

Image: Mirror Neuron System (MNS) in humans.

Lecture 7

University of Toronto

Large Language Models

CSC401/2511 – Natural Language Computing – Winter 2024 Gerald Penn, Sean Robertson & Raeid Saqur

CSC401/2511 — Winter 2024 Copyright © 2024. Raeid Saqur, University of Toronto

Logistics

- Office hours: Mon 12 13h at BA2770
- A2: due Mar 8, 2024 errata recap.
- A2 tutorials planned schedule:
 - Feb 16: A2 tutorial 1
 - Mar 1: A2 tutorial 2 (ft. J. Watson)
 - Mar 8: A2 Q/A and OH
- A3: release Mar 9, 2024
- Final exam: April 25, 2024
- Lecture feedback:
 - Anonymous
 - Please share any thoughts/suggestions
- Questions?

Lecture Plan (L7)

- LLM Trends and Implications
 - Trends, scaling laws, foundation models
- LLMs to Assistant Chatbots
 - Instruction fine-tuning
 - REINFORCE, RLHF
- Prompt Engineering
 - ICL, Chain-of-thought (CoT)
- Misc. (time permitting):
 - Benchmarks
 - Compute Requirements
 - PEFT: training strategies: LoRA
 - Quantization techniques: LLM.int8()

LLM TRENDS & IMPLICATIONS

LLM: the bigger is better trend

CSC401/2511 - Winter 2024

5

LLM: the bigger is better trend

- Cons:
 - Deep learning == Deep pockets? Democratisation of computing power
 - Social impact e.g. (environmental): "training BERT on GPU is roughly equivalent to a trans-American flight"¹

¹ S. Emma, A. Ganesh, and A. McCallum. "Energy and policy considerations for deep learning in NLP. (2019)" [arxiv]

UNIVERSITY OF TORONTO

LLM: the bigger is better trend

- Cons:
 - Electricity consumption comparison between countries and Al¹
 - More during the guest/invited speaker lectures on topic: Ethics

[1] Xu, Mengwei, et al. "A survey of resource-efficient IIm and multimodal foundation models." (2019)" [arxiv]

Scaling laws for LLMs

• Kaplan et al. (2020) does a systematic review of scaling laws for LLMs ^[1]

Language modelling performance (decreasing test loss is better), as the factors are scaled up

• Three scale factors:

- Compute: the amount of compute C used for training
- Dataset size: the size of the dataset D
- Model parameters: the number of model parameters N, excluding embeddings)

[1] Kaplan et al. "Scaling laws for neural language models." (2020). link

Scaling laws for LLMs

Key Findings: Performance of (Transformer based) LLMs:

- Has power-law relationship with the three scale factors:
 - C, D, N (excluding embeddings).
- Depends most strongly on these scale factors
 - architectural hyperparameters (like depth, width) does not have much effect.
- Improves smoothly when factors (N, D) are scaled up in tandem.
 - Diminishing returns if either N or D bottlenecks the other. Roughly, an 8x model size increase should match 5x data size increase to avoid performance penalty.

[1] Kaplan et al. "Scaling laws for neural language models." (2020). link

Scaling laws for LLMs

Key Findings: Performance of (Transformer based) LLMs:

- Transfer learning: out-of-distribution generalization depends almost exclusively on the in-distribution (train set) validation loss performance that improves with the scaling factors.
- Sample efficiency: Large models are more sample-efficient than small models, reaching the same level of performance with fewer optimization steps, data points.

[1] Kaplan et al. "Scaling laws for neural language models." (2020). link

LLMs as Foundation Models

 Homogenization: (almost) all SOTA NLP LLM models are now adapted from one of a few foundation models (like BERT, BART, T5, etc.). ^[1]

- Data from various modalities
- Adoption to a wide range of downstream tasks

[1] Bommasani, Rishi, et al. "On the opportunities and risks of foundation models." (2021). link.

LLMs as Foundation Models

- Social Impact
 - Exacerbation of social inequalities.

- Democratization: increased computation demands power/capability concentrated to few corporations
- Gap between industry models and community models are large.
- Increasing proprietary moat and closed source nature.
- Solution: *government intervention*?
- These are a small subset of ethical concerns
 - Detailed discussion in the ethics (guest) lecture by Steven Coyne

Is that it?

- Okay we got (larger and larger) LMs, foundation models yada yada ... but is that it?
- Can you talk about ChatGPT?

LLMS TO ASSISTANT CHATBOTS

From LMs to Assistants

Until now, we have seen:

- Neural language models and how to train them
- The transition and benefits of scaling:
 - BERT (<1B) -> T5 (~11B) -> GPT3 (175B) -> ...
 - Emergent behaviors with scaling^[1]: ICL (In-contextlearning) k-shots, gradient-free task completions
- Using PLMs: the pre-training then task specific fine-tuning paradigm

[1] GPT3: Radford et al. "Language models are few-shot learners." (2020). link

From PLMs to Assistants

- However, these does not give us a general purpose, instruction-following chatbot (e.g., ChatGPT)
- Solution: instruction fine-tuning to align LLMs to follow human instructions
- Reinforcement Learning from Human Feedback (RLHF) pipeline
 - Many variants: RLAIF, DPO etc.

[1] GPT3: Radford et al. "Language models are few-shot learners." (2020). <u>link</u>
 [2] InstructGPT: Ouyang, Long, et al. "Training language models to follow instructions with human feedback. (2022)." <u>link</u>

Why do we need Alignment?

Supervised fine-tuning objective (e.g., MLE) have intrinsic misalignments with human preferences

• **Recall**: the typical LM (training/fine-tuning) objective is the cross entropy of the corpus *C* given the model *M*:

$$\mathcal{F} = H(C; M) = -\frac{\log_2 P_M(C)}{\|C\|}$$

Minimize

- Such LM objective (maximizing log-likelihood) can be misaligned with the desired goal of high-quality output determined by humans
- Can you think of any reasons why?

Limitations of the LM Objective

- No distinction between important (e.g., making up facts) and unimportant errors (e.g., selection of an alternate synonymous token) "Toronto is a city in [India | Canada]" vs. "We all live in the same [house | home]"
 - LM objective penalizes all (token-level) errors equally
- Incentivizes probability mass on all human demonstrations (i.e., supervision dataset)
 - Unsafe, toxic, biased output generation
 - Low-quality output generation
- Tasks entailing open-ended language generation does not have one right answer. Thus, qualitative human feedback is a far better metric than heuristic objectives

[1] Stiennon et al. "Learning to summarize with human feedback." (2020). link

Optimizing using Human Feedback

- Stiennon et al.^[1] show the efficacy on English Summarization task
- Base LM architecture: GPT-3 style Transformer decoders
- Dataset: TL;DR summarization dataset with ~3M posts from *reddit.com* across variety of topics (subreddits), and original (human) summaries

[1] Stiennon et al. "Learning to summarize with human feedback." (2020). link

LLM vs. Instruction Finetuned LLM

Prompt: Group the following 16 words into 4 groups of 4 of connected words^[1]:

Bluebell, Blackberry, Watercress, Eskimo, Mud, Bluegrass, Rabbit, Doctor, Keystone, Hunt, Grand Canyon, Wensleydale, Hazel, Lavender, Silver, Craft

Llama-2-7B

, Elm **HINT: a hint can be found in the word "Bluegrass" ** ### EXAMPLE ### (Note length of individual words in parentheses) #### ANSWER #### BLUEBELL, BLACKBERRY, WATERCRESS. DOCTOR, HAZEL, KESTONE, LAVENDER, MUD, SILVER. ESKIMO, GRAND CANYON, RABBIT, ELM, WENSLEYDALE, DOUBT, HUNT, CRADF**

Llama-2-7B-chat

Sure, I'd be happy to help! Here are 4 groups of 4 semantically connected words from the list you provided:

Group 1: Bluebell, Blackberry, Watercress, Eskimo Group 2: Mud, Bluegrass, Rabbit, Doctor Group 3: Keystone, Hunt, Grand Canyon, Wensleydale Group 4: Hazel, Lavender, Silver, Craft

I hope this helps! Let me know if you have any other questions.

[1] Saqur, Raeid, et al. "Large Language Models are Fixated by Red Herrings: Exploring Creative Problem Solving and Einstellung Effect." NeuRIPS (2023). link

Demo: Why do we need Alignment?

Prompt: Group the following 16 words into 4 groups of 4 of semantically connected words:

Bluebell, Blackberry, Watercress, Eskimo, Mud, Bluegrass, Rabbit, Doctor, Keystone, Hunt, Grand Canyon, Wensleydale, Hazel, Lavender, Silver, Craft

- A picture demo is worth a thousand words slides!
- **Demo** Output differences between
 - Llama-2-7b^[1] (pretrained-only using LM objective) and
 - Lllama-2-7b-chat, Gemma-7b-it and GPT-4 (*instruction fine-tuned LLMs*)
- Try it yourself:
 - Gemma-7b <u>https://huggingface.co/google/gemma-7b</u>
 - Gemma-7b-chat <u>https://huggingface.co/google/gemma-7b-it</u>

[1] Touvron, Hugo, et al. "Llama 2: Open foundation and fine-tuned chat models." (2023). link.

Pretrained LLMs + Instruction Finetuning

- Compute capabilities of pre-training such massive LLMs using largescale data is beyond scope for most individuals/corporations.
- Beginning 2023, Meta pioneered the trend of capable companies releasing / open-sourcing trained model weights*
- The Llama series of LLMs^[1,2] are a collection of foundation LMs with varying granularities (sizes, fine-tuning spectrum)
- **Properties** of the **Llama** models^[1] include:
 - Sizes: parameters range from 7B to 65B
 - Trained on trillions of tokens, using publicly available datasets only
 - Llama-1-13B outperformed GPT-3 (175B) on most benchmarks
 - Llama-1-65B competitive with (then) SoTA models like Chinchilla-70B, PaLM-540B.

[1] Touvron, Hugo, et al. "Llama: Open and efficient foundation language models." (2023). <u>link</u>.
 [2] Touvron, Hugo, et al. "Llama 2: Open foundation and fine-tuned chat models." (2023). <u>link</u>.
 * *Llama-1 model weights were leaked publicly via torrents before the official release*

Pretrained LLMs + Instruction Finetuning

 Since then, taking a base pre-trained LLM (with provided weights) then instruction-finetuning has seen mass, wide community adoption across: *tasks*, *libraries*, *datasets and languages*^[1]

	Tasks Libraries Datasets Languages Licenses Other	Q. Filter Datasets by name
google/gemma-7b		glue squad mozilla-foundation/common_voice_7_
Text deneration * Opuated 5 days ago * 2 100 * 0 1.21k	Filter Libraries by name	🗏 imdb 📲 imagenet-1k 🗮 xtreme 🛤 wikipedia
google/gemma-7b-it		mozilla-foundation/common_voice_11_0 common_voice
Text Generation \circ Updated 1 day ago $\circ \pm 234 \circ \heartsuit$ 626	O PyTorch 🎌 TensorFlow 🎎 JAX 😕 Transformers	🗑 conll2003 📑 squad_v2 📑 Open-Orca/OpenOrca
	😂 Safetensors TensorBoard 🥖 Diffusers PEFT	🗑 marsyas/gtzan 🗧 bookcorpus 🗧 samsum
ByteDance/SDXL-Lightning	and hardened the entry advantage of cours	fka/awesome-chatgpt-prompts
➢ Text-to-Image - Updated 1 day ago - ± 2.2k - ♡ 501	stable-baselines3 🐨 ONNX mi-agents 🖬 GGUF	🗑 OpenAssistant/oasst1 🗧 c4 👘 cnn_dailymail
stabilityai/stable-cascade ➢ Text-to-Image + Updated 5 days ago + ½ 291k + ♡ 880	Sentence Transformers Keras Timm sample-factory	LDJnr/Capybara kde4 Intel/orca_dpo_pairs
	Clair SatEit Adaptors Transformers is SanCu	facebook/voxpopuli
	o Flair SetFit Adapters is Transformers.js 5 spacy	garage-bAInd/Open-Platypus super_glue
G google/gemma-2b ☞ Text Generation + Updated 3 days ago + 坐 780 + ♡ 359	🖽 ESPnet 🕴 fastai 🧇 Core ML 🧠 NeMo 😨 Rust	mozilla-foundation/common_voice_13_0
	Johlik TT MIN fastTaut TE Like DEDTagie	bigcode/starcoderdata
	JODIID MEX MEX Tascrext IF Lite BERTOPIC	Open-Orca/SlimOrca
google/gemma-2b-it	Scikit-learn OpenCLIP @ speechbrain # PaddlePaddle	databricks/databricks-dolly-15k google/fleurs bea
➢ Text Generation + Updated 1 day ago + ≤ 582 + ♡ 276	Ones VINO Fairnes Cranheses @ Astarrid	🗑 cerebras/SlimPajama-627B 🛛 🗑 librispeech_asr 🖉 oscar
	O Openvino Fairsed Graphcore Mai Asteroid	huggan/smithsonian_butterflies_subset
BioMistral/BioMistral-7B Text Generation + Undated 3 days ago + ↓ 891 + ♡ 231	🖋 Stanza AllenNLP paddlenlp SpanMarker Habana	teknium/openhermes HuggingFaceH4/ultrachat_200k
	nummete sudia sudhan Unite Centia	🗉 universal_dependencies 🛛 🗎 wmt16 🛛 🗧 Anthropic/hh-rlh
briaai/RMBG-1.4	pyannote.audio pytnae Onity Sentis	iii tweet_eval iii mc4
Image-to-Image → Updated 12 days ago → ± 125 → ♡ 614		mozilla-foundation/common_voice_8_0
		tiiuae/falcon-refinedweb
CohereForAI/aya-101		🔲 togethercomputer/RedPajama-Data-1T 🛛 🗏 tatsu-lab/alpaca

Instruction Finetuning – How?

- We want to align (i.e., optimize) a LM using human preferences
- But we can **not** have **human in-the-loop** for qualitative assessments during **training** as it'd be infeasible (expensive, slow)
- Solution: train a reward model that mimics human preferences by emitting a scalar reward, ranking pair-wise (or more) generated completions by the LM
- Next: how do we update our LM's parameters using these scalar reward values and pair-wise rankings? N.B. the reward function is non-differentiable w.r.t. to the LM parameters, so we can't apply SGD.
- Solution: Use RL policy gradient update methods like REINFORCE, PPO using the RLHF pipeline

Instruction Finetuning – RLHF

 LLM alignment using Reinforcement Learning from Human Feedback^[2] (RLHF) usually entails three steps:

- Step 1: Supervised fine-tuning (SFT) using high-quality human demonstrations dataset
- Step 2: Reward model (RM) training using human-ranked preferences dataset
- Step 3: Optimize the LM from step 1 with RM (step 2) using RL (specifically, PPO^[1] algorithm).

[1] Schulman, John, et al. "Proximal policy optimization algorithms." (2017) <u>link</u>
 [2] InstructGPT: Ouyang, Long, et al. "Training language models to follow instructions with human feedback. (2022)." <u>link</u>

RLHF Optimization – Human Preferences

Step 1 - SFT: Supervised fine-tuning (SFT) using high-quality human demonstrations dataset

Step 2 – Preference Sampling & Reward Learning: Train Reward model (RM) mimicking human preferences

- Start with LM-SFT baseline (from step 1)
- Add randomly initialized head that outputs a scalar (reward) value

$$oss(\theta) \coloneqq \mathbb{E}_{(x, y_w, y_l) \sim D_{RM}}[\log(\sigma(r_{\theta}(x, y_w) - r_{\theta}(x, y_l)))] \longrightarrow How?$$

Where $r_{\theta}(x, y_i)$ is the scalar output of RM_{θ} for prompt x and completion y_i

[1] Stiennon et al. "Learning to summarize with human feedback." (2020). <u>link</u>
 [2] InstructGPT: Ouyang, Long, et al. "Training language models to follow instructions with human feedback. (2022)." <u>link</u>

27

CSC401/2511 – Winter 2024

RLHF Optimization – Human Preferences

Step 2 – Preference Sampling & Reward Learning

Preference Sampling :

- $\mathbf{D}_{\mathbf{RM}} = \left\{ x^{(i)}, y^{(i)}_{w}, y^{(i)}_{l} \right\}^{N}$
- SFT model is prompted with prompts x to produce pairs of completions (y₁, y₂):

 $(y_1, y_2) \sim \pi^{SFT}(y \mid x)$

- Human labelers determines a winning choice: $y_w > y_l \mid x$
 - Assumption: underlying latent (human) reward model: $r^*(y, x)$

RLHF Optimization – Human Preferences

• Bradley Terry^[1] model stipulates human preferences distribution p^* as:

$$p^*(y_1 \succ y_2 \mid x) = \frac{\exp(r^*(x, y_1))}{\exp(r^*(x, y_1)) + \exp(r^*(x, y_2))}$$

• Assuming D_{RM} sampled from p^* we can parameterize a reward model: $r_{\theta}(x, y)$ and estimate the parameters via maximum likelihood by framing the problem as a binary classification with NLL loss:

$$\mathcal{L}_{\mathcal{R}}(r_{\theta}, D_{RM}) = -\mathbb{E}_{(x, y_w, y_l) \sim D_{RM}}[\log(\sigma(r_{\theta}(x, y_w) - r_{\theta}(x, y_l)))]$$

where $r_{\theta}(x, y_i)$ is the scalar output of RM_{θ} for prompt x and completion y_i and σ is the logistic function

• To ensure a reward function with lower variance, normalize the rewards

 $\mathbb{E}_{(x, y) \sim D} \left[r_{\theta}(x, y) \right] = 0 \text{ for all } \mathbf{x}$

[1] Bradley, A, and Milton Terry. "Rank analysis of incomplete block designs: I. The method of paired comparisons." *Biometrika* 39.3/4 (1952)

RLHF Optimization – Human Preferences

Step 3 – RL Optimization: Optimize the LM from step **1** with RM (step 2) using RL

• For a completion (or, response) \hat{y} to prompt x, we want to update LM-policy π^{LM} parameters ϕ to maximize:

 $\mathbb{E}_{\hat{y} \sim \pi_{\phi}(\mathbf{x})}[\mathcal{R}_{\theta}(x, \hat{y})]$

• SGD updates (like below) does not work because our reward function $\mathcal{R}_{\theta}(.)$ is **non-differentiable** w.r.t. our model parameters π_{ϕ}^{LM}

$$\phi_{t+1} \leftarrow \phi_t + \alpha \nabla_{\phi_t} \mathbb{E}_{\hat{y} \sim \pi_{\phi_t}(\mathbf{x})} [\mathcal{R}_{\theta}(x, \hat{y})]$$

 Thus, we resort to policy-gradient methods in RL like REINFORCE^[1], PPO^[2] to estimate and optimize this objective

[1] Schulman, John, et al. "Proximal policy optimization algorithms." (2017) <u>link</u>
 [2] REINFORCE: Williams. "Simple statistical gradient-following algorithms for connectionist reinforcement learning. (1992). <u>link</u>.

Optimization: REINFORCE - I

Drilling down on the REINFORCE (highly simplified) mechanism

$$\nabla_{\phi} \mathbb{E}_{\hat{y} \sim p_{\phi}(y)} [\mathcal{R}(\hat{y})] = \nabla_{\phi} \sum_{y} \mathcal{R}(y) \ p_{\phi}(y) = \sum_{y} \mathcal{R}(y) \nabla_{\phi} p_{\phi}(y)$$
defn. of Expectation linearity of gradient

• Reformulate using the **log-derivative trick**

$$\nabla_{\phi} \log \left(p_{\phi}(y) \right) = \frac{\nabla_{\phi} p_{\phi}(y)}{p_{\phi}(y)} \Longrightarrow \nabla_{\phi} p_{\phi}(y) = p_{\phi}(y) \nabla_{\phi} \log \left(p_{\phi}(y) \right)$$

• Plug back into the first equation:

$$\sum_{y} \mathcal{R}(y) \nabla_{\phi} p_{\phi}(y) = \sum_{y} p_{\phi}(y) \mathcal{R}(y) \nabla_{\phi} \log\left(p_{\phi}(y)\right)$$
$$= \mathbb{E}_{\hat{y} \sim p_{\phi}(y)} \left[\mathcal{R}(\hat{y}) \nabla_{\phi} \log\left(p_{\phi}(\hat{y})\right) \right]$$

[1] REINFORCE: Williams. "Simple statistical gradient-following algorithms for connectionist reinforcement learning. (1992). link.

Optimization: REINFORCE - II

• We can approximate the objective using Monte Carlo sampling with the gradient pushed inside the expectation operator

$$\nabla_{\phi} \mathbb{E}_{\hat{y} \sim p_{\phi}(y)} [\mathcal{R}(\hat{y})] = \mathbb{E}_{\hat{y} \sim p_{\phi}(y)} \left[\mathcal{R}(\hat{y}) \nabla_{\phi} \log\left(p_{\phi}(\hat{y})\right) \right]$$
$$\cong \frac{1}{N} \sum_{i=1}^{N} \mathcal{R}(\hat{y}_{i}) \nabla_{\phi} \log\left(p_{\phi}(\hat{y}_{i})\right)$$

• Now, we can **update** our **objective** using completion samples y as: $\phi_{t+1} \leftarrow \phi_t + \alpha \frac{1}{N} \sum_{i=1}^N \mathcal{R}(y_i) \nabla_{\phi_t} \log(p_{\phi_t}(y_i))$

If $\mathcal{R}(y_i)$ is positive then take steps to update weight parameters ϕ to maximize $p_{\phi}(y_i)$. If $\mathcal{R}(y_i)$ is negative then update weight parameters ϕ to minimize $p_{\phi}(y_i)$

[1] REINFORCE: Williams. "Simple statistical gradient-following algorithms for connectionist reinforcement learning. (1992). link.

RLHF – Step 3 RL Optimization

• **Goal**: update parameters ϕ of our LM π^{SFT} from step 1 with objective:

$$\max_{\pi_{\phi}} \mathbb{E}_{x \sim D, \, \widehat{y} \sim \pi_{\phi}(y|x)} [\mathcal{R}_{\theta}(\widehat{y})] - \beta \mathbb{D}_{KL} [\pi_{\phi}(\widehat{y} \mid x) \parallel \pi_{ref}(\, \widehat{y} \mid x)]$$

where β controls KL-divergence operator to regulate the deviation of trained policy from a base reference policy, usually π^{SFT}

- In practice, π_{ϕ} is also initialized with π^{SFT}
- Due to discrete nature of language generation, this objective is nondifferentiable, and typically optimized with RL
- Specifically, construct this reward function and maximize using PPO:

$$r(x,y) = r_{\theta}(x,y) - \beta(\log(\pi_{\phi}(y \mid x))) - \log(\pi_{ref}(y \mid x))$$

[1] REINFORCE: Williams. "Simple statistical gradient-following algorithms for connectionist reinforcement learning. (1992). link.

Variants – RLAIF

- Reinforcement Learning from AI Feedback (RLAIF):
 - Train RM using (AI) Feedback from other off-the-shelf LLMs
 - Then, train LM-SFT using this RM as usual in RLHF

[1] Lee et al. "RLAIF: Scaling Reinforcement Learning from Human Feedback with AI Feedback". (2023) link

PROMPTING LLMS

Prompt Engineering

- Now that we have seen LM pretraining, fine-tuning (SFT) and instruction fine-tuning (RLHF), let's examine how prompting works in modern LLMs in practice
- The science art of LLM prompting
- Prompt design is imperative for obtaining good results from an LLM / foundation model
- From *In-context Learning* (ICL) paradigm we saw gradient free approaches like:
 - *Zero-shot*: Asking LLM to perform task with no previous example
 - Few-shot: Providing examples as context to the LLM before giving the task

Prompt Engineering

Prompt Engineering

Prompt Engineering - Basics

- Typical LLM I/O structure during inference:
 - Discourse, conversations, messages: array of structured message objects to send to the LLM. Provides context or history from which to continue
 - Roles:
 - system: provide core instruction to the LLM
 - user: 'human' (could be another 'AI' chatbot too)
 - Assistant: role of the LLM, to generate a response

Prompt Engineering - Basics

- Typical LLM hyperparameters during inference:
- top_p: when decoding text, samples from the top p percentage of most likely tokens. In other words, curtail list of generated tokens beyond 'p'
- top_k: same idea as 'top_p' but for 'k' most likely tokens (instead of percentage)
- repetition_penalty: parameter controlling how to penalize the generation of the same text token
- temperature: randomness of choosing a token (from 'p'). '0' means least random
- max_seq_len: the size of input context window, usually depends on the LLM.

```
"temperature": 0.05,
"max_tokens": 256,
"top_p": 1,
"frequency_penalty": 0,
"presence_penalty": 0
```


Prompting Techniques

- Active research area with myriad techniques
- Simple stylization changes or decomposition of instructions can change the generated response
- Examples:
 - Detailed, explicit instructions better than open-ended prompts:
 Stylization:
 - I am a CS student using LLMs for solving assignment
 - Give your answer like explaining the topic to a 5-year old
 - Explicit (step-by-step) instructions:
 - Use bullet points, only use academic papers, return answer in python code etc.

Prompting Techniques – Chain of Thought

- Chain of Thought (CoT) prompting^[1]
 - Decomposing instruction into series of intermediate reasoning steps

[1] Wei et al. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. (2022) link.

PRACTICAL TIDBITS & EVALUATION

Evaluation: LLMs Benchmarks

• Language foundation **models** and their typical evaluation **tasks**:

Year	Model Name	Model Arch.	Oriented Tasks	Parameters	Pre-training Method	Pre-training Datasets	Testing Datasets
2018	BERT [83]	Encoder-Only	Text-CLS, Token-CLS, Fill-Mask, QA, Translation, etc.	110-340M	Self-Supervised	Bookscorpus, Enlish Wikipedia	GLUE, SquAD v1.1/2.0, SWAG, IMDb
2019	DistilBERT [314]	Encoder-Only	Same as BERT	66M	Self-Supervised, Distillation	Same as BERT	GLUE, SquAD, IMDb
2019	RoBERTa [238]	Encoder-Only	Same as BERT	125-355M	Self-Supervised	Boookcorpus, CC-news, Openwebtext, Stories	GLUE, SQuAD, RACE
2019	Sentence-BERT [306]	Encoder-Only	Text Similarity	110M	Only Fine-tuning	SNLI, Multi-Genre NLI	STSb
2019	BART [197]	Encoder-Decoder	Same as BERT	140-400M	Self-Supervised	Boookcorpus, CC-news, Openwebtext, Stories	SQuAD, MNLI, ELI5, XSum, ConvAl2, CNN/DM
2019	T5 [300]	Encoder-Decoder	Same as BERT	60M-11B	Self-Supervised	Colossal Clean Crawled Corpus	GLUE, CNNDM, SQuAD, SGLUE, EnDe, EnFr, EnRO
2018	GPT-1 [298]	Decoder-Only	Same as BERT	117M	Self-Supervised	BooksCorpus, English Wikipedia	SQuAD, SNLI
2019	GPT-2 [299]	Decoder-Only	Same as BERT	1.5B	Self-Supervised	WebText	SQuAD, CoQA, WMT, CNN/Daily Mail
2020	GPT-3 [39]	Decoder-Only	Same as BERT	175B	Unsupervised	Common Crawl, WebText2 Books1/2, Wikipedia	LAMBADA, CBT, SuperGLUE
2021	GLM [90]	Decoder-Only	Same as BERT	110M-130B	Unsupervised	BooksCorpus, English Wikipedia	SuperGLUE
2022	InsturctGPT [277]	Decoder-Only	Same as BERT	175B	Unsupervised RLHF	Common Crawl, WebText2 Books1/2, Wikipedia	LAMBADA, CBT, SuperGLUE
2022	PaLM [67]	Decoder-Only	Same as BERT	54B	Unsupervised	Mixture of 780B Text Source code	English NLP, BIG-bench Reasoning, Code, etc.
2020	wav2vec2 [26]	Encoder-Decoder	Auto Speech Recognition	227-896M	Self-Supervised	LibriSpeech, Unlabeled Audio Data	LibriSpeech, TIMIT, Common Voice
2021	HuBERT [140]	Encoder-Decoder	Auto Speech Recognition	281M-2.8B	Self-Supervised	Libri-Light, LibriSpeech	LibriSpeech, TIMIT
2023	Whisper [297]	Encoder-Decoder	Auto Speech Recognition	39-1150M	Self-Supervised Multi-task Learning	Unkown	LibriSpeech, Multi-lingual dataset
2023	LLaMA [355]	Decoder-Only	Text Generation	7-70B	Self-Supervised RLHF	Common Crawl, C4, Github, Wikipedia, Books, ArXiv, StackExchange	TruthfulQA, ToxiGen, etc.
2023	GPT-4 [273]	Close-Sourced	Text Generation		Close-Sourc	ed	MMLU, HellaSwag, ARC, WinoGrande, HumanEval, DROP, GSM-8K
2023	Claude2						Close-Sourced
2023	PaLM2						

Evaluation: LLMs Benchmarks

- The GLUE and SuperGLUE benchmarks for evaluating NLP LM tasks circa 2019-21
- LM benchmarking scene has rapidly evolved in conjunction with capabilities since then
- Recent benchmarks include:
 - BIG-Bench^[1]: 200+ tasks with dynamic additions of newer tasks
 - MMLU^[2]: Evaluates LMs on tasks across 57 diverse knowledge bases
 - HELM^[3]:
 - GlobalBench^[4]:

[1] Srivastava, A. et. al (2022). "Beyond the imitation game: Quantifying and extrapolating the capabilities of language models". ArXiv 2206.04615.
[2] Hendrycks et al. (2021). Massive Multitask Language Understanding (MMLU). ICLR 2021
[3] Liang, P. et. al (2022). "HELM: Holistic evaluation of language models". ArXiv preprint, abs/2211.09110.

[4] Song, Y. et. al (2023). "GlobalBench: A Benchmark for Global Progress in Natural Language Processing". ArXiv preprint, abs/2305.14716.

Large models are not easily accessible

Model	Inference memory	Fine-tuning memory*
T5-11B	22 GB	176 GB
LLaMA2-33B	66 GB	396 GB
LLaMA2-70B	140 GB	840 GB

*Default or typical values. Fine-tuning memory depends on the type of optimizers used

Raffel et al., 2020, T5. Zhang et al., 2022, OPT., BigScience, 2022, BLOOM.

49

LLMs Memory Footprint

- GPU Memory requirements for LLMs:
 - Inference vs. Training/Fine-tuning (Tr/ft)
 - For inference, at full precision (float32), each parameter is 32bits or 4 bytes (b).
 ≈ 7B×4b = 28 billion bytes
 - Thus, a 7B param. model requires 28 GB GPU memory
 - Training/fine-tuning requires more memory as optimizer weights (parameters + gradient) need to be stored.
 - E.g., Adam^[1] or AdamW (stores the second moment of gradients) requires 16b per trainable param.
 - 16B per trainable param. That's 7B * 16b = 112GB GPU RAM

[1] Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization." (2014) link.

[Aside] PEFT

- PEFT or Parameter Efficient Fine-Tuning is an umbrella term for methodologies (and/or libraries) for efficient adaptation of LLMs to downstream tasks within computation cost/budget
- PEFT methods are typically evaluated on these 5 metrics:
 - 1. Storage efficiency
 - 2. Memory efficiency
 - 3. Computation efficiency,
 - 4. Accuracy, and
 - 5. Inference overhead

LLMs: Summary & Conclusion

- Full coverage of all pertinent areas would make a course of its own. We deep-dived into selected topics only
- Advents in LLM research has truly put AI in global limelight
- Research in LLM can be exhausting is incredibly fast-paced with global, immediate impact
- Understand the many limitations of LLMs (e.g., hallucination, creative tasks) and the nature of each fast-moving components:
 - Representation learning domain
 - Component improvements: e.g. attention mechanisms, alternate architectures
 - Improving training/fine-tuning methodologies at scale:
 - Parallelism, PEFT: quantization techniques etc.

