
CSC401/2511 – Winter 2024 1

Image: Transformers: ‘ …and one ‘architecture’ to rule them all’ – Juxtaposition by Raeid Saqur (2024).

Copyright © 2024. Raeid Saqur, University of Toronto

Logistics (Feb 12, 2024)

2CSC401/2511 – Winter 2024

• Office hours: Mon 12 – 13.00 (in-person, BA 2270)
• A2 is now posted! due Mar 8, 2024 (mid-night) – errata recap.
• A2 tutorials planned schedule:
• Feb 16: A2 tutorial – 1 (ft. Arvid Frydenlund)
• Mar 1: A2 tutorial – 2 (ft. Julia Watson)
• Mar 8: A2 – Q/A and OH

• A3: release Mar 9, 2024
• Final exam: date to be finalized soon
• Have a great Reading week break! Next week: no classes or tutorials).

• Lecture feedback:
• Anonymous
• Please share any thoughts/suggestions

• Questions?

A2 – NMT with Transformers

3CSC401/2511 – Winter 2024

Transformers

6CSC401/2511 – Winter 2024

Lecture plan (L6)
• Overview/Recap: RNNs -> Transformers
• Transformer building blocks/components
• Transformer architecture – deep dive

• Review of early popular Transformer based PLMs:
• Encoder only (BERT, BERTology findings)
• Encoder-Decoder: unified text-to-text format (T5)
• Decoder only auto-regressive models (GPT)

• What’s next for LM architectures?
• Token free architectures
• Is Attention all we need? Attention free architectures

• Segue to the next lecture (L7) LLMs

Transformer networks

CSC401/2511 – Winter 2024

1 Vaswani, Ashish, et al. "Attention is all you need." NeuIPS (2017).

• Breakout paper in 2017: Attention is all you need [1]

• Core idea: replace recurrent connections with attention

• Empirical results showcased using machine translation (WMT’14)

7

Transformer networks (abstract)

CSC401/2511 – Winter 2024

ℎ!
ℓ

ℎ!
ℓ#$

𝑠 = 1…𝑆

𝑠 = 1…𝑆 'ℎ%
ℓ

�̃�%
ℓ#$

𝑡 = 1…𝑇

𝑡 = 1…𝑇

'ℎ%
ℓ#$

𝑡 = 1…𝑇

𝑝% 𝑡 = 1…𝑇

ℓ = 1…𝐿 − 1

𝑥! 𝑠 = 1…𝑆 1𝑥% 𝑡 = 1…𝑇

1

2

Core
Idea Replace recurrence (RNN) with attention

• Encoder uses self-attention

ℎ!
(ℓ$%) ← 𝐴𝑡𝑡'() ℎ!

ℓ , ℎ%:+
ℓ 	

Decoder uses 1. self-attention*

�̃�,
(ℓ$%) ← 𝐴𝑡𝑡-.)%)ℎ,

ℓ ,)ℎ%:,
ℓ

then 2. attention with encoder
)ℎ,
ℓ$% ← 𝐴𝑡𝑡-.)/ �̃�,

ℓ$% , ℎ%:+
ℓ$%

8

*Recall Slide

Transformer motivations
● Limitations of recurrent connections: long-term dependencies, lack of

parallelizability, interaction distance (steps to distant tokens).

● Attention allows access to entire sequence

● Lots of computation can be shared, parallelized across sequence
indices. Identical layers: [self, cross]-attention, feed-forward w/ tricks

● Layer norm., residual connections, positional encodings, masking

● See Vaswani et al (2017) for specific architecture

ℎ$

𝑥$
𝑇! l′

ℎ&

𝑥&

ℎ'

𝑥'

ℎ(

𝑥(
𝑇! amitié 𝑇! est 𝑇! magique

ℎ$ ℎ& ℎ' ℎ(

1

2

2

2

3 4 5

3

3 4

43

4 5

L
=

2
la

ye
rs

h ∈ ℝ𝑑

Source sentence (French): L’ amitié est magique
Target sentence (English): Friendship is magic

ℎ$

𝑥$
𝑇! l′

ℎ&

𝑥&

ℎ'

𝑥'

ℎ(

𝑥(
𝑇! amitié 𝑇! est 𝑇! magique

ℎ$ ℎ& ℎ' ℎ(

1

2

1

2

11

2 2
L

=
2

la
ye

rs

h ∈ ℝ𝑑

RNNs to Transformers

CSC401/2511 – Winter 2024

1 Vaswani, Ashish, et al. "Attention is all you need." NeuIPS (2017).

• Transformers is the underlying architecture for all state-of-the-art
deep neural models – not just in NLP, but across other modalities too

8

!ℎ!

#!

!ℎ" !ℎ# !ℎ$

#" ## #$

$%! $%" $%# $%$

&! &" &# &$

<s>

ℎ% = !ℎ&

friendship is magic

</s>friendship is magic

DecoderEncoder

ℎ!

%!
l′

ℎ"

%"

ℎ#

%#

ℎ$

%$

ℎ%

%%
amitié est magique </s >

Input source sentence in French

Output target sentence in English

• So far, we have seen encoder-decoder models using RNN (and variant)
architectures using attention for memory bottlenecks (seq2seq+attn)

• With Transformers, we use the same (enc-dec) paradigm, with
different building blocks
• by removing recurrence with parallelizable blocks

DecoderEncoder

10

Transformer Architecture

CSC401/2511 – Winter 2024

• Architecture diagram from Vaswani[1]

1 Vaswani, Ashish, et al. "Attention is all you need." NeuIPS (2017).

• Building blocks:
1. Encoder
2. Decoder

DecoderEncoder

11

FFN

(Masked) MH Self-Attention

Cross-Attention

DECODER

FFN

MH Self-Attention

ENCODER

DecoderEncoder

Transformer Architecture

CSC401/2511 – Winter 2024

• Architecture diagram from Vaswani[1]

1 Vaswani, Ashish, et al. "Attention is all you need." NeuIPS (2017).

• Building blocks:
1. Encoder
2. Decoder

• Main components within building blocks:
• Attention mechanisms:

• single and multi-head attention
• self, cross, and masked attention

• Feed-forward MLPs (FFN)
• Layer normalization (LN)
• Positional encodings (PE)
• Residual connections

DecoderEncoder

12

Transformer Attention(Q,K,V) : Intuition

CSC401/2511 – Winter 2024

Keys

Filing
Cabinet

w/ labels

Values

In the classical roboquity era (2100-2250 AD), humans in designated zones/zoos
are only allowed filing cabinets and paper documents to store information.

ACORN doesn’t exist, and UofT students’ info (financial, academic, personal)
retrieval works as follows:

What is the student’s current academic standing?
What is the student’s current financial status?
What is the student’s residency status in Canada?

q1
q2
q3

Dot Product
Attention

Similarity
Measure

QueriesQ

K V

13

Transformer Encoder

CSC401/2511 – Winter 2024

Tiny transformer tutorialET:Mini tutoriel de transformateurFS: DecoderEncoder

FFN

MH Self-Attention

ENCODER

N x

Sub-layers (only)
Block

FFN

ENCODER

MH Self-Attention

(Post) LayerNorm

(Post) LayerNorm

Sub-layers
residual

connections

LayerNorm

1

2

3

• Plan: discuss building blocks:
1. Residual connections
2. LayerNorm
3. Attention and FFN sub-layers
4. Positional encodings

ℎ!

"!
Mini

ℎ"

""

ℎ#

"#

ℎ$

"$

ℎ%

"%
tutoriel de transformateur </s >

#! #" ## #$ #%
Positional
Encodings

Embeddings

Input

𝑥! = 𝑇" 𝐹! + 𝜙 𝑠

4

14

Residual Connections

CSC401/2511 – Winter 2024

1 He, Kaiming, et al. "Deep residual learning for image recognition." CVPR. 2016.

FFN

ENCODER

MH Self-Attention

(Post) LayerNorm

(Post) LayerNorm

sub-layers
residual

connections

𝑥! = 𝑇" 𝐹! + 𝜙 𝑠

• Problem: NNs struggle to learn the identity function mapping

• Idea from computer vision[1]

𝑥234 = 	ℱ 𝑥2 + 𝑥2

• Solution: Add back the input embeddings to the sub-layer’s output moving up

• Analogy: think of the information highway analogy. Helps negate forgetting past
information by carrying information without distortion.

+ Helps smoothen loss
curvature allowing better
backprop.

𝑥!) = 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟 𝑥! + 𝑥!

𝑥!#

15

Layer Normalization: default (Post-) LN

CSC401/2511 – Winter 2024

1 Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer normalization. 2016” [link]
2 Xiong, Ruibin, et al. "On layer normalization in the transformer architecture." ICML. PMLR, 2020. [link]

FFN

ENCODER

MH Attention

(Post) LayerNorm

(Post) LayerNorm

𝑥! = 𝑇" 𝐹! + 𝜙 𝑠

• Layer Normalization[1]:
• Normalize input layer’s distribution to 0 mean and 1 standard

deviation.
• Removes uninformative variation in layer’s features

residual
block

residual
block

LayerNorm

ℎ2(= 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 ℎ2

 = 	𝛾 =)>?)

@) + 𝛽	

where 𝜇, 𝜎 are mean and std. dev.
of features in ℎ*. 𝛾, 𝛽 are scale, bias params.

𝜇 =
1
𝑑G+,$

-
ℎ+*

𝜎& =
1
𝑑G+,$

-
ℎ+* 	− 𝜇

&

ℎ"!

ℎ"

ℎ"!

ℎ"

16

https://arxiv.org/pdf/1607.06450.pdf
https://proceedings.mlr.press/v119/xiong20b/xiong20b.pdf

Layer Normalization Variant: Pre-LN

CSC401/2511 – Winter 2024

1 Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer normalization. 2016” [link]
2 Xiong, Ruibin, et al. "On layer normalization in the transformer architecture." ICML. PMLR, 2020. [link]

FFN

ENCODER

MH Attention

(Post) LayerNorm

(Post) LayerNorm

𝑥! = 𝑇" 𝐹! + 𝜙 𝑠

FFN

ENCODER

MH Attention

(Pre) LayerNorm

(Pre) LayerNorm

𝑥! = 𝑇" 𝐹! + 𝜙 𝑠

• Layer Normalization[1]: two popular variants
o Post layer normalization (Post-LN): original Transformer model: requires learning

rate warm-up due to initial instability of large output gradients.
o Pre layer normalization (Pre-LN): puts layer-norm within the residual block.

Allows removing warm-up stage. More stable training initialization.

residual
block

residual
block

LayerNorm
residual

block
LayerNorm

residual
block

LayerNorm

17

https://arxiv.org/pdf/1607.06450.pdf
https://proceedings.mlr.press/v119/xiong20b/xiong20b.pdf

Transformer Encoder - Self Attention

CSC401/2511 – Winter 2024

1 Vaswani, Ashish, et al. "Attention is all you need." NeuIPS (2017).

Tiny transformer tutorialET:

FS:
𝑥$

Mini

𝑥% 𝑥& 𝑥' 𝑥(

tutoriel de transformateur </𝐬 >

• Three weight matrices WQ, WK, WV

• Let’s look at ‘self-attention’ with input FS

• Our running example:

18

Transformer Encoder - Self Attention

CSC401/2511 – Winter 2024

• Recall the attention steps we discussed in last lecture
• Steps:

1. Calculate the query, key, and value for each token
• Attention of each query (𝑞0) against all the keys (𝑘%:1)

2. Calculate the attention score between query and keys
3. Normalize the attention scores by applying softmax
4. Calculate values by taking a weighted sum

1 Vaswani, Ashish, et al. "Attention is all you need." NeuIPS (2017).

𝑞. = 𝑊/𝑥.
𝑘. = 𝑊0𝑥.
𝑣. = 𝑊1𝑥.

𝑎.,3	 = 𝑠𝑐𝑜𝑟𝑒 𝑞. , 𝑘3
𝑎.,3	 = 𝑞. . 𝑘3

𝑎.,3	 =
𝑞. . 𝑘3
√𝑑+

	

𝛼.,3 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑎.,$:0	

𝛼.,3 =
𝑒𝑥𝑝(7!,#)	

∑+,$0 𝑒𝑥𝑝(7!,$)
𝑐. =G

3
𝛼.,3𝑣3

19

Transformer Encoder - Self Attention

CSC401/2511 – Winter 2024

• Recall the attention steps we discussed in last lecture
• Steps:

1. Calculate the query, key, and value for each token
• Attention of each query (𝑞0) against all the keys (𝑘%:1)

2. Calculate the attention score between query and keys
3. Normalize the attention scores by applying softmax
4. Calculate values by taking a weighted sum

1 Vaswani, Ashish, et al. "Attention is all you need." NeuIPS (2017).

𝑍 = 	Α. 𝑉
𝑄 = 𝑋𝑊/

𝐾 = 𝑋𝑊0

𝑉 = 𝑋𝑊1

𝐴 = 𝑠𝑐𝑜𝑟𝑒 𝑄, 𝐾

𝐴 =
𝑄.𝐾1

√𝑑2

𝐴 = 𝑄.𝐾1
Α = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴

Α = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(/0
%

√-$
)	

	

Vectorized notation:

20

Transformer Encoder - Self Attention

CSC401/2511 – Winter 2024

1 Vaswani, Ashish, et al. "Attention is all you need." NeuIPS (2017).

𝐴 = 𝑠𝑐𝑜𝑟𝑒 𝑄, 𝐾
𝐴 = 𝑄.𝐾1

Α = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴

𝑍 = 	Α. 𝑉

21

𝑄 = 𝑋𝑊/

𝐾 = 𝑋𝑊0

𝑉 = 𝑋𝑊1

Step 1

Step 2

Step 3

Step 4

Multi-head Self Attention (MHA)

CSC401/2511 – Winter 2024

• As alluded to in L5, multi-head attention (MHA) allows to jointly attend
to information from different representation subspaces at different
positions

1 Vaswani, Ashish, et al. "Attention is all you need." NeuIPS (2017).

𝑀𝐻𝐴 𝑄,𝐾, 𝑉 = 𝐶𝑜𝑛𝑐𝑎𝑡 ℎ𝑒𝑎𝑑,, … , ℎ𝑒𝑎𝑑- 𝑊. 	
 where ℎ𝑒𝑎𝑑^ = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄𝑊_	, 𝐾𝑊^

`, 𝑉𝑊^
a

𝑊.
/ ∈ 	ℝ-&'()*	×	-$

𝑊.
0 ∈ 	ℝ-&'()*	×	-$

𝑊.
1 ∈ 	ℝ-&'()*	×	-+

𝑊; ∈ 	ℝ<-+	×	-&'()*	

And projections are parameter matrices:

𝑑+ = 𝑑= =
𝑑>?-@*
ℎ

22

Feed-forward (FFN) layers

CSC401/2511 – Winter 2024

• Attention only re-weighs the value vectors
• We need to apply non-linearities (activations) to enable (deep) learning
• The feed-forward layer(s) (FFN) provide non-linear activation to attention layer outputs
• Specifically, each output x undergoes two (layer) linear transformations with a ReLU

activation in between:

1 Vaswani, Ashish, et al. "Attention is all you need." NeuIPS (2017).

FFN

Self-Attention

ENCODER

𝐹𝐹𝑁 𝑥 = max 0, 𝑥𝑊4 + 𝑏4 𝑊d + 𝑏d
• FFN sub-layer is applied to each token pos. separately and identically
• Given x is a sequence of tokens 𝑥%, … , 𝑥+ , point-wise computation of

FFN sub-layer on any token 𝑥0 is:

𝐹𝐹𝑁 𝑥^ = R𝑒𝐿𝑈 	𝑥^𝑊4 + 𝑏4 𝑊d + 𝑏d

where 𝑊$,𝑊&, 𝑏$	𝑎𝑛𝑑	𝑏& are parameters

𝑍 = 	Α. 𝑉

𝑧. =G
3
𝛼.,3𝑣3

23

Position (in)dependence

● Attention mechanism is agnostic to sequence order
● For permutation vector 𝑣 s.t. 𝑠𝑜𝑟𝑡𝑒𝑑 𝑣 = (1,2, … , 𝑉)

● Caveat: but the word order matters in language
translation

● Solution: encode position in input:

𝑥1 = 𝑇2 𝐹1 + 𝜙 𝑠

𝐴𝑡𝑡 𝑎, 𝑏3 = 𝐴𝑡𝑡 𝑎, 𝑏,:5

*Recall slide: L5_NMT

token position

Transformer - Positional Encoding

Add positional information of an input token in the sequence
into the input embedding vectors.

Idea

● The positional encodings (PE) have the same dimension dmodel as
the embeddings (for summation)

● Many choices of PEs possible: learned or fixed.

𝑃𝐸(23!,	 𝟐𝒊) = 𝐬𝐢𝐧
𝑝𝑜𝑠

10000
/0

834567

; 𝑃𝐸(23!,	𝟐𝒊$𝟏) = 𝐜𝐨𝐬
𝑝𝑜𝑠

10000
/0

834567

ℎ$

𝑥$

ℎ%

𝑥%

ℎ&

𝑥&

ℎ'

𝑥'

ℎ(

𝑥(

𝑡$ 𝑡% 𝑡& 𝑡' 𝑡(
Positional
Encodings

Embeddings

Input

*Recall slide: L5_NMT

dim index

Mini tutoriel de transformateur </𝐬 >

• Building blocks:
1. Encoder
2. Decoder

Recap: Transformer Architecture

CSC401/2511 – Winter 2024

• Architecture diagram from Vaswani[1]

• Main components within building blocks:
• Attention mechanisms:

• single and multi-head attention
• self, cross, and masked attention

• Feed-forward MLPs (FFN)
• Layer normalization (LN)
• Positional encodings (PE)
• Residual connections

DecoderEncoder

26

Next block: Transformer Decoder

CSC401/2511 – Winter 2024

• Layer normalization, residual connections,
FFNs are identical to the encoder block

• Thus, we focus on remaining:
• Masked/Causal self-attention sub-layer
• Cross-attention

1 Vaswani, Ashish, et al. "Attention is all you need." NeuIPS (2017).

FFN

(Masked) Self-Attention

Cross-Attention

DECODER

FFN

Self-Attention

ENCODER

DecoderEncoder

27

Decoder – Masked Self-Attention

CSC401/2511 – Winter 2024

• Masked (Multi-head) self-attention:
• Enforce auto-regressive language modeling

objective. The decoder cannot peek and pay
attention to the (unknown) future words

• Solution: use a look-head mask M, by setting
attention scores of future tokens to –inf.

1 Vaswani, Ashish, et al. "Attention is all you need." NeuIPS (2017).

𝑎^f =	 C
𝑞^g. 𝑘f, 𝑗 < 𝑖	
−∞, 𝑗 ≥ 𝑖	

FFN

(Masked) Self-Attention

Cross-Attention

DECODER

28

Decoder – Masked Self-Attention

CSC401/2511 – Winter 2024

1 Vaswani, Ashish, et al. "Attention is all you need." NeuIPS (2017).

𝑎^f =	 C
𝑞^g. 𝑘f, 𝑗 < 𝑖	
−∞, 𝑗 ≥ 𝑖	

FFN

(Masked) Self-Attention

Cross-Attention

DECODER

ET:

<s> tiny transformer tutorial

−∞ −∞ −∞ −∞

−∞ −∞ −∞

−∞ −∞

−∞<s>

tiny

transformer

tutorial

tiny transformer tutorial<s>

𝐴 = 𝑠𝑐𝑜𝑟𝑒 𝑄, 𝐾

𝑎0,1	 = 𝑠𝑐𝑜𝑟𝑒 𝑞0, 𝑘1
or,

Recall

0

0

1 2 3

1

2

3

Q

K

j

i

29

Encoder-Decoder (Cross) Attention

CSC401/2511 – Winter 2024

• In self-attention: Q, K and V has same source (tokens)
• Cross attention is encoder <> decoder attention between encoder and

decoder’s output vectors (like we are used to from L5-NMT
• Using our running e.g. and notations:

• Let ℎ%, … , ℎ+ be encoder output vectors, where ℎ0 ∈ 	ℝ88

• Let)ℎ%, … ,)ℎ: be decoder output vectors, where)ℎ0∈ 	ℝ89

FFN

(Masked) Self-Attention

Cross-Attention

DECODER

FFN
Self-Attention

ENCODER

• Queries, Q comes from decoder:
• 𝑞^ = 𝑄Lℎ^

30

Filing
Cabinet
w/ labels

ValueKey
⇒ ⇶Recall

Attention

QueriesQ

K

Intuition

• Then, keys and values: K and V
comes from encoder (or, memory):
• 	𝑘^ = 𝐾ℎ^	, 𝑣^ = 𝑉ℎ^	

Encoder-Decoder (Cross) Attention

CSC401/2511 – Winter 2024

FFN
Self-Attention

ENCODER

Queries, Q comes from decoder

31

Filing
Cabinet
w/ labels

ValueKey
⇒ ⇶Recall

Cross
Attention

Q

K

Intuition
FFN

(Masked) Self-Attention
Cross-Attention

DECODER

𝑍 = 	Α. 𝑉

Step 4

(Compare) Encoder - Self Attention

CSC401/2511 – Winter 2024

1 Vaswani, Ashish, et al. "Attention is all you need." NeuIPS (2017).

𝐴 = 𝑠𝑐𝑜𝑟𝑒 𝑄, 𝐾
𝐴 = 𝑄.𝐾1

Α = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴

𝑍 = 	Α. 𝑉

32

𝑄 = 𝑋𝑊/

𝐾 = 𝑋𝑊0

𝑉 = 𝑋𝑊1

Step 1

Step 2

Step 3

Step 4

Self
Attention

Recap

CSC401/2511 – Winter 2024 33

• We have now covered all the primitives you need for building a
transformer!

• These are too abstract, but not to worry …
• Assignment 2 was designed for you to implement all these

concepts into a working MT model of your own!

Transformers - Drawbacks

CSC401/2511 – Winter 2024 34

• Attention’s quadratic computation cost
• Function of sequence length N, and token dimension 𝑑
• Computing all token pairs mean the function grows

quadratically with N, 𝑂 𝑁d𝑑 unlike RNNs: 𝑂 𝑁𝑑

XQ KTXT

𝑋𝑄 ∈ 	ℝ#×%

∈ 	ℝ%×#

XQKTXT

∈ 	ℝ#×#

=

• Can you see why this could be the biggest hurdle for
increasing a transformer LM’s context length (i.e., the
size of input it can process)?

Transformers - Drawbacks

CSC401/2511 – Winter 2024 35

• Context (input) size limitation:
• Dimension 𝑑 in modern LLMs are ~>3K
• If one sentence length is ~10-30 word tokens, then

computation scales with 102-302 times 𝑑
• Thus, modern LLMs set a bound on N (usually 512 tokens)
• But, we want N to be much larger
• E.g., processing a document (N > 10K) at one go (instead of

chunking by N for every call)

[1] Wang, Sinong, et al. "Linformer: Self-attention with linear complexity." (2020). link.

• Active research area: improving the quadratic cost of
attention, like self-attention with linear complexity[1]
• + Roformer, flash attention, sliding-window etc.

https://arxiv.org/pdf/2006.04768.pdf

Transformers - Drawbacks

CSC401/2511 – Winter 2024 36

• Other drawbacks, improvement areas:
• Positional encoding representations:
• Do we need absolute indices to represent position?

• Slew of works and variants has been proposed to the vanilla
(sinusoidal, absolute) position encoding we saw

• General trend:
• Move towards relative position encoding
• E.g. Relative linear position attention [Shaw et al. 2018]

𝑟 = 𝑐𝑙𝑖𝑝(𝑚 − 𝑛, 𝑟>.A, 𝑟>7B)
Relative distance between pos. m and n

[Aside] Rotary Position Embeddings

CSC401/2511 – Winter 2024 37

[1] RoPE: Su, Jianlin, et al. "Roformer: Enhanced transformer with rotary position embedding." (2021). [arxiv]

• RoPE – now adopted default in modern LLMs
• Encodes absolution position with a rotation matrix
• RoPE + Transformer = RoFormer

https://arxiv.org/pdf/2104.09864.pdf

CSC401/2511 – Winter 2024 38

[Aside] GEMM-Based Architecture

Slide credits with thanks to: Daniel Fu <danfu@cs.standford.edu>

CSC401/2511 – Winter 2024 39

[Aside] GEMM-Based Architecture

Slide credits with thanks to: Daniel Fu <danfu@cs.standford.edu>

TRANSFORMER BASED
LANGUAGE MODELS

CSC401/2511 – Winter 2024 40

Architectural Variants

CSC401/2511 – Winter 2024 41

• The Transformers architecture underpins most
SoTA LLMs of today.

• There are 3 main variations of the encoder-
decoder blocks we studies for Transformers in L6

• Encoders – e.g. models: BERT and BERT-variants
• Decoders – e.g. the GPT series
• Encoder-Decoder – e.g. vanilla transformer, T5, Flan-

T5[1] (instruction tuned T5) etc.

[1] Flan-T5 - Chung, Hyung Won, et al. "Scaling instruction-finetuned language models.”. link.

https://arxiv.org/pdf/2210.11416.pdf

42CSC401/2511 – Winter 2024

• The age of humans is over?

Humans

BERT

BERT: Bidirectional Encoder Representations from Transformers

• Unlike predecessors (ELMo) or contemporaneous LMs (GPT), BERT is deeply bidirectional
and independent of task-specific features with unified architecture across different tasks.

• Think of the encoder part of the transformer architecture

43CSC401/2511 – Winter 2024

BERT: Bidirectional Encoder Representations from Transformers

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. (2019). [arxiv]
Code and models: https://github.com/google-research/bert [Colab]

• Landmark, pivotal neural LM that has
become an ubiquitous baseline in NLP.

• BERT is conceptually simple (multi-layer,
bidirectional transformer), empirically
powerful.

http://arxiv.org/abs/1810.04805
https://github.com/google-research/bert
https://colab.research.google.com/github/tensorflow/tpu/blob/master/tools/colab/bert_finetuning_with_cloud_tpus.ipynb

BERT: Bidirectional Encoder Representations from Transformers

• First, pre-trained on (large) unlabeled
data on two unsupervised
tasks/objectives:
• Masked LM (MLM), and
• Next Sentence Prediction (NSP)

• Then, fine-tuned using labeled data
from downstream tasks

• Training entails feeding the final hidden
vectors to an output linear layer with
softmax over the possibilities (e.g. the
vocabulary as in a standard LM)

44CSC401/2511 – Winter 2024

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. (2019). [arxiv]
Code and models: https://github.com/google-research/bert [Colab]

ℎ!
ℓ

ℎ!
ℓ#$

𝑠 = 1…𝑆

𝑠 = 1…𝑆

𝑠 = 1…𝑆
𝑥!

𝑠 = 1…𝑆
𝑝!

ℓ = 1…𝐿 − 1

http://arxiv.org/abs/1810.04805
https://github.com/google-research/bert
https://colab.research.google.com/github/tensorflow/tpu/blob/master/tools/colab/bert_finetuning_with_cloud_tpus.ipynb

• Masked LM (MLM): predict randomly masked words:

• 80% of the target words are masked with: [MASK]. 10% are replaced with another
word, and 10% are kept as-is, to bias ‘towards the observation’.

• Variants: masking granularity can be varied (word-piece, word, span) with respective
quirks. E.g., masking named entities improves structured knowledge representation.

• Next sentence prediction (NSP): does sentence B follow A?

• 50% of the time true, 50% of the time it’s a random sentence.
• Later research finds removing the NSP task does not hurt, or slightly improves

performance. [2]

45CSC401/2511 – Winter 2024

[1] Aroca-Ouellette S, Rudzicz F (2020) On Losses for Modern Language Models, EMNLP.
[2] Rogers, Anna et al. "A primer in BERTology: What we know about how BERT works." TACL(2020). link

Pre-training objectives

BERT: Bidirectional Encoder Representations from Transformers

https://www.aclweb.org/anthology/2020.emnlp-main.403/
https://doi.org/10.1162/tacl_a_00349

46CSC401/2511 – Winter 2024

1. Clark et al. "What does bert look at? an analysis of bert's attention." (2019). link
2. Tenney et al. "BERT rediscovers the classical NLP pipeline." (2019). link
3. Rogers, Anna et al. "A primer in BERTology: What we know about how bert works." TACL(2020). link

• Heads: Analysis of the multi-headed attention mechanism in BERT shows attention
heads exhibiting attentions on various linguistic (e.g. syntax, coreference) patterns. [1]

• Layers: linear word order and surface features captured most by lower layers. Syntactic
information most prominent in middle layers. Semantic and task specific features are best
captured in higher/final layers.

• Research on proposed improvements and modifications to BERT, both architectural choices
(e.g. # of layers, heads) and training methods is voluminous and ongoing. Due to overall trend
towards larger model sizes, systematic ablations have become prohibitively expensive.

Findings from ablative studies [1,2,3]

BERT: Bidirectional Encoder Representations from Transformers

https://arxiv.org/pdf/1906.04341.pdf
https://arxiv.org/pdf/1905.05950.pdf
https://doi.org/10.1162/tacl_a_00349

47CSC401/2511 – Winter 2024

• Limitations: BERT’s possession of impressive syntactic, semantic, and world
knowledge has caveats.

Findings from ablative studies

• World Knowledge:
• BERT struggles with pragmatic inference, and role-based event knowledge.
• It can ‘guess’ object affordances and properties but cannot reason about relationships

between them. Example: it ‘knows’ people can walk into houses, houses are big, but
cannot infer that houses are bigger than people.

• Syntactic Knowledge:
• Does not ‘understand’ negations and is insensitive to malformed input.
• Findings suggest that either its syntactic knowledge is incomplete, or not dependent on

it for solving its tasks.

• Semantic Knowledge:
• Struggles with representations of numbers.
• Surprisingly brittle to named entity replacements:

e.g. 85% drop in performance in coreference task
with names replaced.

BERT: Bidirectional Encoder Representations from Transformers

48CSC401/2511 – Winter 2024

Why BERT matters/mattered?

• Performance and versatility:
• Impressive performance – not only beating (then) SOTA peers, but

humans too!

BERT: Bidirectional Encoder Representations from Transformers

• Popularized the pipeline of ‘pretraining’ -
> ‘fine-tuning’ NLMs

• Fine-tuning (pre-trained) BERT on
downstream tasks led to new SOTA
results on a broad range of NLP tasks

49CSC401/2511 – Winter 2024

Use BERT for everything?

• BERT has an encoder-only architecture

• While the preceding results are great, but pretrained encoders aren’t
great for everything

• For example, tasks involving generating sequences auto-regressively
(one token at a time) - like our machine translation task!

• Solution: use a (pretrained) decoder in conjunction

BERT: Bidirectional Encoder Representations from Transformers

Aside – BERT → BART → NMT
● Explosion of variants to BERT

● Pretrained BERT language model used to re-score/fine-tune
downstream NLP tasks

● BART (Lewis et al, 2020) adds the decoder back to BERT, keeping the
BERT objective

● Add some source language layers on top to train for NMT
BART↓

BA
RT

 fo
r N

M
T↓

Lewis, Mike, et al. "Bart: Denoising sequence-to-sequence pre-training for natural language generation,
translation, and comprehension." (2019). link.

https://arxiv.org/pdf/1910.13461.pdf

Distinguishing features:
• Consistent, task-invariant MLE training

objective.
• Self-attention “mask” with prefix.
• Unsupervised “denoising” training objectives:

span corruption (conceptually same to MLM,
mask ‘spans’ instead of words).

51CSC401/2511 – Winter 2024
1. Raffel et al. "Exploring the limits of transfer learning with a unified text-to-text transformer." (2020). link

T5: Text-to-Text Transfer Transformer

• T5 is an unified framework that casts all NLP problems into a ‘text-to-text’ format.
• Architecturally (almost) identical to the original Transformer (Vaswani et al., 2017).
• Draws from a systematic study comparing pre-training objectives, architectures,

unlabeled data sets, transfer approaches, and other factors on dozens of language
understanding tasks.

• Introduces and uses a new curated dataset: “Colossal Clean Crawled Corpus” (C4)
for training.

• A refined Transformer updated with better methodologies

Attention mask patterns

https://www.jmlr.org/papers/volume21/20-074/20-074.pdf

52CSC401/2511 – Winter 2024

T5: Text-to-Text Transfer Transformer

Input/Output format for training denoising objective

Input sentence: “That is good.”
Target: “Das ist gut.”
• Training: task specification is imbued by

prepending task prefix to the input sequence.
Model trained on next sequence prediction
over the concatenated input sequence:

 “translate En-De: That is good. Das ist gut.”

• For prediction, the model is fed prefix:
• “translate En-De: That is good. target:”

Example Task: English to German (En-De) translation:

• For classification tasks, the model predicts a single word
corresponding to the target label.

• E.g. MNLI task of entailment prediction:
• “mnli premise: I hate pigeons. hypothesis: I am hostile to

pigeons. entailment. ”
• Model predicts label: {“entailment”, “neutral”, “contradiction”}.

53CSC401/2511 – Winter 2024

T5: Text-to-Text Transfer Transformer
Why T5 matters?

• Unifying diverse NLP problems as one (‘text-to-text’) format is a really cool idea.

• This allows us to use the same model, loss function, hyperparameters etc. across a
diverse set of tasks

• Remarkable transfer learning capabilities: T5 can be finetuned to answer a wide
range of (open-domain dataset NQ, WQ, TQA) questions, retrieving knowledge
from its parameters

On that note – A2 BART Analysis
● **Code Demo** HuggingFace [t5_small|BART-base] NMT trained on

Hansard (Fr-En)

● https://huggingface.co/docs/transformers/model_doc/bart

● https://huggingface.co/raeidsaqur/bart-base

● https://huggingface.co/raeidsaqur/mt_fr2en_hansard_t5-small

● Optional: bonus pointers

Lewis, Mike, et al. "Bart: Denoising sequence-to-sequence pre-training for natural language generation,
translation, and comprehension." (2019). link.

https://huggingface.co/docs/transformers/model_doc/bart
https://huggingface.co/raeidsaqur/bart-base
https://arxiv.org/pdf/1910.13461.pdf

GPT SERIES

CSC401/2511 – Winter 2024 55

• Open AI GPT-series of models – uses multi-layer decoder only blocks

56CSC401/2511 – Winter 2024

1. Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018)
2. Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAI Blog 1.8 (2019)
3. Brown, Tom B., et al. "Language models are few-shot learners." arXiv preprint arXiv:2005.14165 (2020)

GPT: Generative Pretrained Transformers

• Architecturally (almost) identical – each scales (params, data) on predecessor

• Open AI GPT papers: GPT (2018)[1], GPT-2 (2019)[2], GPT-3 (2020)[3]

• Specifically, given an unsupervised corpus
of tokens	𝛍 = {𝜇1, … , 𝜇𝑛}, where k is
context window, P is modelled using a
neural network with parameters θ.

• Pretraining objective is classic ‘language
modeling’, to maximize the likelihood:

57CSC401/2511 – Winter 2024

1. Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018)
2. Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAI Blog 1.8 (2019)
3. Brown, Tom B., et al. "Language models are few-shot learners." arXiv preprint arXiv:2005.14165 (2020)

GPT: Generative Pretrained Transformers
• Distinguishing features:
• Uses multi-layer transformer decoder only blocks
• Auto-regressive generative model, does not see the future (no bi-

directional awareness)
• Like traditional LMs, outputs one token at a time

● GPT vs. BERT-variants:
● GPT uses ‘transformer’ blocks as decoders, and BERT as encoders.
● Underlying (block level) ideology is same
● GPT (later Transformer XL, XLNet) is an autoregressive model, BERT is not

– At the cost of auto-regression, BERT has bi-directional context awareness.

● GPT, like traditional LMs, outputs (predicts) one token at a time.

● Compare with T5, BART that uses encoder-decoder

Key architectural differences

[1] Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018).

● Increasingly convincing results permeating into the public sphere
and zeitgeist

● In-context learning:
● Very large models (GPT-3 175B parameters vs. T5 11B

parameters) exhibiting the ‘in-context learning’ (ICL)
phenomenon

● Exhibits learning without any gradient updates (traditional
learning), but merely from given examples!

GPT-3 LLMs take off …

1. Brown, Tom B., et al. "Language models are few-shot learners." arXiv preprint arXiv:2005.14165 (2020)

GPT-3: In context learning + … prompting
• The notion of ‘prompting’ begins to emerge …

1. Brown, Tom B., et al. "Language models are few-shot learners." arXiv preprint arXiv:2005.14165 (2020)

GPT-3: In context learning + … prompting
• The notion of ‘prompting’ begins to emerge …

1. Brown, Tom B., et al. "Language models are few-shot learners." arXiv preprint (2020)

GPT-3: Models

● Initialization, pre-normalization (inherited from
GPT2).

● 8 model sizes trained to study effect of model size

GPT-3: Training Datasets
● Datasets

● Common Crawl dataset: nearly
a trillion words, with quality
curation.

● Added: WebText, Books1, 2 and
English Wikipedia

● Train time

GPT-3: Results
● TL;DR: unprecedently impressive results across task domains

● Performance (e.g. world knowledge) increases with size

● Datasets grouped to 9 categories of downstream tasks
● Examples: language modeling, QA, translation, Winograd, common-sense

reasoning, reading comprehension, NLI etc.
● Read the paper for details

DIFFERENT DIRECTIONS

CSC401/2511 – Winter 2024 67

Token free models

68CSC401/2511 – Winter 2024

• Unlike the ubiquitous pre-trained LMs that operate on
sequences of tokens corresponding to word or sub-word
units, token free models:

Con: raw sequences significantly longer than token sequences,
increases computational complexity. (Reminder: ‘attention’ costs are
quadratic to the length of input sequence)

Operate on raw text (bytes or characters) directly.
Removes necessity for (error-prone, complex) text preprocessing
pipelines.

1. Clark et al. "CANINE: Pre-training an efficient tokenization-free encoder for language representation." (2021). link
2. Xue et al. "ByT5: Towards a token-free future with pre-trained byte-to-byte models." (2022). link

https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00461

• Pitfalls of explicit (word, sub-word) tokenization:
• Need for large language dependent (fixed) vocabulary mapping matrices.

• Applies hand-engineered, costly, language-specific string
tokenization/segmentation algorithms (e.g. BPE, word-piece, sentence-piece)
requiring linguistic expertise.

• Heuristic string-splitting, however nuanced, cannot capture full breadth of
linguistic phenomena, (e.g. morphologically distant agglutinative, non-
concatenative languages). Other examples include languages without white-
space (Thai, Chinese), or that uses punctuation as letters (Hawaiian, Twi). Fine-
tuning tokenization needs to match pretraining tokenization methods.

• Brittle to noise, corruption of input (typos, adversarial manipulations).
Corrupted tokens lose vocabulary coverage.

Token free models

69CSC401/2511 – Winter 2024

1. Clark et al. "CANINE: Pre-training an efficient tokenization-free encoder for language representation." (2021). link
2. Xue et al. "ByT5: Towards a token-free future with pre-trained byte-to-byte models." (2022). link

https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00461

[Aside] Token free models - CANINE

70CSC401/2511 – Winter 2024

• Three primary components:
• Vocab free embedding technique;
• Character-level model (CLM) with efficiency measures (up/down sampling of

sequences); and
• Perform unsupervised masked LM (MLM) pretraining on the CLM using variants:

• Autoregressive character prediction
• Subword prediction

Clark et al. "CANINE: Pre-training an efficient tokenization-free encoder for language representation." (2022).

CANINE: Character Architecture with No tokenization In Neural Encoders.

• CANINE is a large language encoder with a deep transformer stack at its core.
• Inputs to the model are sequences of Unicode characters. 143,698 Unicode codepoints

assigned to characters covers 154 scripts and over 900 languages!
• To avoid slowdown from increasing sequence length, it uses stride convolutions to down-

sample input sequences to a shorter length, before the deep transformer stack to encode
context.

https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00448/109284/Canine-Pre-training-an-Efficient-Tokenization-Free

[Aside] Token free models - CANINE

71CSC401/2511 – Winter 2024

• The overall functional composition form uses [UP|DOWN]-sampling, and primary encoder:

𝑌=>? ← UP(ENCODE(DOWN 𝑒)

CANINE neural architecture

ℎ@A@B ← LOCALTRANSFORMER 𝑒 ; ℎCDEA ← STRIDEDCONV ℎ@A@B, 𝑟

ℎFG ← CONV ℎ@A@B 	⨁ ℎCDEAH 	, 𝑤 ; 𝑦=>? ← TRANSFORMER ℎFG

𝑒 ∈ ℝA	×	C	 is an input characters sequence, and

• Up-sampling: prediction require model’s output layer sequence length to match input’s length

where ⨁ is vector concatenation, CONV projects ℝA	×	JC back to ℝA	×	C across a window of 𝑤
characters. Applying a final transformer layer yields a final sequence representation: 𝑌=>? ∈ 	ℝA	×	C

where

• Down-sampling:

where ℎCDEA ∈ ℝK	×	C and 𝑚 = A
L
 is the number of downsampled positions

𝑌=>? ∈ 	ℝA	×	C is output of sequence predictions

