
Laenadiroro

Iogol

Nthoicloy Motrer Sodo

Image: Al text2img generated from lecture's title. Background: Viva Magenta (Pantone 18-1750) 2023 Color of the year!

Neural models of language

CSC401/2511 - Winter 2028
Copyright © 2023. Raeid Saqur, University of Toronto
CSC401/2511 - Natural Language Computing - Winter 2023
Lecture 5

Logistics

- Assignment 1: due Feb 10, 2023
- Assignment 2: release Feb 11, 2023
- Lectures:
- Reading week break: Feb 20-24 (no lectures, OHs)
- Final exam: planned in-person
- Lecture feedback:
- Anonymous
- Please share any thoughts/suggestions
- Questions?

Lecture plan：Neural networks

Lecture 5 （L5）：Neural models of language（2 sessions）
－Introduction
－Word－level representations
－Neural language models
－Recurrent neural networks（RNN，LSTM）
－Contextual word embeddings
－Lecture 6 （L6）：Machine translation（MT）（3 sessions）
－Sequence－to－sequence（seq2seq）and attention models
－Transformers
－Lecture 7 （L7）：More neural LMs（1 session）
－Trends，popular foundation models，implications etc．

Artificial neural networks

- Artificial neural networks (ANNs) were (kind of) inspired from neurobiology (Widrow and Hoff, 1960).
- Each unit has many inputs (dendrites), one output (axon).
- The nucleus fires (sends an electric signal along the axon) given input from other neurons.
- 'Learning' occurs at the synapses that connect neurons, either by amplifying or attenuating signals.

Perceptron: an artificial neuron

- Each neuron calculates a weighted sum of its inputs and compares this to a threshold, τ. If the sum exceeds the threshold, the neuron fires.
- Inputs a_{i} are activations from adjacent neurons, each weighted by a parameter w_{i}.

Perceptron output

- Perceptron output is determined by activation functions, $g()$, which can be non-linear functions of weighted input.
- Popular activation functions include tanh and the sigmoid:

$$
g(x)=\sigma(x)=\frac{1}{1+e^{\rho x}}
$$

- The sigmoid's derivative is the easily computable $\sigma^{\prime}=\sigma \cdot(1-\sigma)$

Rectified Linear Units (ReLUs)

- Since 2011, the ReLU $S=g(x)=\max (0, x)$ has become more popular.
- More biologically plausible, sparse activation, limited (vanishing) gradient problems, efficient computation.
- A smooth approximation is

X Glorot, A Bordes, Y Bengio (2011). Deep sparse rectifier neural networks. AISTATS.

Perceptron learning

- Weights are adjusted in proportion to the error (i.e., the difference between the desired, y, and the actual output, S.
- The derivative g^{\prime} allows us to assign blame proportionally.
- Given a small learning rate, α (e.g., 0.05), we can repeatedly adjust each of the weight parameters by

$$
\left.w_{j}:=w_{j}+\alpha \cdot \sum_{i=1}^{R} E r r_{i} \cdot g^{\prime}\left(x_{i}\right) \cdot a_{j}[i]\right\} \begin{aligned}
& \text { Assumes } \\
& \text { mean-square } \\
& \text { errorobjective }
\end{aligned}
$$

where $\operatorname{Err}_{i}=\left(y_{i}-S_{i}\right)$, among R training examples.

Threshold perceptra and XOR

- Some relatively simple logical functions cannot be learned by threshold perceptra (since they are not linearly separable).

Artificial neural networks

- Complex functions can be represented by layers of perceptron (multi-layer perceptron, MLPs).
- Inputs are passed to the
 input layer.
- Activations are propagated through hidden layers to the output layer.
- MLPs are quite robust to noise, and are trained specifically to reduce error.

Words

- Given a corpus with D (e.g., $=100 \mathrm{~K}$) unique words, the classical approach is to uniquely assign each word with an index in D-dimensional vectors ('one-hot' representation).

lugubrious 0	0	0	0	..	0	1	0	\ldots	0	

- Classic word-feature representation assigns features to each index in a much denser vector.
- E.g., psychology based features 'cheerful', 'emotional-tone'.

1	0.8	2.5	0.81	\ldots	99
					$d \ll D$

- Can we learn a dense representation? What will it give us?

Learning word semantics

"You shall know a word by the company it keeps."

- J.R. Firth (1957)

Here, we're predicting the center word given the context. This is called the 'continuous bag of words' (CBOW) model¹.
${ }^{1}$ Mikolov T, Corrado G, Chen K, et al. Efficient Estimation of Word Representations in Vector Space. Proc (ICLR 2013) 2013;:1-12. https://code.google.com/p/word2vec/

Continuous bag of words (1 word context)

$[0,0,0, \ldots 1, \ldots, 0]$
feeling
feeling

lugubrious

lugubrious
sadness

$[0,1,0, \ldots, 0, \ldots, 0]$ lugubrious
'softmax': $P\left(w_{o} \mid w_{i}\right)=\frac{\exp \left(V_{w_{o}}^{\top} v_{w_{i}}\right)}{\sum_{w=1}^{W} \exp \left(V_{w}^{\top} v_{w_{i}}\right)}$
v_{w} is the 'input' vector for word w, V_{w} is the 'output' vector for word w,

Continuous bag of words (C words context)

- If we want to use more context, C, we need to change the network architecture somewhat.
- Each input word will produce one of C embeddings
- We just need to add an intermediate layer, usually this just averages the embeddings.

Skip-grams

- Skip-grams invert the task - we predict context words given the current word.
- According to Mikolov, Skip-gram: works well with small amounts of training data, represents rare words.

CBOW: several times faster to train, slightly better accuracy for frequent words

Mikolov T, Corrado G, Chen K, et al. Efficient Estimation of Word Representations in Vector Space. Proc (ICLR 2013) 2013;:1-12. https://arxiv.org/pdf/1301.3781.pdf

Actually doing the learning

- Given H-dimensional embeddings, and V word types, our parameters, θ, are:

$$
\theta=\left[\begin{array}{c}
v_{a} \\
v_{\text {aardvark }} \\
\vdots \\
v_{z y m u r g y} \\
V_{a} \\
V_{\text {aardvark }} \\
\vdots \\
V_{\text {zymurgy }}
\end{array}\right] \in \mathbb{R}^{2 V \times H}
$$

Actually doing the learning

We have many options. Gradient descent is popular.
Given T tokens of training data, optimize objective:

$$
J(\theta)=\frac{1}{T} \sum_{t=1}^{T} \sum_{-c<j<c, j \neq 0} \log P\left(w_{t+j} \mid w_{t}\right)
$$

And we want to update vectors $V_{w_{t+j}}$ then $v_{w_{t}}$ within θ

$$
\theta^{(\text {new })}=\theta^{(o l d)}-\alpha \nabla_{\theta} J(\theta)
$$

So, we'll need to take the derivative of the (log of the) softmax function:

$$
P\left(w_{o} \mid w_{i}\right)=\frac{\exp \left(V_{w_{o}}^{\top} v_{w_{i}}\right)}{\sum_{w=1}^{W} \exp \left(V_{w}^{\top} v_{w_{i}}\right)}
$$

Where v_{w} is the 'input' vector for word w, and $\quad V_{w}$ is the 'output' vector for word w,

Actually doing the learning

We need the derivative of the (log of the) softmax function:

$$
\begin{aligned}
\frac{\delta}{\delta v_{w_{t}}} \log P\left(w_{t+j} \mid w_{t}\right)= & \frac{\delta}{\delta v_{w_{t}}} \log \frac{\exp \left(V_{w_{t+j}}^{\top} v_{w_{t}}\right)}{\sum_{w=1}^{W} \exp \left(V_{w}^{\top} v_{w_{t}}\right)} \\
& =\frac{\delta}{\delta v_{w_{t}}}\left[\log \exp \left(V_{w_{t+j}}^{\top} v_{w_{t}}\right)-\log \sum_{w=1}^{W} \exp \left(V_{w}^{\top} v_{w_{t}}\right)\right] \\
& \left.=V_{w_{t+j}} \quad \begin{array}{l}
\frac{\delta}{\delta v_{w_{t}}} \log \sum_{w=1}^{W} \exp \left(V_{w}^{\top} v_{w_{t}}\right) \\
\\
\end{array} \quad \begin{array}{l}
\text { [apply the chain rule } \left.\frac{\delta f}{\delta v_{w_{t}}}=\frac{\delta f}{\delta z} \frac{\delta z}{\delta v_{w_{t}}}\right]
\end{array}\right] \\
& =V_{w_{t+j}} \sum_{w=1}^{W} p\left(w \mid w_{t}\right) V_{w}
\end{aligned}
$$

More details: http://arxiv.org/pdf/1411.2738.pdf

Using word representations

Without a latent space,
lugubrious $=[0,0,0, \ldots, 0,1,0, \ldots, 0], \&$
sad $\quad=[0,0,0, \ldots, 0,0,1, \ldots, 0]$ so
Similarity $=\cos (x, y)=0.0$

$$
v_{w}=x^{\text {EMBEDDING }} W_{I}
$$

In latent space,

$$
\begin{aligned}
\text { lugubrious } & =[0.8,0.69,0.4, \ldots, 0.05]_{H}, \& \\
\text { sad } & =[0.9,0.7,0.43, \ldots, 0.05]_{H} \text { so }
\end{aligned}
$$

Similarity $=\cos (x, y)=0.9$

Reminder:
$\cos (u, v)=\frac{u \cdot v}{\|u\||\times||v||}$

Skip-grams with negative sampling

- The default process is inefficient.
- For one - what a waste of time! We don't want to update $H \times D$ weights!
- For two - we want to avoid confusion! 'Hallucinated' (negative) contexts should be minimized.
- For the observed (true) pair (/ugubrious, sadness), only the output neuron for sadness should be 1, and all $D-1$ others should be 0 .
- Mathematical Intuition:
$\left.P\left(W_{0} \mid W_{C}\right)=\frac{\exp \left(v_{O}^{T} V_{C}\right)}{\sum_{W=1}^{D} \exp \left(v_{W}^{T} V_{C}\right)}\right\}_{\substack{\text { Computationally } \\ \text { infeasible }}}^{\text {expen }}$

Skip-grams with negative sampling

- We want to maximize the association of observed (positive) contexts:
lugubrious sad
lugubrious feeling
lugubrious tired
- We want to minimize the association of 'hallucinated' contexts:

lugubrious happy
lugubrious roof
lugubrious truth

Skip-grams with negative sampling

- Choose a small number k of 'negative' words, and just update the weights for the 'positive' word plus the k 'negative' words.
- $5 \leq k \leq 20$ can work in practice for fewer data.
- For $D=100 \mathrm{~K}$, we only update 0.006% of the weights in the output layer.

$$
J(\theta)=\log \sigma\left(v_{o}^{T} v_{c}\right)+\sum_{i=1}^{k} \underset{\substack{\text { Unigram dist. }}}{\left.\mathbb{E}_{j \sim P(w)}\left[\log \sigma\left(-v_{j}^{T} v_{c}\right)\right], ~\right], ~}
$$

- Mimno and Thompson (2017) choose the top k words by modified unigram probability:

$$
\underline{P^{*}\left(w_{t+1}\right)}=\frac{C\left(w_{t+1}\right)^{\frac{3}{4}}}{\sum_{w} C(w)^{\frac{3}{4}}}
$$

Mimno, D., \& Thompson, L. (2017). The strange geometry of skip-gram with negative sampling. EMNLP 2017. [link]

Smell the GloVe

- GloVe ('Global Vectors') is an alternative method of obtaining word embeddings.

Instead of predicting words at particular positions, look at the co-occurrence matrix.

Pennington J, Socher R, Manning CD. (2014) GloVe: Global Vectors for Word Representation.
Proc EMNLP 2014:1532-43. https://nlp.stanford.edu/projects/glove/

Smell the GloVe

- Populating the co-occurrence matrix requires a complete pass through the corpus, but needs only be done once.
- Let $P_{i, j}=P\left(w_{j} \mid w_{i}\right)=X_{i, j} / X_{i}$,

Table 1: Co-occurrence probabilities for target words ice and steam with selected context words from a 6 billion token corpus. Only in the ratio does noise from non-discriminative words like water and fashion cancel out, so that large values (much greater than 1) correlate well with properties specific to ice, and small values (much less than 1) correlate well with properties specific of steam.

Probability and Ratio	$k=$ solid	$k=$ gas	$k=$ water	$k=$ fashion
$P(k \mid$ ice $)$	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
$P(k \mid$ steam $)$	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
$P(k \mid$ ice $) / P(k \mid$ steam $)$	8.9	8.5×10^{-2}	1.36	0.96

Pennington J, Socher R, Manning CD. (2014) GloVe: Global Vectors for Word Representation.
Proc EMNLP 2014. https://nlp.stanford.edu/projects/glove/

Aside - smell the GloVe

- Minimize $J=\sum_{i, j=1}^{V} f\left(X_{i, j}\right)\left(v_{w_{i}}^{T} v_{w_{j}}+b_{i}+\widetilde{b_{j}}-\log X_{i, j}\right)^{2}$
where, b_{i} and $\widetilde{b_{j}}$ are input and output bias terms associated with w_{i} and w_{j}, respectively
- Weighting function $f\left(X_{i, j}\right)$:

$$
f(x)=\left\{\begin{array}{cc}
\left(x / x_{\max }\right)^{\alpha} & \text { if } x<x_{\max } \\
1 & \text { otherwise }
\end{array}\right.
$$

Weighting function f with alpha $=3 / 4, x_{\max }=100$

1. $f(0)=0$. If f is viewed as a continuous function, it should vanish as $x \rightarrow 0$ fast enough that the $\lim _{x \rightarrow 0} f(x) \log ^{2} x$ is finite.
2. $f(x)$ should be non-decreasing so that rare co-occurrences are not overweighted.
3. $f(x)$ should be relatively small for large values of x, so that frequent co-occurrences are not overweighted.

Aside - evaluation

- Intrinsic evaluation: popular Redacted
method was to cherry-pick a few k-nearest neighbours examples that match expectations.

```
O. frog
1. frogs
2. toad
3. litoria
4. leptodactylidae
5. rana
6. lizard
7. eleutherodactylus
```


3. litoria

4. leptodactylidae

5. rana

7. eleutherodactylus

- Extrinsic evaluation: embed resulting vectors into a variety of tasks ${ }^{[1,2]}$.

Rank Name	Model
1 Liam Fedus	SS-MoE
2	Microsoft Alexander v-team
3 Turing NLR v5	
	ERNIF Team - Baidu

Leaderboard Version: 2.0

URL	Score BoolQ	CB	COPA	MultiRC	ReCoRD	RTE	WiC	WSC	AX-b	AX-g	
91.0	92.3	$96.9 / 98.0$	99.2	$89.2 / 65.2$	$95.0 / 94.2$	93.5	77.4	96.6	72.3	$96.1 / 94.1$	
	90.9	92.0	$95.9 / 97.6$	98.2	$88.4 / 63.0$	$96.4 / 95.9$	94.1	77.1	97.3	67.8	$93.3 / 95.5$
「ア	90.6	91.0	$98.6 / 99.2$	97.4	$88.6 / 63.2$	$94.7 / 94.2$	92.6	77.4	97.3	68.6	$92.7 / 94.7$

1 https://gluebenchmark.com/tasks
${ }^{2}$ https://super.gluebenchmark.com/tasks

Linguistic regularities in vector space

Linguistic regularities in vector space

Linguistic regularities in vector space

Expression	Nearest token
Paris - France + Italy	Rome
Bigger - big + cold	Colder
Sushi - Japan + Germany	bratwurst
Cu - copper + gold	Au
Windows - Microsoft + Google	Android

Analogies: apple:apples :: octopus:octopodes
Hypernymy: shirt:clothing :: chair:furniture
Semantic: queen - king \approx woman - man

Importance of in-domain data

Biases: let's talk about gender

Bolukbasi T, Chang K, Zou J, et al. Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings. In: NIPS. 2016. 1-9.

Biases: let's talk about gender

Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings

Tolga Bolukbasi ${ }^{1}$, Kai-Wei Chang ${ }^{2}$, James Zou ${ }^{2}$, Venkatesh Saligrama ${ }^{1,2}$, Adam Kalai ${ }^{2}$
${ }^{1}$ Boston University, 8 Saint Mary's Street, Boston, MA
${ }^{2}$ Microsoft Research New England, 1 Memorial Drive, Cambridge, MA
tolgab@bu.edu, kw@kwchang.net, jamesyzou@gmail.com, srv@bu.edu, adam.kalai@ microsoft.com

Abstract

The blind application of machine learning runs the risk of amplifying biases present in data. Such a danger is facing us with word embedding, a popular framework to represent text data as vectors which has been used in many machine learning and

Extreme she	Extreme he
1. homemaker	1. maestro
2. nurse	2. skipper
3. receptionist	3. protege
4. librarian	4. philosopher
5. socialite	5. captain
6. hairdresser	6. architect
7. nanny	7. financier
8. bookkeeper	8. warrior
9. stylist	9. broadcaster
10. housekeeper	10. magician

	Gender stereotype she-he analogies			
sewing-carpentry	registered nurse-physician	housewife-shopkeeper		
nurse-surgeon	interior designer-architect	softball-baseball		
blond-burly	feminism-conservatism	cosmetics-pharmaceuticals		
giggle-chuckle	vocalist-guitarist	petite-lanky		
sassy-snappy	diva-superstar	charming-affable		
volleyball-football cupcakes-pizzas	lovely-brilliant			
				Gender appropriate she-he analogies
queen-king	sister-brother	mother-father		
waitress-waiter	ovarian cancer-prostate cancer convent-monastery			

Solution?

1. Hand-pick words S_{0} that are 'gender definitional'. 'Neutral' words are the complement, $N=V \backslash S_{0}$.

Solution?

2. Project away gender subspace from gender-neutral words, $w:=w-w \cdot B$ for $w \in N$, where B is the gender subspace.

Solution?

2. Project away gender subspace from gender-neutral words, $w:=w-w \cdot B$ for $w \in N$, where B is the gender subspace.

Results

- Generate many analogies, see which ones preserve gender
:: She: ? Irrelevant.
:: She: ? Stereotypic. He:Doctor-> She:
:: She: ? Appropriate. he:brother -> she:sister

NEURAL LANGUAGE MODELS

Trigram models

- CBOW: prediction of current word w_{t} given w_{t-1}.
- Let's reconsider predicting w_{t} given multiple w_{t-j} ?
- I.e., let's think about language modelling.

trigram

Sampling from trigram models

- Since $p_{t} \sim P\left(w_{t} \mid w_{t-2} w_{t-1}\right)$, we just feed forward and sample from the output vector.

Training trigram models

- Here's one approach:

1. Randomly choose a batch (e.g., 10K consecutive words)
2. Propagate words through the current model
3. Obtain word likelihoods (loss)
4. Back-propagate loss
5. Gradient step to update model
6. Go to (1)

Training trigram models

- The typical training objective is the cross entropy (see Lecture 4) of the corpus C given the model M :

Training trigram models

- Compute our gradients, using $\mathcal{F}=-\frac{\log _{2} P_{M}(C)}{\|C\|}$ and $\log _{2} P\left(w_{t}\right)=w_{t}^{\top} \log p_{t}$ and back-propagate.

$$
\begin{aligned}
\frac{\delta \mathcal{F}}{\delta \mathrm{W}_{O}} & =-\frac{1}{\|C\|} \sum_{t} \frac{\delta \operatorname{cost}_{t}}{\delta p_{t}} \frac{\delta p_{t}}{\delta W_{O}} \\
\frac{\delta \mathcal{F}}{\delta \mathrm{~W}_{I}} & =-\frac{1}{\|C\|} \sum_{t} \frac{\delta \operatorname{cost}_{t}}{\delta p_{t}} \frac{\delta p_{t}}{\delta h_{t}} \frac{\delta h_{t}}{\delta W_{I}}
\end{aligned}
$$

$h_{t}=g\left(W_{I}\left[\boldsymbol{w}_{\boldsymbol{t}-\mathbf{2}} ; \boldsymbol{w}_{\boldsymbol{t - 1}}\right]+c\right) \quad$ Here:
$\boldsymbol{p}_{\boldsymbol{t}}=\operatorname{softmax}\left(W_{o} \boldsymbol{h}_{\boldsymbol{t}}+b\right) \quad$ - w_{i} is a one-hot vector, and

- p_{t} is a distribution.

So what?

- (). Neural language models of this type:
- Can generalize better than MLE LMs to unseen n-grams,
- Can use semantic information as in word2vec.

$$
P(\text { the cat sat on the mat }) \approx P(\text { the cat sat on the rug })
$$

- : Neural language models of this type:
- Can take relatively long to train. "GPUs kill the Earth."
- Number of parameters scale poorly with increasing context.

Let's improve both of these issues...

Dealing with that bottleneck

- Traditional datasets for neural language modeling include:
- AP News (14M tokens, 17K types)
- HUB-4 (1M tokens, 25K types)
- Google News (6B tokens, 1M types)
- Wikipedia (3.2B tokens, 2M types)
- Datasets for medical/clinical LM include:
- EMRALD/ICES (3.5B tokens, 13M types)
- Much of the computational effort is in the initial embedding, and in the softmax.
- Can we simplify and speed up the process?

Dealing with that bottleneck

- Replace rare words with <out-of-vocabulary> token.
- Subsample frequent words.
- Hierarchical softmax.
- Noise-contrastive estimation.
- Negative sampling.
[Morin \& Bengio, 2005, Mikolov et al, 2011, 2013b;
Mnih \& Teh 2012, Mnih \& Kavukcuoglu, 2013]

Hierarchical softmax with grouping

- Group words into distinct classes, c, e.g., by frequency.
- E.g., c_{1} is top 5% of words by frequency, c_{2} is the next $5 \%, \ldots$
- Factorize $p\left(w_{o} \mid w_{i}\right)=p\left(c \mid w_{i}\right) p\left(w_{o} \mid w_{i}, c\right)$

[Mikolov et al, 2011, Auli et al, 2013]

Logistics \& Q/A

- Assignment 1: due Feb 10, 2023
- Assignment 2: release Feb 11, 2023
- Lectures:
- Reading week break: Feb 20-24 (no lectures, OHs)
- Final exam: planned in-person
- Lecture feedback:
- Anonymous
- Please share any thoughts/suggestions
- Questions?

RECURRENT NEURAL NETWORKS

Statistical language models

- Probability is conditioned on (window of) n previous words*
- A necessary (but incorrect) Markov assumption: each observation only depends on a short linear history of length L.

$$
P\left(w_{n} \mid w_{1:(n-1)}\right) \approx P\left(w_{n} \mid w_{(n-L+1):(n-1)}\right)
$$

- Probabilities are estimated by computing unigrams and bigrams

$$
P(s)=\prod_{i=1}^{t} P\left(w_{i} \mid w_{i-1}\right)
$$

$$
P(s)=\prod_{i=2}^{t} P\left(w_{i} \mid w_{i-2} w_{i-1}\right)
$$

Statistical language models

- Using higher n-gram counts (with smoothing) improves performance*
- Computational burden: too many n-grams (combinations)
- Infeasible RAM requirements
- RNN intuition:
- Use the same set of weight parameters for each word (or across all time steps)
- Condition the neural network on all previous words (or time steps)
- Memory requirement now scales with number of words

[^0]
Recurrent neural networks (RNNs)

- An RNN has feedback connections in its structure so that it 'remembers' previous states, when reading a sequence.

Elman network feed hidden units back
Jordan network (not shown) feed output units back

RNNs: Unrolling the $\boldsymbol{h}_{\boldsymbol{i}}$

- Copies of the same network can be applied (i.e., unrolled) at each point in a time series.
- These can be applied to various tasks.

$$
\begin{aligned}
& h_{t}=g\left(W_{I}\left[\boldsymbol{h}_{\boldsymbol{t}-1} ; \boldsymbol{x}\right]+c\right) \\
& \boldsymbol{y}_{\boldsymbol{t}}=W_{O} \boldsymbol{h}_{\boldsymbol{t}}+b
\end{aligned}
$$

RNNs: One time step snapshot

Two riders .. approaching .. horses.

- Given a list of word vectors $\mathrm{X}: x_{1}, x_{2}, \ldots, x_{t}, x_{t+1}, \ldots, x_{T}$
approaching

$$
P\left(x_{t+1}=v_{j} \mid x_{t}, \ldots, x_{1}\right)=\widehat{y_{t, j}}
$$

- At a single time-step:

$$
\begin{aligned}
& h_{t}=g\left(\left[W_{h h} \boldsymbol{h}_{\boldsymbol{t}-\mathbf{1}}+W_{h x} \boldsymbol{x}_{\boldsymbol{t}}\right]+c\right) \\
& h_{t}=g\left(W_{I}\left[\boldsymbol{h}_{\boldsymbol{t}-\mathbf{1}} ; \boldsymbol{x}_{\boldsymbol{t}}\right]+c\right) \text { (equivalent notation) } \\
& \widehat{y}=\operatorname{softmax}\left(W_{h y} \boldsymbol{h}_{\boldsymbol{t}}+b\right)
\end{aligned}
$$

import numpy as $n p$

```
def softmax(x):
    f_x = np.exp(x) / np.sum(np.\operatorname{exp}(x))
    return f_x
```

class RNN:
\# ...
step(self, x, is_normalized=False)
\# update the hidden state
self.h = np.tanh(np.dot(self.W_hh, self.h) + np.dot(self. W_xh, x))
\# compute the output vector
$y=n p . \operatorname{dot}\left(s e l f . W _h y\right.$, self.h)
return softmax(y) if is_normalized else y

RNNs: Training

Two riders .. approaching .. horses.

- Given a list of word vectors X : $x_{1}, x_{2}, \ldots, x_{t}, x_{t+1}, \ldots, x_{T}$
approaching

$P\left(x_{t+1}=v_{j} \mid x_{t}, \ldots, x_{1}\right)=\widehat{y_{t, j}}$
- Perplexity: 2^{J} (lower is better)

$$
J^{(t)}(\theta)=-\sum_{j=1}^{|V|} \overbrace{y_{t, j}}^{\text {Ground truth }} \log \underbrace{\hat{y}_{t, j}}_{\text {prediction }}
$$

The output $\widehat{y_{t, j}}$ is the word (index) prediction of the next word ($\mathrm{x}_{\mathrm{t}+1}$)

Evaluation

- Same cross-entropy loss function
$\widehat{y} \in \mathbb{R}^{|V|}$ is a probability distribution over the vocabulary

Sampling from a RNN LM

- If $\left|h_{i}\right|<|V|$, we've already reduced the number of parameters from the trigram NN.
- In 'theory', information is maintained in h_{i} across arbitrary lengths of time...

$h_{t}=g\left(\left[W_{h h} \boldsymbol{h}_{\boldsymbol{t}-\mathbf{1}} ; W_{h x} \boldsymbol{x}_{\boldsymbol{t}}\right]+c\right)$
$\widehat{y_{t}}=\operatorname{softmax}\left(W_{h y} \boldsymbol{h}_{\boldsymbol{t}}+b\right)$

RNNs and retrograde amnesia

- Unfortunately, catastrophic forgetting is common.
- E.g., the relevant context in "The sushi the sister of your friend's programming teacher told you about was..." has likely been overwritten by the time h_{13} is produced.

Informational bottleneck

Bengio Y, Simard P, Frasconi P. (1994) Learning Long-Term Dependencies with Gradient Descent is Difficult. IEEE Trans. Neural Networks.;5:157-66. doi:10.1109/72.279181

RNNs and retrograde amnesia

- One challenge with RNNs is that the gradient decays quickly as one pushes it back in time. Can we store relevant information?

Imagery and sequence from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long short-term memory (LSTM)

- Within each recurrent unit or cell:
- Self-looping recurrence for cell state using vector C
- Information flow regulating structures called gates

Pointwise multiplication

Sigmoid neural net layer

LSTM - core ideas

- In each cell (i.e. recurrent unit) in an LSTM, there are four interacting neural network layers.

The cell state is a special vector stream that runs through the entire chain and stores the long-term information.

LSTM - core ideas

- In each cell (i.e. recurrent unit), there are four interacting neural network layers.

LSTM step 1: decide what to forget

- The forget gate layer compares h_{t-1} and the current input x_{t} to decide which elements in cell state C_{t-1} to keep and which to turn off.
- E.g., the cell state might 'remember' the number (sing./plural) of the current subject, in order to predict appropriately conjugated verbs, but decide to forget it when a new subject is mentioned at x_{t}.
- (There's scant evidence that such information is so explicit.)

LSTM step 2: decide what to store

- The input gate layer has two steps.
- First, a sigmoid layer σ decides which cell units to update.
- Next, a tanh layer creates new candidate values $\widetilde{C_{t}}$.
- E.g., the σ can turn on the 'number' units, and the tanh can push information on the current subject.
- The σ layer is important - we don't want to push information on units (i.e., latent dimensions) for which we have no information.

$$
\begin{aligned}
i_{t} & =\sigma\left(W_{i} \cdot\left[h_{t-1}, x_{t}\right]+b_{i}\right) \\
\tilde{C}_{t} & =\tanh \left(W_{C} \cdot\left[h_{t-1}, x_{t}\right]+b_{C}\right)
\end{aligned}
$$

LSTM step 3: update the cell state

- Update C_{t-1} to C_{t}.
- First, forget what we want to forget: multiply C_{t-1} by f_{t}.
- Then, create a 'mask vector' of information we want to store, $i_{t} \times \widetilde{C_{t}}$.
- Finally, write this information to the new cell state C_{t}.

LSTM step 4: output and feedback

- Output something, o_{t}, based on the current x_{t} and h_{t-1}.
- Combine the output with the cell to give your h_{t}.
- Normalize cell C_{t} on [-1,1] using tanh and combine with o_{t}
- In some sense, C_{t} is long-term memory and h_{t} is the short-term memory (hence the name).

$$
\begin{aligned}
& o_{t}=\sigma\left(W_{o}\left[h_{t-1}, x_{t}\right]+b_{o}\right) \\
& h_{t}=o_{t} \times \tanh \left(C_{t}\right)
\end{aligned}
$$

Variants of LSTMs

- There are many variations on LSTMs.
- 'Bidirectional LSTMs' (and bidirectional RNNs generally), learn

(a)

(b)

Structure overview
(a) unidirectional RNN
(b) bidirectional RNN

Schuster, Mike, and Kuldip K. Paliwal. (1997) Bidirectional recurrent neural networks. Signal Processing, IEEE Transactions on 45(11) (1997): 2673-2681.2.

Variants of LSTMs

- Gers \& Schmidhuber (2000) add 'peepholes' that allow all sigmoids to read the cell state.

$$
\begin{aligned}
f_{t} & =\sigma\left(W_{f} \cdot\left[C_{t-1}, h_{t-1}, x_{t}\right]+b_{f}\right) \\
i_{t} & =\sigma\left(W_{i} \cdot\left[\boldsymbol{C}_{t-1}, h_{t-1}, x_{t}\right]+b_{i}\right) \\
o_{t} & =\sigma\left(W_{o} \cdot\left[\boldsymbol{C}_{\boldsymbol{t}}, h_{t-1}, x_{t}\right]+b_{o}\right)
\end{aligned}
$$

- We can couple the 'forget' and 'input' gates.
- Joint decisioning is more efficient.

$$
C_{t}=f_{t} * C_{t-1}+\left(1-f_{t}\right) * \tilde{C}_{t}
$$

Aside - Variants of LSTMs

- Gated Recurrent units (GRUs; Cho et al (2014)) go a step further and also merge the cell and hidden states.

$$
\begin{aligned}
& z_{t}=\sigma\left(W_{z} \cdot\left[h_{t-1}, x_{t}\right]\right) \text { Update gate } \\
& r_{t}=\sigma\left(W_{r} \cdot\left[h_{t-1}, x_{t}\right]\right) \text { Reset gate (} 0 \text { : replace units in } h_{t-1} \\
& \left.\tilde{h}_{t}=\tanh \left(W \cdot\left[r_{t} * h_{t-1}, x_{t}\right]\right) \quad \text { with those in } x_{t}\right) \\
& h_{t}=\left(1-z_{t}\right) * h_{t-1}+z_{t} * \tilde{h}_{t}
\end{aligned}
$$

- Which of these variants is best? Do the differences matter?
- Greff, et al. (2015) do a nice comparison of popular variants, finding that they're all about the same
- Jozefowicz, et al. (2015) tested more than ten thousand RNN architectures, finding some that worked better than LSTMs on certain tasks.

CONTEXTUAL WORD EMBEDDINGS

Deep contextualized representations

- What does the word play mean?

AllenNLP

Peters ME, Neumann M, lyyer M, et al. (2018) Deep contextualized word representations. Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/abs/1802.05365

ELMo: Embeddings from Language Models

- Instead of a fixed embedding for each word type, ELMo considers the entire sentence before embedding each token.
- It uses a bi-directional LSTM trained on a specific task.
- Outputs are softmax probabilities on words, as before.

Peters, Mathew E., et al. "Deep contextualized word representations. (2018)." arXiv preprint arXiv:1802.05365 (2018).

ELMo: Embeddings from Language Models

For each token, a L-layer biLM computes ($2 \mathrm{~L}+1$) representations:

$$
\begin{aligned}
R_{k} & =\left\{\mathbf{x}_{k}^{L M}, \overrightarrow{\mathbf{h}}_{k, j}^{L M}, \overleftarrow{\mathbf{h}}_{k, j}^{L M} \mid j=1, \ldots, L\right\} \\
& =\left\{\mathbf{h}_{k, j}^{L M} \mid j=0, \ldots, L\right\}
\end{aligned}
$$

- Task specific weighting produces the final embedding for word token k.

$$
\mathbf{E L M o}_{k}^{\text {task }}=E\left(R_{k} ; \Theta^{\text {task }}\right)=\gamma^{\text {task }} \sum_{j=0}^{L} s_{j}^{\text {task }} \mathbf{h}_{k, j}^{L M}
$$

- where $\quad R_{K}$ is the set of all L hidden layers, $\mathrm{h}_{k, j}$
$s_{j}^{\text {task }}$ is the task's weight on the layer, and
$\gamma^{\text {task }}$ is a weight on the entire task

ELMo: Embeddings from Language Models

1. Concatenate

2. Multiply by weight vectors

$$
\text { 3. Sum: } \begin{aligned}
& \text { ELMO } \\
& k=1 \\
& \text { task } \\
& \hline
\end{aligned}
$$

Final embedding:

ELMo: Embeddings from Language Models

- What does the word play mean?

	Source	Nearest Neighbors
GloVe	play	playing, game, games, played, players, plays, player, Play, football, multiplayer
biLM	Chico Ruiz made a spectacular play on Alusik 's grounder $\{\ldots\}$	Kieffer, the only junior in the group , was commended for his ability to hit in the clutch , as well as his all-round excellent play.
	Olivia De Havilland signed to do a Broadway play for Garson $\{\ldots\}$	$\{\ldots\}$ they were actors who had been handed fat roles in a successful play, and had talent enough to fill the roles competently, with nice understatement .

Table 4: Nearest neighbors to "play" using GloVe and the context embeddings from a biLM.

Peters ME, Neumann M, Iyyer M, et al. (2018) Deep contextualized word representations. Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/abs/1802.05365

ELMo: Embeddings from Language Models

TASK	Previous SOTA		OUR BASELINE	$\begin{aligned} & \text { ELMO + } \\ & \text { BASELINE } \end{aligned}$	Increase (ABSOLUTE/ RELATIVE)
Q\&ASQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9\%
Textual entailmentSNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7/5.8\%
Semantic role labelling SRL	He et al. (2017)	81.7	81.4	84.6	3.2/17.2\%
Coreference resolution Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2/9.8\%
Name entity resolution NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21\%
Sentiment analysis SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8\%

Table 1: Test set comparison of ELMo enhanced neural models with state-of-the-art single model baselines across six benchmark NLP tasks. The performance metric varies across tasks - accuracy for SNLI and SST-5; F_{1} for SQuAD, SRL and NER; average F_{1} for Coref. Due to the small test sizes for NER and SST-5, we report the mean and standard deviation across five runs with different random seeds. The "increase" column lists both the absolute and relative improvements over our baseline.

Neural networks research

- Research in neural networks is exciting, expansive, and explorative.
- We have many hyperparameters we can tweak
(e.g., activation functions, number and size of layers).
- We have many architectures we can use
(e.g., deep networks, LSTMs, attention mechanisms).
- Given the fevered hype, it's important to retain our scientific skepticism.
- What are our biases and expectations?
- When are neural networks the wrong choice?
- How are we actually evaluating these systems?

[^0]: *From Lecture 2

