

Logistics (Mar 1, 2023)

- A2 released on Feb 11, due Mar 10
- Please do not share assignment codes after you are done
- A2 tutorials' planned schedule:
- Feb 17: A2 tutorial - 1: Intro to PyTorch (ft. Gavin Guan).
- Mar 3: A2 tutorial - 2: Machine translation (ft. Frank Niu)
- Mar 10: A2 - Q/A and OH (submission due at mid-night)
- Office hours: Wed $12.30 \mathrm{am}-1.30 \mathrm{pm}$ (zoom, note the channel)
- Final exam: planned in-person
- Lecture feedback form:
- Anonymous
- Please share any thoughts/suggestions
- Questions?

Observable Markov model

- We've seen this type of model:
- e.g., consider the 7-word vocabulary:
\{ship, pass, camp,frock, soccer, mother, tops $\}$
- What is the probability of the sequence
ship, ship,pass, ship,tops ?
- Assuming a bigram model (i.e., $1^{\text {st }}$-order Markov), $P($ ship $\mid<\mathrm{s}>) P($ ship \mid ship $) P($ pass \mid ship $)$
- P(ship|pass)P(tops|ship)

Observable Markov model

- This can be conceptualized graphically.
- We start with N states, $s_{1}, s_{2}, \ldots, s_{N}$ that represent unique observations in the world.
- Here, $N=7$ and each state represents one of the words we can observe.

Observable Markov model

- We have discrete timesteps, $t=0, t=1, \ldots$
- On the $t^{t h}$ timestep the system is in exactly one of the available states, q_{t}.
- $q_{t} \in\left\{s_{1}, s_{2}, \ldots, s_{N}\right\}$
- We could start in any state. The probability of starting with a particular state s is $P\left(q_{0}=s\right)=\pi(s)$

Observable Markov model

- At each step we must move to a state with some probability.
- Here, an arrow from q_{t} to q_{t+1} represents
$P\left(q_{t+1} \mid q_{t}\right)$
- $P($ ship \mid ship $)$
- $P($ tops|ship $)$
- P(pass|ship)
- $P($ frock \mid ship $)=0$

Observable Markov model

- Probabilities on all outgoing arcs must sum to 1.
- $P($ ship \mid ship $)+$ $P($ tops \mid ship $)+$ $P($ pass \mid ship $)=1$
- $P($ ship \mid tops $)+$ $P($ tops \mid tops $)+$ $P($ mother \mid tops $)=1$

Using the graph

Random walk

Generate sequences by transitioning between states.

Observation likelihood
Given a path, build its probability.

A multivariate system

- What if the probabilities of observing words depended only on some other variable, like mood?

word	$P($ word $)$
ship	0.1
pass	0.05
camp	0.05
frock	0.6
soccer	0.05
mother	0.1
tops	0.05

A multivariate system

- What if that variable changes over time?
- e.g., I'm happy one second and disgusted the next.
- Here, state \equiv mood
observation \equiv word.

word	P (word)
ship	0.25
pass	0.25
camp	0.05
frock	0.3
soccer	0.05
mother	0.09
tops	0.01

Observable multivariate systems

- Imagine you have access to my emotional state somehow.
- All your data are completely observable at every time step.
- E.g.,

t	0	1	2	\ldots
state	$=$	0	0	\ldots
word	mother	frock	soccer	\ldots

三
$\langle m o t h e r$, frock, soccer $\rangle,\langle(\cdot), \cdot)\rangle$

Observable multivariate systems

- What is the probability of a sequence of words and states?
- $P\left(w_{0: t}, q_{0: t}\right)=P\left(q_{0: t}\right) P\left(w_{0: t} \mid q_{0: t}\right) \approx \prod_{i=0}^{t} P\left(q_{i} \mid q_{i-1}\right) P\left(w_{i} \mid q_{i}\right)$

- e.g.,

$$
P(\langle\text { ship,pass }\rangle,\langle:,:\rangle)=P\left(q_{0}=:\right) P(\text { ship } \mid *) P(: \mid:) P(\text { pass } \mid:)
$$

Observable multivariate systems

- Q: How do you learn these probabilities?
- $P\left(w_{0: t}, q_{0: t}\right) \approx \prod_{i=0}^{t} \underline{\underline{P\left(q_{i} \mid q_{i-1}\right)}} P\left(w_{i} \mid q_{i}\right)$

- A: When all data are observed, basically the same as before.
- $P\left(q_{i} \mid q_{i-1}\right)=\frac{P\left(q_{i-1} q_{i}\right)}{P\left(q_{i-1}\right)}$ is learned with MLE from training data.
- $P\left(w_{i} \mid q_{i}\right)=\frac{P\left(w_{i}, q_{i}\right)}{P\left(q_{i}\right)}$ is also learned with MLE from training data.

Hidden variables

- Q: What if you don't know the states during testing?
- e.g., compute $P(\langle$ ship, ship,pass,frock $\rangle)$
- Q: What if you don't know the states during training?

Examples of hidden phenomena

- We want to represent surface (i.e., observable) phenomena as the output of hidden underlying systems.
- e.g.,
- Words are the outputs of hidden parts-of-speech,
- French phrases are the outputs of hidden English phrases,
- Speech sounds are the outputs of hidden phonemes.
- in other fields,
- Encrypted symbols are the outputs of hidden messages,
- Genes are the outputs of hidden functional relationships,
- Weather is the output of hidden climate conditions,
- Stock prices are the outputs of hidden market conditions,

Definition of an HMM

- A hidden Markov model (HMM) is specified by the 5-tuple $\{S, W, \Pi, A, B\}$:
- $S=\left\{s_{1}, \ldots, S_{N}\right\}$
- $W=\left\{w_{1}, \ldots, w_{K}\right\}$
: set of states (e.g., moods)
: output alphabet (e.g., words)
$\theta\left\{\begin{array}{l}\bullet \Pi=\left\{\pi_{1}, \ldots, \pi_{N}\right\} \\ \bullet A=\left\{a_{i j}\right\}, i, j \in S\end{array}\right.$
: initial state probabilities
- $B=b_{i}(w), i \in S, w \in W$: state output probabilities
yielding
- $Q=\left\{q_{0}, \ldots, q_{T-1}\right\}, q_{i} \in S$: state sequence
- $\mathcal{O}=\left\{\sigma_{0}, \ldots, \sigma_{T-1}\right\}, \sigma_{i} \in W$: output sequence

A hidden Markov production process

- An HMM is a representation of a process in the world.
- We can synthesize data, as in Shannon's game.
- This is how an HMM generates new sequences:
- $t:=0$
- Start in state $q_{0}=s_{i}$ with probability π_{i}
- Emit observation symbol $\sigma_{0}=w_{k}$ with probability $b_{i}\left(\sigma_{0}\right)$
- While (not forever)
- Go from state $q_{t}=s_{i}$ to state $q_{t+1}=s_{j}$ with probability $a_{i j}$
- Emit observation symbol $\sigma_{t+1}=w_{k}$ with probability
$b_{j}\left(\sigma_{t+1}\right)$
- $t:=t+1$

Fundamental tasks for HMMs

1. Given a model with particular parameters $\theta=\langle\Pi, A, B\rangle$, how do we efficiently compute the likelihood of a particular observation sequence, $P(\mathcal{O} ; \theta)$?

We previously computed the probabilities of word sequences using N-grams.

The probability of a particular sequence is usually useful as a means to some other end.

Fundamental tasks for HMMs

2. Given an observation sequence \mathcal{O} and a model θ, how do we choose a state sequence $Q=\left\{q_{0}, \ldots, q_{T-1}\right\}$ that best explains the observations?

This is the task of inference - i.e., guessing at the best explanation of unknown ('latent') variables given our model.

This is often an important part of classification.

Fundamental tasks for HMMs

3. Given a large observation sequence \mathcal{O}, how do we choose the best parameters $\theta=\langle\Pi, A, B\rangle$ that explain the data \mathcal{O} ?

This is the task of training.

As before, we want our parameters to be set so that the available training data is maximally likely,
But doing so will involve guessing unseen information.

Task 1: Computing $P(\mathcal{O} ; \theta)$

- We've seen the probability of a joint sequence of observations and states:

$$
\begin{aligned}
P(\mathcal{O}, Q ; \theta) & =P(\mathcal{O} \mid Q ; \theta) P(Q ; \theta) \\
& =\pi_{q_{0}} b_{q_{0}}\left(\sigma_{0}\right) a_{q_{0} q_{1}} b_{q_{1}}\left(\sigma_{1}\right) a_{q_{1} q_{2}} b_{q_{2}}\left(\sigma_{2}\right) \ldots
\end{aligned}
$$

- To get the probability of our observations without seeing the state, we must sum over all possible state sequences:

$$
P(\mathcal{O} ; \theta)=\sum_{Q} P(\mathcal{O}, Q ; \theta)=\sum_{Q} P(\mathcal{O} \mid Q ; \theta) P(Q ; \theta) .
$$

Computing $P(\mathcal{O} ; \theta)$ naïvely

- To get the total probability of our observations, we could directly sum over all possible state sequences:

$$
P(\mathcal{O} ; \theta)=\sum_{Q} P(\mathcal{O} \mid Q ; \theta) P(Q ; \theta)
$$

- For observations of length T, each state sequence involves $2 T$ multiplications (1 for each state transition, 1 for each observation, 1 for the start state, minus 1).
- There are up to N^{T} possible state sequences of length T given N states.

$$
\therefore \sim(1+T+T-1) \cdot N^{T} \text { multiplications }
$$

Computing $P(\mathcal{O} ; \theta)$ cleverly

- To avoid this complexity, we use dynamic programming; we remember, rather than recompute, partial results.
- We make a trellis which is an array of states vs. time.
- The element at (i, t) is $\alpha_{i}(t)$
the probability of being in state i at time t after seeing all observations to that point:
$P\left(\sigma_{o: t}, q_{t}=s_{i} ; \theta\right)$

Trellis

Alternative paths through the trellis

AND SO ON...

Trellis

The Forward procedure

- To compute

$$
\alpha_{i}(t)=P\left(\sigma_{0: t}, q_{t}=s_{i} ; \theta\right)
$$

we can compute $\alpha_{j}(t-1)$ for possible previous states s_{j}, then use our knowledge of $a_{j i}$ and $b_{i}\left(\sigma_{t}\right)$

- We compute the trellis left-to-right (because of the convention of time) and top-to-bottom ('just because').
- Remember: σ_{t} is fixed and known.
$\alpha_{i}(t)$ is agnostic of the future.

The Forward procedure

- The trellis is computed left-to-right and top-to-bottom.
- There are three steps in this procedure:
- Initialization: Compute the nodes in the first column of the trellis ($t=0$).
- Induction:

Iteratively compute the nodes in the rest of the trellis $(1 \leq t<T)$.

- Conclusion:

Sum over the nodes in the last column of the trellis ($t=T-1$).

Initialization of Forward procedure

Induction of Forward procedure

Induction of Forward procedure

Conclusion of Forward procedure

The Forward procedure - Example

- Let's compute P(〈mother, frock, ship \rangle)

The Forward procedure - Example

- Let's compute P(〈mother, frock, ship \rangle)

The Forward procedure - Example

- Let's compute P(〈mother, frock, ship $\rangle)$

The Forward procedure - Example

- Let's compute P(〈mother, frock, ship \rangle)

The Forward procedure - Example

- Let's compute P(〈mother, frock, ship $\rangle)$

The Forward procedure

- The naïve approach needed $(2 T) \cdot N^{T}$ multiplications.
- The Forward procedure (using dynamic programming) needs only $2 N^{2} T$ multiplications. ()
- The Forward procedure gives us $P(\mathcal{O} ; \theta)$.
- Clearly, but less intuitively, we can also compute the trellis from back-to-front, i.e., backwards in time...

Remember the point

- The point was to compute the equivalent of

$$
P(\mathcal{O} ; \theta)=\sum_{Q} P(\mathcal{O}, Q ; \theta)
$$

where

$$
\begin{aligned}
P(0, Q ; \theta) & =P(0 \mid Q ; \theta) P(Q ; \theta) \\
& =\pi_{q_{0}} b_{q_{0}}\left(\sigma_{0}\right) a_{q_{0} q_{1}} b_{q_{1}}\left(\sigma_{1}\right) a_{q_{1} q_{2}} b_{q_{2}}\left(\sigma_{2}\right) \ldots
\end{aligned}
$$

The Forward algorithm stores all possible 1-state sequences (from the start), to store all possible 2-state sequences (from the start), to store all possible 3 -state sequences (from the start)...

Remember the point

- But, we can compute these factors in reverse $P(\mathcal{O}, Q ; \theta)=P(\mathcal{O} \mid Q ; \theta) P(Q ; \theta)$
$=\pi_{q_{0}} \ldots b_{q_{T-3}}\left(\sigma_{T-3}\right) a_{q_{T-3} q_{T-2}} b_{q_{T-2}}\left(\sigma_{T-2}\right) a_{q_{T-2} q_{T-1}} b_{q_{T-1}}\left(\sigma_{T-1}\right)$
$\beta_{i}(T-4) \xrightarrow{\beta_{i}(T-3)} \begin{aligned} & \beta_{i}(T-2) \\ & \end{aligned}$

We can still deal with sequences that evolve forward in time, but simply store temporary results in reverse...

The Backward procedure

- In the $(i, t)^{t h}$ node of the trellis, we store

$$
\begin{aligned}
\beta_{i}(t) & =P\left(\sigma_{t+1: T-1} \mid \sigma_{0: t}, q_{t}=s_{i} ; \theta\right) \\
& =P\left(\sigma_{t+1: T-1} \mid q_{t}=s_{i} ; \theta\right)
\end{aligned}
$$

which is computed by summing probabilities on outgoing arcs from that node.
$\beta_{i}(t)$ is the probability of starting in state i at time t then observing everything that comes thereafter.

- The trellis is computed right-to-left and top-to-bottom.

Step 1: Backward initialization

Step 2: Backward induction

Step 3: Backward conclusion

The Backward procedure

- Initialization

$$
\beta_{i}(T-1)=1,
$$

$$
i:=1 . . N
$$

- Induction

$$
\begin{array}{ll}
\beta_{i}(t)=\sum_{j=1}^{N} a_{i j} b_{j}\left(\sigma_{t+1}\right) \beta_{j}(t+1), & i:=1 . . N \\
& t:=T-2 . .0
\end{array}
$$

- Conclusion

$$
P(\mathcal{O} ; \theta)=\sum_{i=1}^{N} \pi_{i} b_{i}\left(\sigma_{0}\right) \beta_{i}(0)
$$

The Backward procedure - so what?

- The combination of Forward and Backward procedures will be vital for solving parameter re-estimation, i.e., training.
- Generally, we can combine α and β at any point in time to represent the probability of an entire observation sequence...

Combining α and β

Fundamental tasks for HMMs

2. Given an observation sequence \mathcal{O} and a model θ, how do we choose a state sequence $Q^{*}=\left\{q_{0}, \ldots, q_{T-1}\right\}$ that best explains the observations?

This is the task of inference - i.e., guessing at the best explanation of unknown ('latent') variables given our model.

This is often an important part of classification.

Task 2: Choosing $Q^{*}=\left\{q_{0} \ldots q_{T-1}\right\}$

- The purpose of finding the best state sequence \boldsymbol{Q}^{*} out of all possible state sequences Q is that it tells us what is most likely to be going on 'under the hood'.
- With the Forward algorithm, we didn't care about specific state sequences - we were summing over all possible state sequences.

Task 2: Choosing $Q^{*}=\left\{q_{0} \ldots q_{T-1}\right\}$

- In other words,

$$
Q^{*}=\underset{Q}{\operatorname{argmax}} P(\mathcal{O}, Q ; \theta)
$$

where

$$
P(\mathcal{O}, Q ; \theta)=\pi_{q_{0}} b_{q_{0}}\left(\sigma_{0}\right) \prod_{t=1}^{T-1} a_{q_{t-1} q_{t}} b_{q_{t}}\left(\sigma_{t}\right)
$$

Why choose $Q^{*}=\left\{q_{0} \ldots q_{T-1}\right\} ?$

- Recall the purpose of HMMs:
- To represent multivariate systems where some variable is unknown/hidden/latent.
- Finding the best hidden-state sequence Q^{*} allows us to:
- Identify unseen parts-of-speech given words,
- Identify equivalent English words given French words,
- Identify unknown phonemes given speech sounds,
- Decipher hidden messages from encrypted symbols,
- Identify hidden relationships from gene sequences,
- Identify hidden market conditions given stock prices,
- ...

Example - PoS state sequences

- Will/MD the/DT chair/NN chair/?? the/DT meeting/NN from/IN that/DT chair/NN?
a)

b)

Recall

- Observation likelihoods depend on the state, which changes over time
- We cannot simply choose the state that maximizes the probability of o_{t} without considering the state sequence.

word	$P($ word $)$
ship	0.25
pass	0.25
camp	0.05
frock	0.3
soccer	0.05
mother	0.09
tops	0.01

word	$P($ word $)$	
ship	0.3	
pass	0	
	camp	0
	frock	0.2
	soccer	0.05
	mother	0.05
	tops	0.4

The Viterbi algorithm

- The Viterbi algorithm is an inductive dynamicprogramming algorithm that uses a new kind of trellis.
- We define the probability of the most probable path leading to the trellis node at (state i, time t) as

$$
\delta_{i}(\boldsymbol{t})=\max _{q_{0} \ldots q_{t-1}} P\left(q_{0} \ldots q_{t-1}, \sigma_{0} \ldots \sigma_{t}, \boldsymbol{q}_{\boldsymbol{t}}=\boldsymbol{s}_{\boldsymbol{i}} ; \theta\right)
$$

- $\psi_{i}(t)$: The best possible previous state, if If I'm in state i at time t.

Viterbi example

- For illustration, we assume a simpler state-transition topology:

word	$P($ word $)$
ship	0.25
pass	0.25
camp	0.05
frock	0.3
soccer	0.05
mother	0.09
tops	0.01

word	$\mathrm{P}($ word $)$
ship	0.3
pass	0
camp	0
frock	0.2
soccer	0.05
mother	0.05
tops	0.4

Step 1: Initialization of Viterbi

- Initialize with $\delta_{i}(0)=\pi_{i} b_{i}\left(\sigma_{0}\right)$ and $\psi_{i}(0)=0$ for all states.

1
2

Time, t

Step 1: Initialization of Viterbi

- For example, let's assume

$$
\pi_{d}=0.8, \pi_{h}=0.2 \quad \text { and }
$$

$\mathcal{O}=$ ship, frock, tops

δ : max probability
ψ : backtrace

$$
\sigma_{1}=\text { frock }
$$

$$
\sigma_{2}=\text { tops }
$$

Observations, σ_{t}

Step 2: Induction of Viterbi

The best path to state s_{j} at time $t, \delta_{j}(t)$, depends on the best path to each possible previous state, $\delta_{i}(t-1)$, and their transitions to $j, a_{i j}$

$$
\begin{gathered}
\delta_{j}(t)=\max _{i}\left[\delta_{i}(t-1) a_{i j}\right] b_{j}\left(\sigma_{t}\right) \\
\boldsymbol{\psi}_{\boldsymbol{j}}(\boldsymbol{t})=\underset{\boldsymbol{i}}{\operatorname{argmax}}\left[\boldsymbol{\delta}_{\boldsymbol{i}}(\boldsymbol{t}-\mathbf{1}) \boldsymbol{a}_{\boldsymbol{i}}\right]
\end{gathered}
$$

$$
\sigma_{0}=\operatorname{ship}
$$

$$
\sigma_{1}=\text { frock }
$$

$$
\sigma_{2}=\text { tops }
$$

Observations, σ_{t}

Step 2: Induction of Viterbi

Specifically...

$$
\sigma_{0}=\text { ship }
$$

$$
\begin{gathered}
\delta_{s}(\mathbf{1})=\max _{i}\left[\delta_{i}(0) a_{i s}\right] b_{s}\left(\sigma_{1}\right) \\
\boldsymbol{\psi}_{\boldsymbol{s}}(\mathbf{1})=\underset{\boldsymbol{i}}{\operatorname{argmax}}\left[\boldsymbol{\delta}_{\boldsymbol{i}}(\mathbf{0}) \boldsymbol{a}_{\boldsymbol{i s}}\right] \\
\delta_{h}(\mathbf{1})=\max _{i}\left[\delta_{i}(0) a_{i h}\right] b_{h}\left(\sigma_{1}\right) \\
\boldsymbol{\psi}_{\boldsymbol{h}}(\mathbf{1})=\underset{\boldsymbol{i}}{\operatorname{argmax}}\left[\boldsymbol{\delta}_{\boldsymbol{i}}(\mathbf{0}) \boldsymbol{a}_{\boldsymbol{i} \boldsymbol{h}}\right] \\
\boldsymbol{\delta}_{d}(\mathbf{1})=\max _{\boldsymbol{i}}\left[\delta_{i}(0) a_{i d}\right] b_{d}\left(\sigma_{1}\right) \\
\boldsymbol{\psi}_{\boldsymbol{d}}(\mathbf{1})=\underset{\boldsymbol{i}}{\operatorname{argmax}}\left[\boldsymbol{\delta}_{\boldsymbol{i}}(\mathbf{0}) \boldsymbol{a}_{\boldsymbol{i d}}\right]
\end{gathered}
$$

$$
\sigma_{1}=\text { frock }
$$

$$
\sigma_{2}=\text { tops }
$$

Observations, σ_{t}

Step 2: Induction of Viterbi

$$
\sigma_{0}=\operatorname{ship}
$$

$$
\sigma_{1}=\text { frock }
$$

$$
\sigma_{2}=t o p s
$$

Observations, σ_{t}

Step 2: Induction of Viterbi

Step 2: Induction of Viterbi

Step 2: Induction of Viterbi

Continuing...

Step 3: Conclusion of Viterbi

Choose the best final state:

$$
Q_{T}^{*}=\underset{i}{\operatorname{argmax}} \delta_{i}(T)
$$

$$
\sigma_{0}=\operatorname{ship}
$$

$$
\sigma_{1}=\text { frock }
$$

$$
\sigma_{2}=t o p s
$$

Observations, σ_{t}

Step 3: Conclusion of Viterbi

Step 3: Conclusion of Viterbi

Breaking ties: any tie-breaking heuristic algorithm like random path choice can be applied

Aside - Working in the log domain

- Our formulation was

$$
Q^{*}=\operatorname{argmax}_{Q} P(\mathcal{O}, Q ; \theta)
$$

this is equivalent to

$$
Q^{*}=\underset{Q}{\operatorname{argmin}}-\log _{2} P(O, Q ; \theta)
$$

where

$$
\begin{aligned}
& -\log _{2} P(\mathcal{O}, Q ; \theta) \\
& =-\log _{2}\left(\pi_{q_{0}} b_{q_{0}}\left(\sigma_{0}\right)\right)-\sum_{t=1}^{T-1} \log _{2}\left(a_{q_{t-1} q_{t}} b_{q_{t}}\left(\sigma_{t}\right)\right)
\end{aligned}
$$

Fundamental tasks for HMMs

3. Given a large observation sequence \mathcal{O} for training, but not the state sequence, how do we choose the 'best' parameters $\theta=\langle\Pi, A, B\rangle$ that explain the data \mathcal{O} ?

This is the task of training.

As with observable Markov models and MLE, we want our parameters to be set so that the available training data is maximally likely, But doing so will involve guessing unseen information...

Task 3: Choosing $\boldsymbol{\theta}=\langle\boldsymbol{\Pi}, \boldsymbol{A}, \boldsymbol{B}\rangle$

- We want to modify the parameters of our model $\theta=\langle\Pi, A, B\rangle$ so that $P(\mathcal{O} ; \theta)$ is maximized for some training data \mathcal{O} :

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmax}} P(\mathcal{O} ; \theta)
$$

- Why? E.g., if we later want to choose the best state sequence Q^{*} for previously unseen test data, the parameters of the HMM should be tuned to similar training data.

Task 3: Choosing $\boldsymbol{\theta}=\langle\boldsymbol{\Pi}, \boldsymbol{A}, \boldsymbol{B}\rangle$

- $\hat{\theta}=\underset{\theta}{\operatorname{argmax}} P(\mathcal{O} ; \theta)=\operatorname{argmax} \sum_{Q} P(\mathcal{O}, Q ; \theta)$ Can we do this?
- $P(\mathcal{O}, Q ; \theta)=P\left(q_{0: T-1}\right) P\left(w_{0: t} \mid q_{0: t}\right) \approx \prod_{i=0}^{t} P\left(q_{i} \mid q_{i-1}\right) P\left(w_{i} \mid q_{i}\right)$

Task 3: Choosing $\boldsymbol{\theta}=\langle\boldsymbol{\Pi}, \boldsymbol{A}, \boldsymbol{B}\rangle$

- $P(\mathcal{O}, Q ; \theta)=P\left(q_{0: t}\right) P\left(w_{0: t} \mid q_{0: t}\right) \approx \prod_{i=0}^{t} P\left(q_{i} \mid q_{i-1}\right) P\left(w_{i} \mid q_{i}\right)$
- If the training data contained state sequences, we could simply do maximum likelihood estimation, as before:

$$
P\left(q_{i} \mid q_{i-1}\right)=\frac{\operatorname{cosnt}\left(q_{i-1} q_{i}\right)}{\operatorname{Count}\left(q_{i-1}\right)}
$$

- But we don't know the states; we can't count them.
- However, we can use an iterative hill-climbing approach if we can guess the counts using a "good" pre-existing model

Expecting and maximizing

- If we knew θ, we could make expectations such as
- Expected number of times in state s_{i},
- Expected number of transitions $s_{i} \rightarrow s_{j}$
- If we knew:
- Expected number of times in state s_{i},
- Expected number of transitions $s_{i} \rightarrow s_{j}$
then we could compute the maximum likelihood estimate of

$$
\theta=\left\langle\pi_{i},\left\{a_{i j}\right\},\left\{b_{i}(w)\right\}\right\rangle
$$

Expectation-maximization

- Expectation-maximization (EM) is an iterative training algorithm that alternates between two steps:
- Expectation (E): guesses the expected counts for the hidden sequence using the current model θ_{k}.
- Maximization (M): computes a new θ that maximizes the likelihood of the data, given the guesses of the E-step. This θ_{k+1} is then used in the next E-step.

$$
\left|\theta_{k+1}-\theta_{k}\right|<\epsilon
$$

- Continue until convergence or stopping condition...

Baum-Welch re-estimation

- Baum-Welch (BW): n. a specific version of EM for HMMs. a.k.a. 'forward-backward' algorithm.

1. Initialize the model.
2. E-step: Compute expectations for $\operatorname{Count}\left(q_{t-1} q_{t}\right)$ and $\operatorname{Count}\left(q_{t} \wedge w_{t}\right)$ given model, training data \mathcal{O}.
3. M-step: Adjust our start, transition, and observation probabilities to maximize the likelihood of \mathcal{O}.
4. Go to 2. and repeat until convergence or stopping condition...

Local maxima

- Baum-Welch changes θ to climb a ‘hill' in $P(\mathcal{O} ; \theta)$.
- How we initialize θ can have a big effect.
 CSCl2

Step 1: BW initialization

- Our initial guess for the parameters, θ_{0}, can be:
a) All probabilities are uniform (e.g., $b_{i}\left(w_{a}\right)=b_{i}\left(w_{b}\right)$ for all states i and words w)

word	P(word)
ship	0.143

word	$P($ word $)$
ship	0.143
pass	0.143
camp	0.143
frock	0.143
soccer	0.143
mother	0.143
tops	0.143

Step 1: BW initialization

- Our initial guess for the parameters, θ_{0}, can be:
b) All probabilities are drawn randomly (subject to the condition that $\sum_{i} P(i)=1$)

word	P(word)
ship	0.3
pass	0
camp	0
frock	0.2
soccer	0.05
mother	0.05
tops	0.4

UNIVERSITY OF

Step 1: BW initialization

- Our initial guess for the parameters, θ_{0}, can be:
c) Observation distributions are drawn from prior distributions: e.g., $b_{i}\left(w_{a}\right)=P\left(w_{a}\right)$ for all states i. sometimes this involves pre-clustering, e.g. k-means

What to expect when you're expecting

- If we knew θ, we could estimate expectations such as
- Expected number of times in state s_{i},
- Expected number of transitions $s_{i} \rightarrow s_{j}$
- If we knew:
- Expected number of times in state s_{i},
- Expected number of transitions $S_{i} \rightarrow S_{j}$
then we could compute the maximum likelihood estimate of

$$
\theta=\left\langle\left\{a_{i j}\right\},\left\{b_{i}(w)\right\}, \pi_{i}\right\rangle
$$

BW E-step (occupation)

- We define

$$
\gamma_{i}(t)=P\left(q_{t}=i \mid 0 ; \theta_{k}\right)
$$

as the probability of being in state i at time t, based on our current model, θ_{k}, given the entire observation, \mathcal{O}.
and rewrite as:

$$
\begin{aligned}
\gamma_{i}(t) & =\frac{P\left(q_{t}=i, \mathcal{O} ; \theta_{k}\right)}{P\left(\mathcal{O} ; \theta_{k}\right)} \\
& =\frac{\alpha_{i}(t) \beta_{i}(t)}{P\left(\mathcal{O} ; \theta_{k}\right)}
\end{aligned}
$$

Remember, $\alpha_{i}(t)$ and $\beta_{i}(t)$ depend on values from
$\theta=\left\langle\pi_{i}, a_{i j}, b_{i}(w)\right\rangle$

Combining α and β

$$
P\left(O, q_{t}=i ; \theta\right)=\alpha_{i}(t) \beta_{i}(t)
$$

$$
\therefore P(O ; \theta)=\sum_{i=1}^{N} \alpha_{i}(t) \beta_{i}(t)
$$

BW E-step (transition)

- We define

$$
\xi_{i j}(t)=P\left(q_{t}=i, q_{t+1}=j \mid 0 ; \theta_{k}\right)
$$

as the probability of transitioning from state i at time t to state j at time $t+1$ based on our current model, θ_{k}, and given the entire observation, \mathcal{O}. This is:

$$
\begin{array}{rc}
\xi_{i j}(t)=\frac{P\left(q_{t}=i, q_{t+1}=j, \mathcal{O} ; \theta_{k}\right)}{P\left(\mathcal{O} ; \theta_{k}\right)} & \\
\quad=\frac{\alpha_{i}(t) a_{i j} b_{j}\left(\sigma_{t+1}\right) \beta_{j}(t+1)}{P\left(\mathcal{O} ; \theta_{k}\right)} & \begin{array}{c}
\text { Again, these } \\
\text { estimates come } \\
\text { from our model at } \\
\text { iteration } k, \theta_{k} .
\end{array}
\end{array}
$$

BW E-step (transition)

Expecting and maximizing

- If we knew θ, we could estimate expectations such as
- Expected number of times in state s_{i},
- Expected number of transitions $S_{i} \rightarrow S_{j}$

$$
\begin{aligned}
& \gamma_{i}(t) \text { - from the E-step (occupation) } \\
& \xi_{i j}(t) \text {-from the E-step (transition) }
\end{aligned}
$$

- If we knew:
- Expected number of times in state s_{i},
- Expected number of transitions $s_{i} \rightarrow s_{j}$
then we could compute the maximum likelihood estimate of

$$
\theta=\left\langle\left\{a_{i j}\right\},\left\{b_{i}(w)\right\}, \pi_{i}\right\rangle
$$

BW M-step

We update our parameters as if we were doing MLE:
I. Initial-state probabilities:

$$
\hat{\pi}_{i}=\gamma_{i}(0) \quad \text { for } i:=1 . . N
$$

II. State-transition probabilities: $\circ \bigcirc \bigcirc<=\frac{\operatorname{Count} q_{i}\left(q_{j}\right)}{\operatorname{Count}\left(q_{i}\right)}$

$$
\hat{a}_{i j}=\frac{\sum_{t=0}^{T-2} \xi_{i j}(t)}{\sum_{t=0}^{T-2} \gamma_{i}(t)} \quad \text { for } i, j:=1 . . N
$$

III. Discrete observation probabilities:

$$
\widehat{b}_{j}(w)=\frac{\left.\sum_{t=0}^{T-1} \gamma_{j}(t)\right|_{\sigma_{t}=w}}{\sum_{t=0}^{T-1} \gamma_{j}(t)} \text { for } j:=1 . . N \text { and } w \in \mathcal{V}
$$

Baum-Welch iteration

- We update our parameters after each iteration

$$
\theta_{k+1}=\left\langle\hat{\pi}_{i}, \hat{a}_{i j}, \hat{b}_{j}(w)\right\rangle
$$

rinse, and repeat until $\theta_{k} \approx \theta_{k+1}$ (until change almost stops).

- Baum proved that

$$
P\left(0 ; \theta_{k+1}\right) \geq P\left(0 ; \theta_{k}\right)
$$

although this method does not guarantee a global maximum.

Features of Baum-Welch

- Although we're not guaranteed to achieve a global optimum, the local optima are often 'good enough'.
- BW does not estimate the number of states, which must be 'known' beforehand.
- Moreover, some constraints on topology are often imposed beforehand to assist training.

Discrete vs. continuous

- If our observations are drawn from a continuous space (e.g., speech acoustics), the probabilities $b_{i}(X)$ must also be continuous.
- HMMs generalize to continuous distributions, or multivariate observations, e.g., $b_{i}([-14.28,0.85,0.21])$.

Adaptation

- It can take a LOT of data to train HMMs.
- Imagine that we're given a trained HMM but not the data.
- Also imagine that this HMM has been trained with data from many sources (e.g., many speakers).
- We want to use this HMM with a particular new source for whom we have some data (but not enough to fully train the HMM properly from scratch).
- To be more accurate for that source, we want to change the original HMM parameters slightly given the new data.

HMM interpolation

- For added robustness, we can combine estimates of a generic HMM, G, trained with lots of data
from many sources with a specific HMM, S, trained with a little data
from a single source.

$$
P_{\text {Interp }}(\sigma)=\lambda P\left(\sigma ; \theta_{G}\right)+(1-\lambda) P\left(\sigma ; \theta_{S}\right)
$$

- This gives us a model tuned to our target source (S), but with some general 'knowledge' (G) built in.
- How do we pick $\lambda \in[0 . .1]$?

EM for interpolated models

- Strategy can be used for any $P(\mathcal{O} ; \lambda)=\sum_{i} \lambda_{i} P_{i}(\mathcal{O})$
- Introduce latent states s such that $P(s=i ; \lambda)=\lambda_{i}$
- Once in state $i, P(\mathcal{O} \mid s=i ; \lambda)=P_{i}(\mathcal{O})$
- Like with HMMs, we estimate Count $(s=i)$ using EM:

$$
\lambda_{i}^{\text {new }}=\frac{P\left(s=i, \mathcal{O} ; \lambda^{\text {old }}\right)}{P\left(\mathcal{O} ; \lambda^{\text {old }}\right)}
$$

- This is a (simplified) version of what is done for JelinekMercer interpolation, as well as Gaussian Mixture Models (covered in ASR lecture)

Held-out data

- Let $T_{\lambda}=\{\mathcal{O}\}$ be the data used to learn λ, T_{i} for $P_{i}(\cdot)$
- If for most $\mathcal{O} \in T_{\lambda}, j . P_{i}(\mathcal{O}) \geq P_{j}(\mathcal{O})$, then $\lambda_{i} \rightarrow 1$
- This can easily occur when $T_{i}=T_{\lambda}$, e.g.:
- If $P_{i}(\cdot)$ is an MLE i-gram model trained on T_{λ}, it will outperform $P_{<i}(\cdot)$ (even if also trained on T_{λ})
- If $P\left(\sigma ; \theta_{S}\right)$ was trained on T_{λ} but not $P\left(\sigma ; \theta_{G}\right)$
- Less likely to happen when $T_{i} \cap T_{\lambda}=\emptyset$
- A disjoint T_{λ} is often called held-out or development data

Aside - Maximum a Posteriori (MAP)

- Given adaptation data \mathcal{O}_{a}, the MAP estimate is

$$
\hat{\theta}=\operatorname{argmax}_{\theta} P\left(\mathcal{O}_{a} \mid \theta\right) P(\theta)
$$

- If we can guess some structure for $P(\theta)$, we can use EM to estimate new parameters (or Monte Carlo).
- For continuous $b_{i}(\sigma)$, we use Dirichlet distribution that defines the hyper-parameters of the model and the Lagrange method to describe the change in parameters $\theta \Rightarrow \hat{\theta}$.

Generative vs. discriminative

- HMMs are generative classifiers. You can generate synthetic samples from because they model the phenomenon itself. (e.g. $P(\mathcal{O}, Q ; \theta)$ or $P(\mathcal{O} ; \theta)$)
- Other classifiers (e.g., artificial neural networks and support vector machines) are discriminative in that their probabilities are trained specifically to reduce the error in classification. (e.g. $P(Q \mid \mathcal{O} ; \theta)$)

Summary

- Important ideas to know:
- The definition of an HMM (e.g., its parameters).
- The purpose of the Forward algorithm.
- How to compute $\alpha_{i}(t)$ and $\beta_{i}(t)$
- The purpose of the Viterbi algorithm.
- How to compute $\delta_{i}(t)$ and $\psi_{i}(t)$.
- The purpose of the Baum-Welch algorithm.
- Some understanding of EM.
- Some understanding of the equations.

Reading

- (optional) Manning \& Schütze: Section 9.2-9.4.1
- Note that they use another formulation...
- Rabiner, L. (1990) A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. In: Readings in speech recognition. Morgan Kaufmann. (posted on course website)
- Optional software:
- Hidden Markov Model Toolkit (http://htk.eng.cam.ac.uk/)
- Sci-kit's HMM (https://github.com/hmmlearn/hmmlearn)

