—— : - o
— ’——_v '\\ 2 “lA

Image: Mirror Neuron System (MNS) in humans.

More Neural Language Models
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Logistics

* Office hours: Wed 12.30 - 1.30 pm (over zoom, note the channel)
°* A2:due Mar 10, 2023 — errata recap.
* A2 tutorials planned schedule:

* Mar 3: A2 tutorial — 2 (ft. Frank Niu)

°* Mar 10: A2 — Q/A and OH (submission due at mid-night)

* A3:release Mar 11, 2023
* Final exam: date to be finalized soon

* Lecture feedback:

®* Anonymous
* Please share any thoughts/suggestions

®* Questions?
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More Neural Language Models

Lecture plan for today (L7 — 1/1)

* Emergent NLM architectures:
* Encoder only (BERT, BERTology findings)
* Encoder-Decoder: unified text-to-text format (T5)

* Decoder only auto-regressive models (GPT):
* covered in detail at a later lecture (L13)

* Token-free models:
* Importance, and the whys
* Selective example: CANINE

®* Trends in Neural Language Models
® Scaling laws of NLMs
* NLMs as foundation models & implications
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BERT: Bidirectional Encoder Representations from Transformers

Rank Name Model URL Score ColLA SST-2 MRPC STS-B QQP

1 T5 Team - Google T5 g 89.7 70.8 97.1 91.9/89.2 92.5/92.1 74.6/90.4

2 ALBERT-Team Google LanguageALBERT (Ensemble) C}Jl 89.4 69.1 97.1 93.4/91.2 92.5/92.0 74.2/90.5

+ 3 I ALICE v2 large ensemble (Alibaba DAMO NLP) g 89.0 69.2 97.1 93.6/91.5 92.7/92.3 74.4/90.7
4 Microsoft D365 Al & UMD FreeLB-RoBERTa (ensemble) g 88.8 68.0 96.8 93.1/90.8 92.4/92.2 74.8/90.3

5 Facebook Al RoBERTa 8 88.5 67.8 96.7 92.3/89.8 92.2/91.9 74.3/90.2

6 XLNet Team XLNet-Large (ensemble) C}Jl 88.4 67.8 96.8 93.0/90.7 91.6/91.1 74.2/90.3

+ 7  Microsoft D365 Al & MSR Al MT-DNN-ensemble g 87.6 68.4 96.5 92.7/90.3 91.1/90.7 73.7/89.9
8 GLUE Human Baselines GLUE Human Baselines C}J' 87.1 66.4 97.8 86.3/80.8 92.7/92.6 59.5/80.4

9 Stanford Hazy Research Snorkel MeTalL [:}J' 83.2 63.8 96.2 91.5/88.5 90.1/89.7 73.1/89.9

10 XLM Systems XLM (English only) g 83.1 629 95.6 90.7/87.1 88.8/88.2 73.2/89.8

®* The age of humans is over?
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BERT: Bidirectional Encoder Representations from Transformers

Q Think of the encoder part of the transformer architecture

* Landmark, pivotal neural LM that has o e = g st spn
become an ubiquitous baseline in NLP. ,|:
........ . e
° BERT is conceptually simple (multi-layer, ] - CSlEalE]- G- EIEE- [
bidirectional transformer), empirically N @i e
powerful. ~mamm) W\ e
Pre-training Fine-Tuning

* Unlike predecessors (ELMo) or contemporaneous LMs (GPT), BERT is deeply bidirectional
and independent of task-specific features with unified architecture across different tasks.

OpenAl GPT

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. (2019). [arxiv]
i3 Google Al

5

Code and models: https://github.com/google-research/bert [Colab]
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http://arxiv.org/abs/1810.04805
https://github.com/google-research/bert
https://colab.research.google.com/github/tensorflow/tpu/blob/master/tools/colab/bert_finetuning_with_cloud_tpus.ipynb

BERT: Bidirectional Encoder Representations from Transformers

* First, pre-trained on (large) unlabeled
data on two unsupervised
tasks/objectives:

*  Masked LM (MLM), and ¢S Lulk =1
= Next Sentence Prediction (NSP)
N, ({+1)
* Then, fine-tuned using labeled data s=1..5
from downstream tasks
. .- : : : -
Tralnmg entails feeding the final Y
hidden vectors to an output FFN layer
with softmax over the possibilities (e.g.

the vocabulary as in a standard LM)

h

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. (2019). [arxiv]
Code and models: https://github.com/google-research/bert [Colab] E Goog|e Al

S5
UNIVERSITY OF

CSC401/2511 — Winter 2023 6 6 TORONTO


http://arxiv.org/abs/1810.04805
https://github.com/google-research/bert
https://colab.research.google.com/github/tensorflow/tpu/blob/master/tools/colab/bert_finetuning_with_cloud_tpus.ipynb

BERT: Bidirectional Encoder Representations from Transformers

Pre-training objectives

* Masked LM (MLM): predict randomly .  .2d words:

Input: The man went to the [MASK]), . He bought a [MASK], of milk .
Labels: [MASK? store; [MASK] gallon

* 80% of the target words are masked with: [MASK]. 10% are replaced with another
word, and 10% are kept as-is, to bias ‘towards the observation’.

* \Variants: masking granularity can be varied (word-piece, word, span) with respective
quirks. E.g., masking named entities improves structured knowledge representation.

* Next sentence prediction (NSP): does sentence B follow A?

Sentence A= The man went to the store. Sentence A = The man went te the store.

Sentence B = He bought a gallon of milk. Sentence B = Penguins are flightless.
Label = IsNextSentence Label = NotNextSentence

®* 50% of the time true, 50% of the time it’s a random sentence.
* Later research finds removing the NSP task does not hurt, or slightly improves
performance. [2]

[1] Aroca-Ouellette S, Rudzicz F (2020) On Losses for Modern Language Models, EMNLP.
[2] Rogers, Anna et al. "A primer in BERTology: What we know about how BERT works." TACL(2020). link
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https://www.aclweb.org/anthology/2020.emnlp-main.403/
https://doi.org/10.1162/tacl_a_00349

BERT: Bidirectional Encoder Representations from Transformers

Findings from ablative studies [1.2:3]

* Heads: Analysis of the multi-headed attention mechanism in BERT shows attention
heads exhibiting attentions on various linguistic (e.g. syntax, coreference) patterns. !
Head 1-1 Head 3-1 Head 8-7 Head 11-6 Head 8-10 Head 8-11
Attends broadly Attends to next token Attends to [SEP] Attends to periods - Direct objects attend to their verbs - Noun modifiers (e.g., determiners) attend
- 86.8% accuracy at the dobj relati to their noun
8% a acy a j relation g )
found ,found found\found found.,w; found found (cLs] (cLS] (cLs] cLs] - 94.3% accuracy at the det relation
in, ¢in iny\ \_ in in
taiwan , /taiwan ta|wan§talwan taiwan \‘\\ taiwan taiwan goe‘: lgtoes decl ne: ldtec“ned [CLs]
.8 y. R\ : on on t to The
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[SEP]/ [SEP] [SEP]>[SEP] [SEP] [SEP] [SEP] [SEP] (SEP] (SEP] \ [SEP] [SEP]
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Layers: linear word order and surface features captured most by lower layers. Syntactic
information most prominent in middle layers. Semantic and task specific features are best
captured in higher/final layers.

Research on proposed improvements and modifications to BERT, both architectural choices
(e.g. # of layers, heads) and training methods is voluminous and ongoing. Due to overall trend
towards larger model sizes, systematic ablations have become prohibitively expensive.

1. Clark et al. "What does bert look at? an analysis of bert's attention." (2019). link
2. Tenney et al. "BERT rediscovers the classical NLP pipeline." (2019). link

3. Rogers, Anna et al. "A primer in BERTology: What we know about how bert works." TACL(2020). link ?ﬂ
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https://arxiv.org/pdf/1906.04341.pdf
https://arxiv.org/pdf/1905.05950.pdf
https://doi.org/10.1162/tacl_a_00349

BERT: Bidirectional Encoder Representations from Transformers

Findings from ablative studies

* Limitations: BERT’s possession of impressive syntactic, semantic, and world
knowledge has caveats.

°* World Knowledge:
® BERT struggles with pragmatic inference, and role-based event knowledge.

® |t can ‘guess’ object affordances and properties, but cannot reason about relationships
between them. Example: it ‘knows’ people can walk into houses, houses are big, but
cannot infer that houses are bigger than people.

* Semantic Knowledge:
* Struggles with representations of numbers.

“Dante was born in [MASK].”

> A VY 2 r

Neural LM Fl
Memory Access orence

* Surprisingly brittle to named entity replacements:
e.g. 85% drop in performance in coreference task
with names replaced.

e.g. ELMo/BERT

* Syntactic Knowledge:
* Does not ‘understand’ negations and is insensitive to malformed input.

* Findings suggest that either its syntactic knowledge is incomplete, or not dependent on
it for solving its tasks.

R
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Aside — BERT - BART - NMT

. Explosion of variants to BERT

. Pretrained BERT language model used to re-score/fine-tune
downstream NLP tasks

. BART (Lewis et al, 2020) adds the decoder back to BERT, keeping the
BERT objective

. Add some source language layers on top to train for NMT

ABCDE
FEETE 2 2
3 E C Pre-trained ) |:>[ Pre-trained
Bidirectional Autoregressive | < = % f:cidir e
< Encoder Decoder S|/ Randomly <s>A B CD
f * f f* f f f f * E Initialized Encoder
A_B_E <s>A B C D s MLt

Lewis, Mike, et al. "Bart: Denoising sequence-to-sequence pre-training for natural language generation,
translation, and comprehension." (2019). link.
Lo
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https://arxiv.org/pdf/1910.13461.pdf

T5: Text-to-Text Transfer Transformer

@ A refined Transformer updated with better methodologies

°* T5is an unified framework that casts all NLP problems into a ‘text-to-text’ format.

* Architecturally (almost) identical to the original Transformer (Vaswani et al., 2017).

* Draws from a systematic study comparing pre-training objectives, architectures,
unlabeled data sets, transfer approaches, and other factors on dozens of language

understanding tasks.

* Introduces and uses a new curated dataset: “Colossal Clean Crawled Corpus” (C4)

for training.

Distinguishing features:

* Consistent, task-invariant MLE training
objective

° Unsuperwsed “denoising” training objectives:
span corruption (conceptually same to MLM,

mask ‘spans’ instead of words).

Fully-visible Causal I Causal with prefix

- J0EEE -GN
» B0EEL) - B8EE)

80000 1 BEEC0

X, X, X X, X, X X, X X, X, X3 X X

Xp Xy X3 Xy X 2 "3 M s | 2 "3 %4 %5

Input Input I Input —

1. Raffel et al. "Exploring the limits of transfer learning with a unified text-to-text transformer." (2020). link &
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https://www.jmlr.org/papers/volume21/20-074/20-074.pdf

T5: Text-to-Text Transfer Transformer

Example Task: English to German (En-De) translation:

Input sentence: “That is good.”
Target: “ ”

* Training: task specification is imbued by
prepending task prefix to the input sequence.
Model trained on next sequence prediction
over the concatenated input sequence:

n”

“translate En-De: That is good.

* For prediction, the model is fed prefix:
* “translate En-De: That is good. target:”

* For classification tasks, the model predicts a single word

corresponding to the target label.
° E.g. MNLI task of entailment prediction:

* “mnli premise: | hate pigeons. hypothesis: | am hostile to

”

pigeons.
Model predicts label: {“entailment”, “neutra

CSC401/2511 — Winter 2023 12

Original text

Thank you fef inviting me to your party |ast week.

Inputs

Thank you <x> me to your party <v> week.

Targets
<> for inviting <v> last <z~

III o
’

Input/Output format for training denoising objective

Prefix LM

X, X3 Y1 Yo -

N\( aYd aYa aYa
( ) N
— ) o Youun Yo
- J AN J

contradiction”}.
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The Open Al GPT papers

o Th e G PT p d p ers. Improving Language Understanding

by Generative Pre-Training

Alec Radford Karthik Narasimhan Tim Salimans Ilya Sutskever

] (2018)
OpenAl OpenAl OpenAl OpenAl
alec@openai.com karthiknQopenai.com tim@openai.com ilyasu@openai.com
. GPT2(2019)
A G PT3 ( 2 O 2 O) Language Models are Unsupervised Multitask Learners

Alec Radford “' Jeffrey Wu "' Rewon Child' David Luan' Dario Amodei ©*' Ilya Sutskever **'

Language Models are Few-Shot Learners

. Each builds on the predecessor

. A u t O_ r e g r e S S iV e’ u n i d i r e Ct i O n a | Tom B. Brown* Benjamin Mann* Nick Ryder* Melanie Subbiah*

Jared Kaplan' Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry

( le.ft to righ t) a rc h ite Ct u re Amanda Askell Sandhini Agarwal  Ariel Herbert-Voss Gretchen Krueger ~ Tom Henighan

Rewon Child Aditya Ramesh Daniel M. Ziegler Jeffrey Wu Clemens Winter

) D eta i I e d d i S C u S S i O n i n I e Ct u re 1 3 : Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray
Benjamin Chess Jack Clark Christopher Berner
LLMs

Sam McCandlish Alec Radford Ilya Sutskever Dario Amodei

OpenAl

S5
UNIVERSITY OF

CSC401/2511 — Winter 2023 13 % TORONTO



GPT: model & architecture

. Architecture evolution: GPT3 < GPT2 + mods < GPT + mods
Core architecture follows classic ‘language modeling’:

Hp 9n|'§1 y Sn— 1

Learning to perform a task as estimating distribution P(output [ input)

Original GPT! trains a standard LM objective to maximize the
likelihood:

L(pw) = 2_108 P(uiluj—g, .., uj—1; )
l

Given an unsupervised corpus of tokens u = {u, ..., 4,,}, where k is context
window, P is modelled using a neural network with parameters 0

GPT uses a multi-layer Transformer decoder for the language model

[1] Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018).

’4'7\1
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Key architectural differences

. GPT vs. BERT-variants:

GPT uses ‘transformer’ blocks as decoders, and BERT as encoders.
Underlying (block level) ideology is same
GPT (later Transformer XL, XLNet) is an autoregressive model, BERT is not
— At the cost of auto-regression, BERT has bi-directional context awareness.

GPT, like traditional LMs, outputs (predicts) one token at a time.

. Compare with T5, BART that uses encoder-decoder

OpenAl GPT
CJC) o (O]
Trm Trm 'm
T Trmy T
E, E; En

[1] Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018). 4
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Token free models

* Unlike the ubiquitous pre-trained LMs that operate on sequences of tokens
corresponding to word or sub-word units, token free models:

Operate on raw text (bytes or characters) directly.
Removes necessity for (error-prone, complex) text preprocessing pipelines.

@ Con: raw sequences significantly longer than token sequences, increases computational
complexity. (Reminder: ‘attention’ costs are quadratic to the length of input sequence)

* Pitfalls of explicit (word, sub-word) tokenization:
* Need for large language dependent (fixed) vocabulary mapping matrices.

* Applies hand-engineered, costly, language-specific string tokenization/segmentation
algorithms (e.g. BPE, word-piece, sentence-piece) requiring linguistic expertise.

® Heuristic string-splitting, however nuanced, cannot capture full breadth of linguistic
phenomena, (e.g. morphologically distant agglutinative, non-concatenative languages).
Other examples include languages without white-space (Thai, Chinese), or that uses
punctuation as letters (Hawaiian, Twi). Fine-tuning tokenization needs to match
pretraining tokenization methods.

* Brittle to noise, corruption of input (typos, adversarial manipulations). Corrupted
tokens lose vocabulary coverage.

1.Clark et al. "CANINE: Pre-training an efficient tokenization-free encoder for language representation." (2021). link
2. Xue et al. "ByT5: Towards a token-free future with pre-trained byte-to-byte models." (2022). link iy

A
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https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00461

Token free models - CANINE

CANINE: Character Architecture with No tokenization In Neural Encoders.

®* CANINE is a large language encoder with a deep transformer stack at its core.

* Inputs to the model are sequences of Unicode characters. 143,698 Unicode codepoints
assigned to characters covers 154 scripts and over 900 languages!

* To avoid slowdown from increasing sequence length, it uses stride convolutions to down-
sample input sequences to a shorter length, before the deep transformer stack to encode
context.

®* Three primary components:
* Vocab free embedding technique;

® Character-level model (CLM) with efficiency measures (up/down sampling of
seguences); and

® Perform unsupervised masked LM (MLM) pretraining on the CLM using variants:
* Autoregressive character prediction
* Subword prediction

Clark et al. "CANINE: Pre-training an efficient tokenization-free encoder for language representation." (2022).

et
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https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00448/109284/Canine-Pre-training-an-Efficient-Tokenization-Free

Aside: Token free models - CANINE

CANINE neural architecture
hinil hdown

0
U
0.
O

h'down Yeis hup
Position 0
» Used as [CLS] C]
<~ representation
D C] D C] for classification D

0000-
QD_DD»

0

Concatenated
Convolved
Representations

—

Contextualized
Deep Transformer Stack

Characters

Codepoint
Integers

Character
Embeddings

Hash "Single Downsample D D D D Upsampling B Sinale * O
Embedding Local (Strided ':_:‘ I
Transformer Com /olution) Transformer

[
O

Final Character
Representation
for Sequence Tasks

The overall functional composition form uses [UP| DOWN]-sampling, and primary encoder:

Yseq < UP(ENCODE(DOWN (e)) where e € R"*4 s an input characters sequence, and
Yseq € R™™ 4 is output of sequence predictions

* Down-sampling: h;,;, < LOCALTRANSFORMER(e); Hhaown < STRIDEDCONV(hipit, 7)

where hgoym € R™*% and m = ; is the number of downsampled positions

Up-sampling: prediction require model’s output layer sequence length to match input’s length

hup < CONV(Rinie ® Rlouwn Wi  Yseq < TRANSFORMER (hy;)

where @ is vector concatenation, CONV projects R™ % 2% back to R™* ¢ across a window of w

characters. Applying a final transformer layer yields a final sequence representation: Y., € R *d
\"3'11’
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NLM TRENDS & IMPLICATIONS
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NLM: the bigger is better trend
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NLM: the bigger is better trend

1000

GPT-3 (175B)
100 Megatron-Turing NLG (530B)

Megatron-LM (8.3B)
Turing-NLG (17.2B)

10
T5 (11B)

GPT-2 (1.5B)

Model Size (in billions of parameters)

BERT-Large (340M)
0.1

-ELMo (94M)

0.01
2018 2019 2020 2021 2022

* Cons:
* Deep learning == Deep pockets? Democratisation of compute power
* Social impact e.g. (environmental): “training BERT on GPU is roughly
equivalent to a trans-American flight”?
1S. Emma, A. Ganesh, and A. McCallum. "Energy and policy considerations for deep learning in NLP. (2019)" [arxiv]

&
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https://arxiv.org/pdf/1906.02243.pdf

Scaling laws for NLMs

* Kaplan et al. (2020) does a systematic review of scaling laws for NLMs [}

7 4.2
6 —— L=(D/5.4-1013)700% | 5.6 —— L=(N/8.8-1013)70-076
3.9
4.8
2 36
: 4.0
S
% 3.3 39
F 3
3.0
2.4
L = (Cmin/2.3 - 108)~0:050
2 : , . . 2.7 r ’ . . .
10- 10°7 10-° 1073 10°! 10! 108 10° 10° 107 109
Compute (©) Dataset Size (D) Parameters (N)
PF-days, non-embedding tokens non-embedding

Language modelling performance (decreasing test loss is better), as the factors are scaled up

* Three scale factors:
e Compute: the amount of compute C used for training
* Dataset size: the size of the dataset D
* Model parameters: the number of model parameters N, excluding embeddings)

[1] Kaplan et al. "Scaling laws for neural language models." (2020). link 5
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https://arxiv.org/pdf/2001.08361.pdf

Scaling laws for NLMs

Performance of (Transformer based) NLMs:

Has power-law relationship with the three scale factors: C, D, N (excluding

embeddings).

Depends most strongly on these scale factors; architectural hyperparameters

(like depth, width) does not have much effect.

Improves smoothly when the factors (N, D) are scaled up in tandem. Diminishing
returns if either N or D bottlenecks the other. Roughly, an 8x model size increase
should match 5x data size increase to avoid performance penalty.

Transfer learning: out-of-distribution generalization
depends almost exclusively on the in-distribution (train

set) validation loss performance that improves with the
scaling factors.

Sample efficiency: Large models are mode sample-
efficient than small models, reaching the same level of

performance with fewer optimization steps, data points.

[1] Kaplan et al. "Scaling laws for neural language models." (2020). link
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Larger models require fewer samples

to reach the same performance

10° Params
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Tokens Processed
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https://arxiv.org/pdf/2001.08361.pdf

LLMs as Foundation Models

 Homogenization: (almost) all SOTA NLP LLM models are now adapted from
one of a few foundation models (like BERT, BART, T5, etc.). 1]

) Qi ti r ’)
_— "1& Answerin g e
o L] A € @  Data from various modalities
r“‘ KT 14 €5, intormation C} . g
Sheeeh raining = Image -
pocch " Model @ o Ly downstream tasks
*" Data . %ﬁp *g:ieocgtnition
EDEEES ﬁ 4 Instruct
¢ gy

e Social Impact
* Exacerbation of social inequalities.
* Democratization: increased computation demands — power/capability
concentrated to few corporations/start-ups.
e Gap between industry models and community models are large.
* Increasing proprietary moat and closed source nature.
e Solution: government intervention?

[1] Bommasani, Rishi, et al. "On the opportunities and risks of foundation models." (2021). link. e
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https://arxiv.org/pdf/2108.07258.pdf

