

Image: Trawling for Babel fish. Concept and juxtaposition: Raeid Saqur.
Statistical + Neural machine translation

$$
\text { CSC401/2511 - Natural Language Computing - Winter } 2024
$$ Gerald Penn, Sean Robertson \& Raeid Saqur

Logistics

- Office hours: Mon 12 noon - 13h (over zoom, note the channel)
- Course drop deadline: ~Feb 19, 2024 (see SGS calendar)
- A1: due Feb 9, 2024. Final A1 tutorial/OH on Feb 9
- A2: release Feb 10, 2024
- No tutorials this Friday (Feb 2, 2024)
- Please do NOT be this person

Redacted / CSC401 Public

- Lecture feedback:
- Anonymous
- Please share any thoughts/suggestions

- Questions?

Machine Translation (MT)

- Introduction \& History
- L5 (1/3) - Statistical MT:
- Noisy Channel model
- Alignment based models
- L5 (2/3) Neural MT:
- Seq2seq (encoder-decoder) architectures
- Attention mechanisms
- Transformers intro.
- L5 (3/3) Decoding \& Evaluation:
- Beam Search
- BLEU

The Rosetta Stone

- The Rosetta Stone dates from 196 BCE.
- It was re-discovered by French soldiers during Napoleon's invasion of Egypt in 1799 CE.

Ancient
Egyptian
hieroglyphs

Egyptian
Demotic

Ancient
Greek

- By 1799, ancient Egyptian had been forgotten.
- It contains three parallel texts in different languages, only the last of which was understood.

Deciphering Rosetta

- During 1822-1824, Jean-François Champollion worked on the Rosetta stone. He noticed:
 the same positions as the word 'Ptolemy' in the Greek.

2. The number of Egyptian hieroglyph tokens were much larger than the number of Greek words \rightarrow Egyptian seemed to have been partially phonographic.
3. Cleopatra's cartouche was written 5

Aside - deciphering Rosetta

 'Cleopatra' and the symbols corresponded to sounds - can we match up the symbols?

\square	\bigcirc	8 80	-	\rightleftharpoons	44.	\uparrow		
P	T	0	L	M	E	S		
$!\triangle$	2	4	¢ी	\square	\%	\triangle	\bigcirc	\%
C	L	E	0	P	A	T	R	A

- This approach demonstrated the value of working from parallel texts to decipher an unknown language:
- It would not have been possible without aligning unknown words (hieroglyhs) to known words (Greek)...

Today

- Introduction to statistical machine translation (SMT).
- What we want is a system to take utterances/sentences in one language and transform them to another:

MT Approaches

- High-level classes of methodologies:
- Direct Translation
- Syntactic Transfer
- Semantic Transfer
- Interlingua

Vauquois (1968) Triangle

Direct translation

- A bilingual dictionary that aligns words across languages can be helpful, but only for simple cases.

$¿ \dot{¿}$	Dónde	está	la	biblioteca	$?$
	Where	is	the	library	$?$
	Où	est	la	bibliothèque	$?$

Mi	nombre	es	T-bone
My	name	is	T-bone
Mon	nom	est	T-bone

Difficulties in MT: typology

- Different morphology \rightarrow difficult mappings, e.g.
- Many (polysynthetic) vs one (isolating) morphemes per word
- Many (fusion) vs few (agglutinative), features per morpheme
- Different syntax \rightarrow long-distance effects, e.g.
- SVO vs. SOV vs. VSO (e.g. English vs. Japanese vs. Arabic)
- He listens to music / kare ha ongaku wo.kiku Subject Verb Object Subject Object Verb
- Verb vs. satellite-framed (e.g. Spanish vs. English)
- La botella salió flotando / The bottle floated out

Difficulties in MT: ambiguity

- Ambiguity makes it hard to pick one translation
- Lexical: many-to-many word mappings Paw Patte Foot Pied
- Syntactic: same token sequence, different structure
- Rick hit the Morty [with the stick]pp/ Rick golpeó el Morty con el palo
- Rick hit the Morty [with the stick]pp / Rick golpeó el Morty que tenia el palo
- Semantic: same structure, different meanings
- I'll pick you up / \{Je vais te chercher, Je vais te ramasser\}
- Pragmatic: different contexts, different interpretations
- Poetry vs technical report

BABEL. FISH

STICK ONE IN YOUR EAR, YOU CAN INSTANTLY UNDERSTAND ANYTHING SAID TO YOU IN ANY FORM DF LANGUAGE: THE SPEECH YOU HEAR DECODES THE BRAIN WAVE MATRIX.

THE NOISY CHANNEL

Statistical machine translation

- Machine translation seemed to be an intractable problem until a change in perspective...

When I look at an article in Russian, I say: 'This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode.'

The noisy channel model

- Imagine that you're given a French sentence, F, and you want to convert it to the best corresponding English sentence, E^{*}
- i.e., $E^{*}=\underset{E}{\operatorname{argmax}} P(E \mid F)$
- Use Bayes' Rule:

$$
E^{*}=\operatorname{argmax}_{E} \frac{P(F \mid E) P(E)}{P(F)}
$$

The noisy channel

Language model
Translation model

How to use the noisy channel

- How does this work?

$$
E^{*}=\operatorname{argmax} \underset{E}{\substack{\text { Translation } \\ \text { model }}} \mid P(F \mid E) P(E)
$$

- $P(E)$ is a language model (e.g., N-gram) and encodes knowledge of word order.
- $P(F \mid E)$ is a word- (or phrase-)level translation model that encodes only knowledge on an unordered basis.
- Combining these models can give us naturalness and fidelity, respectively.

How to use the noisy channel

- Example from Koehn and Knight using only conditional likelihoods of Spanish words given English words.
- Que hambre tengo yo
\rightarrow
What hunger have I $\quad P(S \mid E)=1.4 E^{-5}$
Hungry I am so
I am so hungry
Have I that hunger

$$
\begin{aligned}
& P(S \mid E)=1.0 E^{-6} \\
& P(S \mid E)=1.0 E^{-6} \\
& P(S \mid E)=2.0 E^{-5}
\end{aligned}
$$

Best translation using only the translation model

How to use the noisy channel

- ... and with the English language model
- Que hambre tengo yo
\rightarrow
What hunger have I

$$
\begin{aligned}
& P(S \mid E) P(E)=1.4 E^{-5} \times 1.0 E^{-6} \\
& P(S \mid E) P(E)=1.0 E^{-6} \times 1.4 E^{-6} \\
& P(S \mid E) P(E)=1.0 E^{-6} \times 1.0 E^{-4} \\
& P(S \mid E) P(E)=2.0 E^{-5} \times 9.8 E^{-7}
\end{aligned}
$$

Hungry I am so
I am so hungry
Have I that hunger

How to learn $P(F \mid E)$?

- Solution: collect statistics on vast parallel texts

 bilingual Parliamentary proceedings

Bilingual data

Source: Chris Manning's lecture slide

- Data from Linguistic Data Consortium (LDC) at University of Pennsylvania.

Alignments

- Alignments at different granularities
- Word, phrase, sentence, document
- SMT makes alignments explicit
- One block of text entirely responsible for a translated block (conditional independence)
- Letting A index pairs of aligned blocks in bitext

$$
P(F \mid E)=\sum_{A} P(F, A \mid E)=\sum_{A} P(A \mid E) \prod_{i} P\left(F_{A_{i, 1}} \mid E_{A_{i, 2}}\right)
$$

Alignment

- In practice, words and phrases can be out of order.

Alignment

- Also in practice, we're usually not given the alignment.

Sentence alignment

- Sentences can also be unaligned across translations.
- E.g., He was happy. E1 ${ }^{\text {He had bacon. E2 } \rightarrow}$ Il était heureux parce qu'il avait du bacon. ${ }^{\text {F1 }}$
$E_{1} \quad F_{1}$

E_{1}	F_{1}
E_{2}	
E_{3}	F_{2}
E_{4}	F_{3}
E_{5}	F_{4}
	F_{5}
E_{6}	F_{6}
E_{7}	F_{7}
$24 \ldots$	

Sentence alignment

- We often need to align sentences before moving forward.
- Goal: find $A^{*}=\operatorname{argmax}_{A} P(A \mid F, E)$
- We'll look at two broad classes of methods:

1. Methods that only look at sentence length,
2. Methods based on lexical matches, or "cognates".

- Most machine translation (including neural) relies on sentence-level alignments of bitexts

1. Sentence alignment by length

(Gale and Church, 1993)

- Idea: lengths of aligned sentences are correlated
- Assuming the paragraph alignment is known,
- \mathcal{L}_{E} is the \# of characters in an English sentence,
- \mathcal{L}_{F} is the \# of characters in a French sentence.
- Define cost/penalty function $\operatorname{Cost}\left(\mathcal{L}_{E}, \mathcal{L}_{F}\right)$
- Lowest when $\mathcal{L}_{E}=c \mathcal{L}_{F}$ for learned/guessed c
- Also define "prior" fixed cost $C_{i, j}$ of aligning i English sentences to j French sentences

1. Sentence alignment by length

E_{1}	F_{1}	$\operatorname{Cost}=$
	$\operatorname{Cost}\left(\mathcal{L}_{E_{1}}+\mathcal{L}_{E_{2}}, \mathcal{L}_{F_{1}}\right)+C_{2,1}+$	
E_{2}		$\operatorname{Cost}\left(\mathcal{L}_{E_{3}}, \mathcal{L}_{F_{2}}\right)+C_{1,1}+$
E_{3}	F_{2}	
E_{4}	F_{3}	
E_{5}	F_{4}	$\operatorname{Cost}\left(\mathcal{L}_{E_{4}}, \mathcal{L}_{F_{3}}\right)+C_{1,1}+$
	$\operatorname{Cost}\left(\mathcal{L}_{E_{5}}, \mathcal{L}_{F_{4}}+\mathcal{L}_{F_{5}}\right)+C_{1,2}+$	
	$\operatorname{Cost}\left(\mathcal{L}_{E_{6}}, \mathcal{L}_{F_{6}}\right)+C_{1,1}$	

Find distribution of sentence breaks with minimum cost using dynamic programming

2. Sentence alignment by cognates

- Cognates:
n.pl. Words that have a common etymological origin.
- Etymological: adj. Pertaining to the historical derivation of a word. E.g., porc \rightarrow pork
- The intuition is that words that are related across languages have similar spellings.
- e.g., zombie/zombie, government/gouvernement
- Not always: son (male offspring) vs. son (sound)
- Cognates can "anchor" sentence alignments between related languages.

2. Sentence alignment by cognates

- Cognates should be spelled similarly...
- N-graph:
n. Similar to N-grams, but computed at the character-level, rather than at the word-level.
E.g., Count (s, h, i) is a trigraph model
- Church (1993) tracks all 4-graphs (quadrigraph) which are identical across two texts.
- He calls this a 'signal-based' approximation to cognate identification.
- Better for noisy data, like the results of optical character recognition

2. Church's method

1. Concatenate paired texts on both axes.

2. Dot-plot: place a 'dot' where the $i^{\text {th }}$ French and the $j^{\text {th }}$ English 4-graph are equal. Target
3. Search for a short path 'near' the bilingual diagonals.

2. Church's method

- Each point along this path is considered to represent a match between languages.
- The relevant French Target and English sentences are :aligned.

From Manning \& Schütze

Aligning other granularities

- Recall: $P(F \mid E)=\sum_{A} P(A \mid E) \prod_{i} P\left(F_{A_{i, 1}} \mid E_{A_{i, 2}}\right)$
- A_{i} can be pairs of sets of sentences if F, E are documents
- If F, E are sentences, A_{i} are pairs of sets of words

Word alignment models

- Make a simplifying assumption that every word in F maps to one E (i.e. $A_{i}=(\{i\},\{j\}) \mapsto j$)
- E.g. IBM-1: $P(F \mid A, E) \propto \prod_{i} P\left(F_{i} \mid E_{A_{i}}\right)$
- Trained via Expectation Maximization (see HMM lecture)

	Maria	no	dió	una	bofetada	a	la	bruja	verde
Mary	A_{1}								
did							A_{6}		
not		A_{2}							
slap			A_{3}	A_{4}	A_{5}				
the							A_{7}		
green									A_{9}
witch								A_{8}	

A word alignment matrix From $\mathrm{J} \& \mathrm{M} 2^{\text {nd }}$ Ed.

Problems with word alignments

- What if some E_{j} isn't aligned anywhere?
- Need more flexible context!

	Maria	n $>$	dió	una	jofetada	a	la	bruja	verde	
Mary	A_{1}									
did		A_{2}								$P(E \mid F)$
not		A_{3}								(For English to Spanish)
slap					A_{4}					
the							A_{5}			
green									A_{6}	NP
witch								A_{7}		

Phrase-based translation

- Suppose beads are pairs non-empty, contiguous spans of words that partition $F \times E$

$$
A_{i}=\left(\left(\ell_{1}^{(i)}: u_{1}^{(i)}\right),\left(\ell_{2}^{(i)}: u_{2}^{(i)}\right)\right)
$$

- Call each span an indivisible phrase $\left(F_{A_{i, 1}}, E_{A_{i, 2}}\right) \mapsto\left(\bar{F}_{i}, \bar{E}_{i}\right)$ and assume phrases sequential in E, then:

$$
P(F, A \mid E) \propto \prod_{i} \phi\left(\bar{F}_{i}, \bar{E}_{i}\right) d\left(u_{1}^{(i-1)}-\ell_{1}^{(i)}-1\right)
$$

- $\phi(\bar{F}, \bar{E})=\operatorname{Count}(\bar{F}, \bar{E}) / \sum_{\bar{F}^{\prime}} \operatorname{Count}\left(\bar{F}^{\prime}, \bar{E}\right)$ is the phrase translation probability
- $d(\cdot)$ is the distortion metric/distance (e.g. $\left.d(x)=\alpha^{|x|}\right)$
- Since $\bar{E}_{i}, \bar{E}_{i+1}$ are sequential, penalizes when $\bar{F}_{i}, \bar{F}_{i+1}$ aren't

Bilingual phrase pairs

- Count the pair $(\bar{F}, \bar{E})=\left(F_{\ell_{1}: u_{1}}, E_{\ell_{2}: u_{2}}\right)$ if "consistent"

$$
\begin{aligned}
& \text { Recall: } \\
& \phi(\bar{F}, \bar{E}) \\
& =\frac{\operatorname{Count}(\bar{F}, \bar{E})}{\sum_{\bar{F}^{\prime}} \operatorname{Count}\left(\bar{F}^{\prime}, \bar{E}\right)}
\end{aligned}
$$

1. At least one A_{i} is in the box $\left[\ell_{1}: u_{1}\right] \times\left[\ell_{2}: u_{2}\right]$
2. All A_{i} containing any word in $\left[\ell_{1}: u_{1}\right]$ or any word in $\left[\ell_{2}: u_{2}\right]$ must be in the box as well

(Re)using a word alignment matrix seen earlier to extract phrases

Decoding with phrases

- Decoding is the process of deriving E given F $E^{*}=\operatorname{argmax}_{E} P(F \mid E) P(E) \approx \operatorname{argmax}_{E} P(F, A \mid E) P(E)$
- Checking all E, A is infeasible
- Instead, use a (heuristic) beam search

1. Choose partial translation $\left(E^{\prime}, A^{\prime}\right)$ with highest score $\left(\propto P\left(F^{\prime}, A^{\prime} \mid E^{\prime}\right) P\left(E^{\prime}\right)\right)$
2. Increment that by appending bilingual phrase pairs
3. Prune set of resulting partial translations by score

- We'll see beam search in more detail in NMT

NEURAL MACHINE TRANSLATION

SMT - Summary

- 1990s-2010s SMT: huge research field
- So far, we only discussed the high-level ideas (e.g. alignment), omitting lots of details and caveats
- Best systems were extremely complex with many separately designed sub-components
- Lots of human effort \& hand-engineered feature design (e.g. capturing specific language phenomenon)
- Required compiling and maintaining large rules engine

NMT - biggest success story of NLP Deep
 Learning?

- Circa 2016, NMT became the leading standard method for MT starting with a fringe research attempt in 2014!
- 2014: First seq2seq paper published ${ }^{[1,2]}$
- 2016: Google Translate switches from SMT to NMT - and by 2018, everyone has!
- NMT systems trained by a small group of engineers in a few months outperforms the (then) SOTA SMT systems, built by hundreds of engineers over decades!
- NMT is a flagship task for NLP deep learning
- In 2024, NMT research continues to thrive, with many improvements to the vanilla seq2seq model we'll discuss
${ }^{1}$ Sutskever, Ilya, et al. "Sequence to sequence learning with neural networks." NeurIPS (2014).
${ }^{2}$ Bahdanau, Dzmitry, et al. "Neural machine translation by jointly learning to align and translate." arXiv preprint arXiv:1409.0473 (2014).

What is NMT?

- Machine translation with neural networks
- Usually drops noisy channel: $E^{*}=\operatorname{argmax}_{E} P(E \mid F)$
- Some NMT researchers (e.g. "Simple and effective noisy channel modeling for neural machine translation," 2019. Yee et al.) use the noisy channel objective
- No (explicit) alignments - end-to-end training
- Outperforms "SMT" by a large margin

Solving the alignment problem

- Recall that source and target words (or, sentences) are not always one-to-one
- SMT solution is to marginalize explicit alignments
- $E^{*}=\operatorname{argmax}_{E} \sum_{A} P(F, A \mid E) P(E)$
- NMT uses sequence-to-sequence (seq2seq) encoder/decoder architectures
- An encoder produces a representation of F
- A decoder interprets that representation and generates an output sequence E

Seq2seq motivation

Why do we need seq2seq encoder/decoder architecture?
Why not train a RNN to output a translated token from source token?
"Mary no dió una abofeteó a la bruja verde." -> "Mary did not slap the green witch."

NMT: the seq2seq model

Encoder Decoder

- The seq2seq model is an example of conditioned language model (LM)
- Many variants exists. The classical (vanilla) seq2seq model outlined here
- NMT directly calculates $y^{*}=\operatorname{argmax}_{y} P(y \mid x)$
- I.e. with our formulation:

$$
E^{*}=\operatorname{argmax}_{E} P(E \mid F)
$$

Decoder (RNN) generates target sentence (in English), conditioned on the encoding

Decoder is predicting the next word of the target sentence y
Prediction is conditioned on the source sentence \mathbf{x}

$$
P(y \mid x)=P\left(y_{1} \mid x\right) P\left(y_{2} \mid y_{1}, x\right) \ldots P\left(y_{T} \mid y_{1}, \ldots y_{(T-1)}, x\right)
$$

Notation

Encoder

- Encoder given source text $x=\left(x_{1}, x_{2}, \ldots\right)$
- $x_{S}=T_{F}\left(F_{S}\right)$ a source word embedding
- Outputs last hidden state of RNN
- Note $h_{S}=f\left(F_{1: S}\right)$ conditions on entire source

Source sentence (French): L'amitié est magique
Target sentence (English): Friendship is magic

Decoder

- Sample a target sentence word by word $y_{t} \sim P\left(y_{t} \mid p_{t}\right)$
- Set input to be embedding of previously generated word $\tilde{x}_{t}=T_{E}\left(y_{t-1}\right)$
- $p_{t}=f\left(\tilde{h}_{t}\right)=f\left(g\left(\tilde{x}_{t}, \tilde{h}_{t-1}\right)\right)$ is deterministic
- Base case: $\tilde{x}_{1}=T_{E}(\langle s\rangle), \tilde{h}_{0}=h_{S}$
- $P\left(y_{1: T} \mid F_{1: S}\right)=\prod_{t} P\left(y_{t} \mid y_{<t}, F_{1: S}\right) \rightarrow$ auto-regressive

NMT: Training a MT system

- Train towards maximum likelihood estimate (MLE) against one translation E
- Auto-regression simplifies independence

$$
\text { MLE: } \begin{aligned}
\theta^{*}=\operatorname{argmin}_{\theta} \mathcal{L}(\theta \mid E, F) \quad \mathcal{L}(\theta \mid E, F) & =-\log P_{\theta}(y=E \mid F) \\
& =-\sum_{t} \log P_{\theta}\left(y_{t}=E_{t} \mid E_{<t}, F_{1: S}\right)
\end{aligned}
$$

$$
\mathcal{L}=-\log P(\text { friendship } \mid \cdots)-\log P(\text { is } \mid \cdots)-\log P(\text { magic } \mid \cdots)-\log P(</ \mathrm{s}\rangle \mid \cdots)
$$

Teacher forcing

Remove feed-forward recurrence from the previous output to the hidden units at a time step and replace with ground-truth values for faster training

- Teacher forcing = maximum likelihood estimate (MLE)
- Replace $\tilde{x}_{t}=T\left(y_{t-1}\right)$ with $\tilde{x}_{t}=T\left(E_{t-1}\right)$

Predicted output
target or ground truth

- Caveat: since $y_{t-1} \neq E_{t-1}$ in general, causes exposure bias

$$
\mathcal{L}=-\log P(\text { friendship } \mid \cdots)-\log P(\text { is } \mid \cdots)-\log P(\text { magic } \mid \cdots)-\log P(</ \mathrm{s}>\mid \cdots)
$$

Attention motivations - I

- The information bottleneck problem with vanilla seq2seq model

The encoder RNN output h_{5} $h_{5}=\tilde{h}_{0} \quad$ has to encode information from all preceding time steps.

Creates a bottleneck at h_{5}, due to the vanishing gradient problem for longer sequences

- Solution: sequence to sequence with attention (seq2seq+attn) ${ }^{[2]}$ model

Core Idea

Use direct connection to the encoder states and focus on selective, relevant parts of the source sequence at every step of the decoder
${ }^{1}$ Sutskever, Ilya, et al. "Sequence to sequence learning with neural networks." NeurIPS (2014).
${ }^{2}$ Bahdanau, Dzmitry, et al. "Neural machine translation by jointly learning to align and translate." arXiv preprint arXiv:1409.0473 (2014).

Attention motivations - II

- Allow decoder to "attend" (or, query) to certain areas of input (values) when making decisions. (Warning: correlation \neq causation!) ${ }^{[1,2]}$
- Combines input from sequence dimension $h_{1: 9}$ in a contextdependent way

Imagery from the excellent https://distill.pub/2016/augmented-rnns/\#attentional-interfaces .
[1] Jain, Sarthak, and Byron C. Wallace. "Attention is not explanation." arXiv preprint arXiv:1902.10186 (2019) [2] Wiegreffe, Sarah, and Yuval Pinter. "Attention is not not explanation." arXiv preprint arXiv:1908.04626 (2019)

Attention mechanisms

- Input to decoder a weighted sum of all encoder states
- Weights determined dynamically by decoder previous hidden state
- $\tilde{x}_{t}=\left[c_{t-1} ; T_{E}\left(y_{t-1}\right)\right]$
- 1. Attention scores $a_{t, 1: S}=\operatorname{score}\left(\tilde{h}_{t}, h_{1: S}\right)$
- 2. Weights $\alpha_{t, s}=\operatorname{softmax}\left(a_{t, 1: s}, s\right)=\exp a_{t, s} / \Sigma_{s^{\prime}} \exp a_{t, s^{\prime}}$
- 3. Context vector $c_{t}=\operatorname{Attend}\left(\tilde{h}_{t}, h_{1: S}\right)=\sum_{s} \alpha_{t, s} h_{s}$
- Score function, usually $\operatorname{score}(a, b)=|a|^{-1 / 2}\langle a, b\rangle$ (scaled dot-product attention).

Score function variants

- Attention scores $a_{t, 1: S}=\operatorname{score}\left(\tilde{h}_{t}, h_{1: s}\right)$
- Many variants of the score function for calculating attention scores between decoder's \tilde{h}_{t} and encoder's $h_{1: s}$
- Basic dot-product attention $a_{t, s}=\tilde{h}_{t}{ }^{T} \cdot h_{s} \in \mathbb{R}$
- Assumption: $\tilde{h}_{(t)}, h_{(s)} \in \mathbb{R}^{d}$
- Multiplicative (bilinear) attention $a_{t, s}=\tilde{h}_{t}{ }^{T} \cdot \boldsymbol{W} \cdot h_{s} \in \mathbb{R}$
- Assumption: $\tilde{h}_{(t)} \in \mathbb{R}^{d_{1}}, h_{(s)} \in \mathbb{R}^{d_{2}}$,
$W \in \mathbb{R}^{d_{1} \times d_{2}}$ is a weight matrix

Mind Map: the decoder hidden state at time t , \tilde{h}_{t}, is a query that attends to all the encoder hidden states, $h_{1: S}$, the values!

Attention example

$$
a_{t, s}=\operatorname{score}\left(\tilde{h}_{t}, h_{s}\right) \quad \alpha_{t, s}=\operatorname{softmax}\left(a_{t, 1: s}, s\right) \quad c_{t}=\sum_{s} \alpha_{t, s} h_{s} \quad \tilde{x}_{t}=\left[c_{t-1 ;} T_{E}\left(y_{t-1}\right)\right] \in \mathbb{R}^{2 d}
$$

Multi-headed attention (in seq2seq)

Core Idea
We want to "attend to different things" for a given time step \rightarrow use multi-headed attention

1. Split N heads (with $\left.W^{(n)}, \widetilde{W}^{(n)} \in \mathbb{R}^{\left(d \times \frac{d}{N}\right)}\right)$

$$
\underbrace{\tilde{h}_{t-1}^{(n)}}_{\in \mathbb{R}^{\frac{d}{N}}}=\underbrace{\tilde{h}_{t-1}^{T}}_{\in \mathbb{R}^{d}} \underbrace{\tilde{W}^{(n)}}_{\in \mathbb{R}^{\left(d \times \frac{d}{N}\right)}}
$$

Think of the W, \widetilde{W} as transformation matrices projecting hidden states h, \tilde{h} to a more compact dimension

$$
\underbrace{h_{S}^{(n)}}_{\substack{\mathbb{R}^{\frac{d}{N}}}}=\underbrace{h_{S}^{T}}_{\in \mathbb{R}^{d} \in \mathbb{R}^{\left(d \times \frac{d}{N}\right)}} \underbrace{W^{(n)}}
$$ $\in \mathbb{R}^{\frac{d}{N}}$

Single-head attention
$H \in \mathbb{R}^{S \times B \times d}$
output $\in \mathbb{R}^{\left[S \times B \times\left(\frac{d}{2}\right) ; S \times B \times\left(\frac{d}{2}\right)\right]}$

here \mathbf{Q} is a parameter matrix for transforming the concatenated multi-head context vectors $c_{t-1}^{(1: N)}$

Attention advantages

- Improves NMT performance significantly
- Solves the bottleneck problem
- Allows the decoder to look at the source sentence directly, circumventing the bottleneck
- Helps with the long-horizon (vanishing gradient) problem - by providing shortcut to distant states
- Makes the model (somewhat) interpretable
- We can examine the attention distribution to see what the decoder was focusing on
- We get (soft) alignment for free
- Compare w/ the 'word alignment' matrix from SMT
- The network learns alignment by itself even w/o any explicit training

Transformer networks

- Breakout paper in 2017: Attention is all you need ${ }^{[1]}$
- Core idea: replace recurrent connections with attention

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BLEU			Training Cost (FLOPs)	
	EN-DE	EN-FR		EN-DE	EN-FR
ByteNet [15]	23.75				
Deep-Att + PosUnk [32]		39.2		$1.0 \cdot 10^{20}$	
GNMT + RL [31]	24.6	39.92		$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S [8]	25.16	40.46		$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE [26]	26.03	40.56		$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$
Deep-Att + PosUnk Ensemble [32]		40.4			$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [31]	26.30	41.16		$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$
ConvS2S Ensemble [8]	26.36	$\mathbf{4 1 . 2 9}$		$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1		$\mathbf{3 . 3} \cdot \mathbf{1 0} \mathbf{1 0}^{\mathbf{1 8}}$	
Transformer (big)	$\mathbf{2 8 . 4}$	$\mathbf{4 1 . 0}$		$2.3 \cdot 10^{19}$	

- Empirical results showcased using machine translation (WMT'14)
- Deep dive in lecture L6: Transformers
${ }^{1}$ Vaswani, Ashish, et al. "Attention is all you need." NeulPS (2017).

RNNs to Transformers

- Transformers is the underlying architecture for all state-of-the-art deep neural models - not just in NLP, but across other modalities too
- So far, we have seen encoder-decoder models using Seq2Seq RNNs (and variant) architectures using attention for memory bottlenecks

Encoder Decoder

- With Transformers, we use the same (enc-dec) paradigm, updating the building blocks by removing recurrence with parallelizable blocks
- Why?

Transformer networks (high-level)

Replace recurrence (RNN) with attention

- Encoder uses self-attention

$$
h_{s}^{(\ell+1)} \leftarrow \operatorname{Att}_{E n c}\left(h_{s}^{(\ell)}, h_{1: S}^{(\ell)}\right)
$$

Decoder uses 1. self-attention*

$$
\tilde{z}_{t}^{(\ell+1)} \leftarrow \operatorname{Att_{\text {Dec}1}}\left(\tilde{h}_{t}^{(\ell)}, \tilde{h}_{1: t}^{(\ell)}\right)
$$

then 2. attention with encoder

$$
\tilde{h}_{t}^{(\ell+1)} \leftarrow A t t_{D e c 2}\left(\tilde{z}_{t}^{(\ell+1)}, h_{1: S}^{(\ell+1)}\right)
$$

Transformer motivations

- Limitations of recurrent connections: long-term dependencies, lack of parallelizability, interaction distance (steps to distant tokens).
- Attention allows access to entire sequence
- Lots of computation can be shared, parallelized across sequence indices. Identical layers: [self, cross]-attention, feed-forward w/ tricks
- Layer norm., residual connections, positional encodings, masking
- See Vaswani et al (2017) for specific architecture

Source sentence (French): L' amitié est magique Target sentence (English): Friendship is magic

Transformer auto-regression

$$
\tilde{z}_{t}^{(\ell+1)} \leftarrow \operatorname{Att}_{D e c 1}\left(\tilde{h}_{t}^{(\ell)}, \tilde{\tilde{t}}_{1: t}^{(\ell)}\right)
$$

- Decoder cannot attend to future: masked self-attention
- In teacher forcing, cannot see target directly if decoder input shifted $E_{t} \mapsto E_{t+1}$
- In order to decode during testing, you must
- $\left.y_{1} \sim \operatorname{Decode}\left(\left[T_{E}(<\mathrm{s}\rangle\right)\right]\right)$
- $\left.y_{2} \sim \operatorname{Decode}\left(\left[T_{E}(<s\rangle\right), T_{E}\left(y_{1}\right)\right]\right)$
- Etc. until </s>

Position (in)dependence

- Attention mechanism is agnostic to sequence order
- For permutation vector v s.t. $\operatorname{sorted}(v)=(1,2, \ldots, V)$

$$
\operatorname{Att}\left(a, b_{v}\right)=\operatorname{Att}\left(a, b_{1: V}\right)
$$

- Caveat: but the word order matters in language translation
- Solution: encode position in input:

$$
x_{s}=T_{F}\left(F_{s}\right)+\phi(s)
$$

Transformer - Positional Encoding

Add positional information of an input token in the sequence into the input embedding vectors.

$$
P E_{(p o s, 2 i)}=\boldsymbol{\operatorname { s i n }}\left(\frac{p o s}{10000\left(\frac{2 i}{d_{\text {model }}}\right)}\right) ; P E_{(\text {pos }, 2 i+1)}=\boldsymbol{\operatorname { c o s }}\left(\frac{p o s}{10000\left(\frac{2 i}{d_{\text {model }}}\right)}\right)
$$

- The positional encodings (PE) have the same dimension $d_{\text {model }}$ as the embeddings (for summation)
- Many choices of PEs possible: learned or fixed.

Runtime complexity

- Assume $S \approx T$

Model	Complexity	Reason
Without attention	$\boldsymbol{O}(\boldsymbol{T})$	Encoder, then decoder
With attention	$O\left(T^{2}\right)$	Decoder attends to all encoder states
Transformer	$O\left(T^{2}\right)$	Everyone attends to everyone else

- Parallelization caveats:
- Quick to train, slow during decoding
- Auto-regressive stacked RNN much slower than non-auto-regressive stacked RNNs
- More details in CSC 413/2516

Intermezzo - BERT
 (It's not an aside - it's testable!)

- Bidirectional Encoder Representations from Transformers
- Extremely popular language representation + NLM
- Just the encoder part of the transformer model
- Learns the input that was masked

Aside - BERT \rightarrow BART \rightarrow NMT
 (This time it's not testable)

- Pretrained BERT language model used to re-score/fine-tune downstream NLP tasks
- Explosion of variants to BERT
- BART (Lewis et al, 2020) adds the decoder back to BERT, keeping the BERT objective
- Add some source language layers on top to train for NMT

Decoding in NMT

Exhaustive search decoding

- Computationally intractable
- Maximize the probability of length T translation E_{T}

$$
P\left(E \mid F_{S}\right)=\left(P\left(e_{1} \mid F_{S}\right) P\left(e_{2} \mid y_{1}, F_{S}\right), \ldots, P\left(e_{T} \mid y_{1}, y_{2} \ldots, y_{T-1}, F_{S}\right)\right.
$$

- At each decoder time step t, with vocab size V :
- there is V possibilities for the decoded token e^{t}
- we are tracking V^{t} possible partial translations
- The $O\left(V^{T}\right)$ runtime complexity is infeasible

Greedy Decoding

- Core idea: take the most probable word on each step

$$
y_{t}=\operatorname{argmax}_{i}\left(p_{t, i}\right)
$$

- Problem: Can't recover from a prior bad choice (no 'undo')

- Sub-optimal in an auto-regressive setup:
- \tilde{h}_{t} continuous, depends on y_{t-1}
- DP (optimal sequence) solutions for discrete, finite state spaces (e.g. Viterbi search - HMM lecture) impossible

Beam search: top-K greedy

- Core idea: track the K top choices (most probable) of partial translations (or, hypotheses) at each step of decoding
- K is also called the 'beam width' or 'beam size'
- Where, $5 \leq K \leq 10$ usually in practice
- The score of a hypothesis $\left(y_{1}, \ldots, y_{t}\right)$ is its log probability:

$$
\operatorname{score}\left(y_{1}, \ldots, y_{t}\right)=\log P_{L M}\left(y_{1}, \ldots, y_{t} \mid x\right)=\sum_{i=1}^{t} \log P_{L M}\left(y_{i} \mid y_{1}, \ldots, y_{i-1}, x\right)
$$

- We search and track the top k hypotheses based on the score
- Scores are all negative, and higher is better
- Beam search is not guaranteed to find the optimal solution
- However, much more efficient and practical than exhaustive search

Beam search example ($t=1$)

$$
V=\{\mathrm{H}, \mathrm{~A},</ \mathrm{s}>\}, \mathrm{K}=2
$$

$b_{t, 0}^{(k)}: k$-th path hidden state
$b_{t, 1}^{(k)}: k$-th path sequence
$b_{t}^{(k \rightarrow v)}: k$-th path extended with token v

*Note $\forall k \cdot \sum_{v} P\left(b_{t}^{(k \rightarrow v)}\right)=1$

Beam search example ($t=2$)

$$
V=\{\mathrm{H}, \mathrm{~A},</ \mathrm{s}>\}, \mathrm{K}=2
$$

Beam search example ($t=3$)

$$
V=\{\mathrm{H}, \mathrm{~A},</ \mathrm{s}>\}, \mathrm{K}=2
$$

Beam search: stopping criterion

- Continue decoding greedily until the model produces an end of sequence ($\langle/ s\rangle$) token
- But '</s>' can be produced at different timesteps for each candidate hypotheses
- Mark a hypothesis as complete when $</ s>$ is produced
- The probability of a completed hypothesis does not decrease
- Place it aside and continue exploring other hypotheses paths
- Usually we continue beam search until:
- A pre-defined cutoff timestep T is reached
- A pre-defined cutoff completed hypotheses n has been reached

Beam search example ($t=4$)

$$
V=\{\mathrm{H}, \mathrm{~A},</ \mathrm{s}>\}, \mathrm{K}=2
$$

*Since $\mathrm{k}=2$ is finished

Beam search example ($t=5$)

$$
V=\{\mathrm{H}, \mathrm{~A},</ \mathrm{s}>\}, \mathrm{K}=2
$$

Beam search: top-K greedy

Given vocab V, decoder σ, beam width K
$\forall k \in[1, K] . b_{0,0}^{(k)} \leftarrow \tilde{h}_{0}, \mathrm{~b}_{0,1}^{(k)} \leftarrow\left[\langle\mathrm{s}>], \log \mathrm{P}\left(b_{0}^{(k)}\right) \leftarrow-\mathbb{I}_{k \neq 1} \infty\right.$ $f \leftarrow \emptyset \quad \#$ finished path indices
$b_{t, 0}^{(k)}: k$-th path hidden state $b_{t, 1}^{(k)}: k$-th path sequence $b_{t}^{(k \rightarrow v)}: k$-th path extended with token v
While $1 \notin f$:

$$
\begin{aligned}
& \forall k \in[1, K] . \tilde{h}_{t+1}^{(k)} \leftarrow \sigma\left(b_{t, 0}^{(k)}, \text { last }\left(b_{t, 1}^{(k)}\right)\right) \quad \# \text { last }(x) \text { gets last token in } x \\
& \forall v \in V, k \in[1, K] \backslash f . b_{t, 0}^{(k \rightarrow v)} \leftarrow \tilde{h}_{t+1}^{(k)}, b_{t, 1}^{(k \rightarrow v)} \leftarrow\left[b_{t, 1}^{(k)}, v\right]
\end{aligned}
$$

Calculate hypothesis score $\quad \log P\left(b_{t}^{(k \rightarrow v)}\right) \leftarrow \log P\left(y_{t+1}=v \mid \tilde{h}_{t+1}^{(k)}\right)+\log P\left(b_{t}^{(k)}\right)$

$$
\forall v \in V, k \in f . b_{t}^{(k \rightarrow v)} \leftarrow b_{t}^{(k)}, \log P\left(b_{t}^{(k \rightarrow v)}\right) \leftarrow \log P\left(b_{t}^{(k)}\right)-\mathbb{I}_{v \neq</ s>\infty}
$$

$$
\forall k \in[1, K] \cdot b_{t+1}^{(k)} \leftarrow \operatorname{argmax}_{b_{t}\left(k^{\prime} \rightarrow v\right)}^{k} \log P\left(b_{t}^{\left(k^{\prime} \rightarrow v\right)}\right) \quad \# k-\text { th } \max b_{t}^{\left(k^{\prime} \rightarrow v\right)}
$$

$$
f \leftarrow\left\{k \in[1, K] \mid \text { last }\left(b_{t+1}^{(k)}\right)=</ s>\right\}
$$

$$
t \leftarrow t+1
$$

Return $b_{t, 1}^{(1)}$
*Other completion criteria exist (e.g. $t \leq T$, finish some \# of paths)

Beam search: top-K greedy

In lecture annotations

Given vocab V, decoder σ, beam width K
$\forall k \in[1, K] . b_{0,0}^{(k)} \leftarrow \tilde{h}_{0}, \mathrm{~b}_{0,1}^{(k)} \leftarrow\left[\langle\mathrm{s}>], \log \mathrm{P}\left(b_{0}^{(k)}\right) \leftarrow-\mathbb{I}_{k \neq 1} \infty\right.$ $f \leftarrow \emptyset \quad \#$ finished path indices
While $1 \notin f$: End search when the most probable of the K prefixes end with </s>
$\forall k \in[1, K] . \tilde{h}_{t+1}^{(k)} \leftarrow \sigma\left(b_{t, 0}^{(k)}\right.$, last $\left.\left(b_{t, 1}^{(k)}\right)\right) \quad \#$ last (x) gets last token in x
$\underset{\text { paths excluding the finished ones }}{\forall v \in V, k \in[1, K] \backslash f} . b_{t, 0}^{(k \rightarrow v)} \leftarrow \tilde{h}_{t+1}^{(k)}, b_{t, 1}^{(k \rightarrow v)} \leftarrow\left[b_{t, 1}^{(k)}, v\right]$
$\begin{array}{ll}\text { K paths excluding the finished ones } \\ \text { Calculate hypothesis score }\end{array} \log P\left(b_{t}^{(k \rightarrow v)}\right) \leftarrow \log P\left(y_{t+1}=v \mid \tilde{h}_{t+1}^{(k)}\right)+\log P\left(b_{t}^{(k)}\right)$

$$
\forall v \in V, k \in f . b_{t}^{(k \rightarrow v)} \leftarrow b_{t}^{(k)}, \log P\left(b_{t}^{(k \rightarrow v)}\right) \leftarrow \log P\left(b_{t}^{(k)}\right)-\mathbb{I}_{v \neq</ \mathrm{s}>\infty}
$$

pifk top-k (sorted) $\forall k \in[1, K] . b_{t+1}^{(k)} \leftarrow \operatorname{argmax}_{b_{t}^{\left(k^{\prime} \rightarrow v\right)}}^{k} \log P\left(b_{t}^{\left(k^{\prime} \rightarrow v\right)}\right) \quad \# k-$ th max $b_{t}^{\left(k^{\prime} \rightarrow v\right)}$

$$
\begin{aligned}
& f \leftarrow\left\{k \in[1, K] \mid \text { last }\left(b_{t+1}^{(k)}\right)=</ \mathrm{s}>\right\} \\
& t \leftarrow t+1 \text { Go to next time-step }
\end{aligned}
$$

Return $b_{t, 1}^{(1)}$

Sub-words

- Out-of-vocabulary words can be handled by breaking up words into parts
- "abwasser+behandlungs+anlange" \rightarrow "water sewage plant" [e.g. agglutinative (German)]
- Sub-word units are built out of combining characters (like phrases!)
- Popular (sub-word tokenization) approaches include
- Byte Pair Encoding (BPE): "Neural machine translation of rare words with subword units," 2016. Sennrich et al.
- Wordpieces: "Google's neural machine translation system: bridging the gap between human and machine translation," 2016. Wu et al.

Aside - advanced NMT

- Modifications to beam search
- "Diverse beam search," 2018. Vijayakumar et al.
- Exposure bias
- "Optimal completion distillation," 2018. Sabour et al.
- Back translation
- "Improving neural machine translation models with monolingual data," 2016. Senrich et al.
- Non-autoregressive neural machine translation, 2018. Gu et al.
- Unsupervised neural machine translation, 2018. Artetxe et al.
- + Optional readings listed on course webpage

Evaluation of MT systems

$$
\begin{aligned}
& \text { 对外经济贸易合作部今天提供的数据表明, 今年至十一月中国实际利用外资 } \\
& \text { 四百六十九点五九美元, 其中包括外商直接投资四百点婊七元。 }
\end{aligned}
$$

Human	According to the data provided today by the Ministry of Foreign Trade and Economic Cooperation，as of November this year，China has actually utilized （Refence ） 46．959B US dollars of foreign capital，including 40．007B US dollars of direct investment from foreign businessmen．
IBM4	The Ministry of Foreign Trade and Economic Cooperation，including foreign （Candidate 1） direct investment 40．007B US dollars today provide data include that year to November China actually using foreign 46．959B US dollars and
Yamada／	Today＇s available data of the Ministry of Foreign Trade and Economic Knight Cooperation shows that China＇s actual utilization of November this year will （Candidate 2） include 40．007B US dollars for the foreign direct investment among 46．959B US dollars in foreign capital．

How can we objectively compare the quality of the two candidate translations？

Automatic evaluation

- We want an automatic and effective method to objectively rank competing translations.
- Word Error Rate (WER) measures the number of erroneous word insertions, deletions, substitutions in a translation.
- E.g., Reference: how to recognize speech

Translation: how understand a speech

- Works for Automatic Speech Recognition (ASR)
- Problem: There are many possible valid translations. (There's no need for an exact match)

Challenges of evaluation

- Human judges:
expensive, slow, non-reproducible (different judges - different biases).
- Multiple valid translations, e.g.:
- Source: Il s'agit d'un guide qui assure que l'armée sera toujours fidèle au Parti
- T1: It is a guide to action that ensures that the military will forever heed Party commands
- T2: It is the guiding principle which guarantees the military forces always being under command of the Party

BLEU evaluation

- BLEU (BiLingual Evaluation Understudy) is an automatic and popular method for evaluating MT.
- It uses multiple human reference translations, and looks for local matches, allowing for phrase movement.
- Candidate: n. a translation produced by a machine.
- There are a few parts to a BLEU score...

Example of BLEU evaluation

- Reference 1: It is a guide to action that ensures that the military will forever heed Party commands
- Reference 2: It is the guiding principle which guarantees the military forces always being under command of the Party
- Reference 3: It is the practical guide for the army always to heed the directions of the party
\Rightarrow Candidate 1: It is a guide to action which ensures that the military always obeys the commands of the party
- Candidate 2: It is to insure the troops forever hearing the activity guidebook that party direct

BLEU: Unigram precision

- The unigram precision of a candidate is

$$
\frac{C}{N}
$$

where N is the number of words in the candidate and $C \quad$ is the number of words in the candidate which are in at least one reference.

- e.g., Candidate 1: It is a guide to action which ensures that the military always obeys the commands of the party
- Unigram precision $=\frac{17}{18}$
(obeys appears in none of the three references).

BLEU: Modified unigram precision

- Reference 1: The lunatic is on the grass
- Reference 2: There is a lunatic upon the grass
- Candidate: The the the the the the
- Unigram precision $=\frac{7}{7}=1$

- Capped unigram precision:

A candidate word type w can only be correct a maximum of $\operatorname{cap}(w)$ times.

- e.g., with cap $($ the $)=2$, the above gives

$$
p_{1}=\frac{2}{7}
$$

BLEU: Generalizing to N -grams

- Generalizes to higher-order N -grams.
- Reference 1: It is a guide to action that ensures that the military will forever heed Party commands
- Reference 2: It is the guiding principle which guarantees the military forces always being under command of the Party
- Reference 3: It is the practical guide for the army always to heed the directions of the party

Bigram precision, p_{2}
$p_{2}=10 / 17$ the military always obeys the commands of the party

- Candidate 2: It is to insure the troops forever hearing the activity guidebook that party direct
- Candidate 1: It is a guide to action which ensures that

BLEU: Precision is not enough

- Reference 1: It is a guide to action that ensures that the military will forever heed Party commands
- Reference 2: It is the guiding principle which guarantees the military forces always being under command of the Party
- Reference 3: It is the practical guide for the army always to heed the directions of the party
- Candidate 1: of the

Unigram precision, $p_{1}=\frac{2}{2}=1 \quad$ Bigram precision, $p_{2}=\frac{1}{1}=1$

BLEU: Brevity

- Solution: Penalize brevity.
- Step 1: for each candidate, find the reference most similar in length.
- Step 2: $\boldsymbol{c}_{\boldsymbol{i}}$ is the length of the $i^{\text {th }}$ candidate, and $\boldsymbol{r}_{\boldsymbol{i}}$ is the nearest length among the references,

$$
\text { brevity }_{i}=\frac{r_{i}}{c_{i}} \quad \text { Bigger }=\text { too brief }
$$

- Step 3: multiply precision by the (0..1) brevity penalty:

$$
B P_{i}=\left\{\begin{array}{cc|c}
1 & \text { if } \text { brevity }_{i}<1 & \left(r_{i}<c_{i}\right) \\
e^{1-\text { brevity }_{i}} & \text { if brevity } \\
i
\end{array} \geq 1 \quad\left(r_{i} \geq c_{i}\right) .\right.
$$

BLEU: Final score

- On slide 87,

$$
\begin{aligned}
& r_{1}=16, r_{2}=17, r_{3}=16, \text { and } \\
& c_{1}=18 \text { and } c_{2}=14, \\
& \text { brevity }_{1}=\frac{17}{18} \quad B P_{1}=1 \\
& \text { brevity }_{2}=\frac{16}{14} \quad B P_{2}=e^{1-\left(\frac{8}{7}\right)}=0.8669
\end{aligned}
$$

- Final score of candidate C :

$$
B L E U_{C}=B P_{C} \times\left(p_{1} p_{2} \ldots p_{n}\right)^{1 / n}
$$

where p_{n} is the n-gram precision. (You can set n empirically)

Example: Final BLEU score

- Reference 1: I am afraid Dave Reference 2: I am scared Dave Reference 3: I have fear David Candidate:

Assume $\operatorname{cap}(\cdot)=$ 2 for all N -grams

Also assume BLEU order $n=2$

- $p_{1}=\frac{1+1+1}{3}=1$
- $p_{2}=\frac{1}{2}$
- $B L E U=B P\left(p_{1} p_{2}\right)^{\frac{1}{2}}=e^{1-\left(\frac{4}{3}\right)}\left(\frac{1}{2}\right)^{\frac{1}{2}} \approx 0.5067$

Aside - Corpus-level BLEU

- To calculate BLEU over M source sentences (assuming one candidate per source)...
- $B L E U \neq \frac{1}{M} \sum_{m=1}^{M} B L E U_{m}$
- Sum statistics over all sources
- m indexes m-th source sentence, drop candidate index i
- $p_{n}=\frac{\sum_{m=1}^{M} \text { capped_true_ngram_count }_{m}}{\sum_{m=1}^{M} N_{m}}$
- $r=\sum_{m=1}^{M} r_{m}$
- $c=\sum_{m=1}^{M} c_{m}$
- brevity $=r / c$
- We won't ask you to calculate it this way

BLEU: summary

- BLEU is a geometric mean over n-gram precisions.
- These precisions are capped to avoid strange cases.
- E.g., the translation "the the the the" is not favoured.
- This geometric mean is weighted (brevity penalty) so as not to favour unrealistically short translations, e.g., "the"
- Initially, evaluations showed that BLEU predicted human judgements very well, but:
- People started optimizing MT systems to maximize BLEU. Correlations between BLEU and humans decreased.

When an evaluation metric becomes the target of optimization, it ceases to be an evaluation metric.

NMT - Advantages

NMT has many advantages over SMT:

- Better performance
- Superior design, simpler training:
- A single neural network can be trained end-to-end
- No sub-components need individual optimization/training
- Significantly less human engineering effort:
- Same method for all language pairs
- No feature engineering for specific requirements

NMT - Disadvantages

Compared to SMT:

- Interpretability: NMT is less interpretable
- NMT is harder to debug
- Less fine-grained control:
- For e.g., can't specify rules or guidelines for translation
- More prone to biases

NMT - Research questions

- Morphological errors
- Biases in training data
- Low-resource languages
- Common-sense translations
- Contextual, multi-modally grounded reasoning
- Instruction following by AI agents (EAI agents, robots) using nonexpert language feedback
- Generalization to multiple domains

