting is without faults, cinematography likewise (occasionally quite
brilliant!), and the dialogue leaves out just enough for the viewer to grasp the
details od the story.

A warm movie. Not excessively sentimental.

Recap: DNN-based NLU

6

Downstream
task data

Pre-trained
Language Model

Prediction results

Huggingface Transformers provides a convenient workflow for building
DNN-based NLU systems.

Overview of the pipeline
• An overview of the pipeline that you will use for A3:

7

Text

BERTForSequenceClassification

Tokenizer
Input_ids

Attention_masks

Pre-trained
BERT Classifier

System
outputs

Overview of the pipeline
• An overview of the pipeline that you will use for A3:

8

Text

BERTForSequenceClassification

Tokenizer
Input_ids

Attention_masks

Pre-trained
BERT Classifier

System
outputs

Tokenizer
NLP systems need a tokenizer to encode texts into numbers.

9

“This is an example
sentence.” 123, 657, 28378, …

Tokenize

Decode

(A list of
tokens)

Encode = tokenize, and then convert_tokens_to_ids

Convert tokens to ids

Tokenization: word splitting
• Method 1: .split(), then look up the word index in a dictionary.

• Words with the same lemma forms are considered as different words.
E.g., “convert” vs “converts”

• Punctuations are not handled well.
E.g., “The end of a sentence. The start of the other”

10

“This is an example
sentence.”

[“This”, “is”, “an”,
“example”, “sentence.”]

Tokenize

Tokenization: better word splitting
• Method 2: Separate the words and the punctuations, then do

.split(), then look up the word index from the dictionary.
• Still, “convert” and “converts” are treated as different words.
• The vocabulary sizes are unnecessarily large.
• In multilingual tasks, the vocabulary sizes are even larger.

…although many English words have the same roots.
Some examples: geography, bibliography

11

“This is an example
sentence.”

[“This”, “is”, “an”,
“example”, “sentence”, “.”]

Tokenize

Tokenization: character encoding
• Method 3: Character / Byte-level encoding

• Example: CANINE (Lecture 7)
• The vocabulary size is significantly reduced.
• but how long are your sequence going to be?

• Can we strike a balance between character-level encoding and
word-level encoding?

12

“This is an example
sentence.”

[“T”, “h”, “I”, “s”, “ ”, “i”,
“s”, ” “, …]

Tokenize

Tokenization: subword
• Method 4: subword.

• This is adopted by popular LMs, including BERT and *GPT.
• The words to split, and the methods of splitting, differs.

In CSC401/2511: don’t worry about that ^.
• Each pretrained language model comes with its own tokenizer.

13

Let’s</w> do</w> token ization</w> !</w>

Loading and using the tokenizer

14

Two-step encoding process
• Calling tokenizer(sentence) is equivalent to:

• tokens = tokenizer.tokenize(sentence), and then:
• tokenizer.convert_tokens_to_ids(tokens)

• Details will be presented in Friday’s tutorial.

15

Overview of the pipeline
• An overview of the pipeline

16

Text

BERTForSequenceClassification

Tokenizer
Input_ids

Attention_masks

Pre-trained
BERT

Classifier (just a
Linear head)

System
outputs

BERTmodel

• BERTmodel is the encoder part of
the Transformer:

• Also ref: Lecture 7

17

BERT doesn’t
have this part –
this part is GPT.

Lecture review questions
By the end of this lecture, you should be able to:
• Describe what is tokenization.

• Use huggingface’s tokenizer
• Describe a BERT for Sequential Classifier system.
• Start working on Q3 and Q4 in Assignment 3.

• Friday’s tutorial will also be helpful for Q3.
• Q2: Not yet. Speech Recognition is in next week.

Anonymous feedback form: https://forms.gle/W3i6AHaE4uRx2FAJA

18

https://forms.gle/W3i6AHaE4uRx2FAJA

