
Image: AI text2img generated from lecture’s title. Background: Viva Magenta (Pantone 18-1750) 2024 Color of the year!

Copyright © 2024. Raeid Saqur, University of Toronto 1

Logistics

2CSC401/2511 – Winter 2024

• Assignment 1: due Feb 9, 2024

• Assignment 2: release Feb 10, 2024

• Lectures:

• Reading week break: Feb 19-23 (no lectures, OHs)

• Final exam: planned in-person

• Lecture feedback:

• Anonymous
• Please share any thoughts/suggestions

• Questions?

Lecture plan: Neural networks

3CSC401/2511 – Winter 2024

• Lecture 4 (L4): Neural Language Models (~2 sessions)

• Introduction
• Word-level representations (word2vec, CBOW)
• Neural language models
• Recurrent neural networks (RNN, LSTM)
• Contextual word embeddings

With material from Phil Blunsom, Piotr Mirowski, Adam Kalai, and James Zou

• Lecture 5 (L5): Machine Translation (MT) (~3 sessions)

• Sequence-to-sequence (seq2seq) and attention models
• Transformers

• Lecture 6 (L6): Transformer & Variants (~1 session)

• Transformers deep-dive.

CSC401/2511 – Winter 2024 4

Historical Background

• Artificial neural networks (ANNs)
• Not new. Few iterations, peaks and troughs with

different monikers

1950 1960 1970 1980 1990 2000 2010 2020

Turing Test
1950

AI Winter
1974-1980

Dartmouth
Conference

1956

AI Winter
1987-1993

AI Boom
2012 - Current

AlexNet
2012

Transformer
2017

Perceptron
1957

ADALINE
1960

Backpropagation
1986

ELIZA
1965

Deep Blue
1996

ChatGPT
2022

DALL-E
2021

SNAR
1951

XCON
1980

SVM
1995

Watson
2011

AlphaFold
2021

AlphaZero
2017

AlphaGo
2015

DeepFace
2014

GPT-1
2018

LISP
1958

SGD
1967

TD-Gammon
1992

POMDPs
1998

LSTM
1997

iRobot
2002

RNN
2009

ReLU
1969

LeNet
1998

CNN
1989

Prolog
1972

KAISSA
1974

AIBO
1999

SHAKEY
1966

Neocognitron
1979 NavLab

1986

R
es

ea
rc

h
an

d
de

ve
lo

pm
en

t a
ct

iv
iti

es

1. Saqur, Raeid, et al. "Hype, Media Frenzy, and Mass Societal Hysteria: Perspectives on Human-imitative Intelligence.”. ICVSS 2023

CSC401/2511 – Winter 2024 5

Artificial neural networks

• Artificial neural networks (ANNs) were (kind of) inspired
from neurobiology (Widrow and Hoff, 1960).
• Each unit has many inputs (dendrites), one output (axon).

• The nucleus fires (sends an electric signal along the axon)

given input from other neurons.

• ‘Learning’ occurs at the synapses that connect neurons,

either by amplifying or attenuating signals.

Dendrites
Axon

Nucleus

!()

CSC401/2511 – Winter 2024 6

Perceptron: an artificial neuron

• Each neuron calculates a weighted sum of its inputs and

compares this to a threshold, !. If the sum exceeds the

threshold, the neuron fires.

• Inputs "$ are activations from adjacent neurons, each

weighted by a parameter #$.

If % > ',) ≔ 1

Else,) ≔ 0
"-

! =#

!"#

$

$!%!
".

"/

#-

#.

#/

…
$

McCullogh-Pitts model

&()

CSC401/2511 – Winter 2024 7

Perceptron output

• Perceptron output is determined by activation functions,

%(), which can be non-linear functions of weighted input.

• Popular activation functions include tanh and the sigmoid:

% (= * (=
1

1 + -01

• The sigmoid’s derivative is the easily computable)% =) ⋅ (1 −))

Input

O
u

tp
u

t

Input

O
u

tp
u

t

From Wikipedia

tanh sigmoid

0

1

CSC401/2511 – Winter 2024
8

Rectified Linear Units (ReLUs)

• Since 2011, the ReLU $ = % (= max(0, () has become

more popular.

• More biologically plausible, sparse activation, limited (vanishing)
gradient problems, efficient computation.

Input

O
u

tp
u

t

From Wikipedia

X Glorot, A Bordes, Y Bengio (2011). Deep sparse rectifier neural networks. AISTATS.

• A smooth approximation is

the softplus log(1 + -1),
which has a simple

derivative 1/(1 + -21)

• Why do we care about the
derivatives?

CSC401/2511 – Winter 2024 9

Perceptron learning

• Weights are adjusted in proportion to the error (i.e., the

difference between the desired, 7, and the actual output, $.

• The derivative %′ allows us to assign blame proportionally.

• Given a small learning rate, 9 (e.g., 0.05), we can repeatedly

adjust each of the weight parameters by

#3 ≔ #3 + 9 ⋅ 	?

$4-

5

@AA$ ⋅ %′(($) ⋅ "3[C]

 where @AA$ = (7$ − $$), among F training examples.

!"

=%&'!'
(

')"

!*

!(

&"
&*
&(

…
+

McCullogh-Pitts model

,()

Assumes
mean-square
error objective

CSC401/2511 – Winter 2024 10

Threshold perceptra and XOR

• Some relatively simple logical functions cannot be learned by

threshold perceptra (since they are not linearly separable).

&!

&"

6! ∧ 6"
&!

&"

6! ∨ 6"
&!

&"

6!⨁6"

CSC401/2511 – Winter 2024 11

Artificial neural networks

• Complex functions can be represented by layers of
perceptron (multi-layer perceptron, MLPs).

MLP

...

...
• Inputs are passed to the

input layer.
• Activations are propagated

through hidden layers
to the output layer.

• MLPs are quite robust to noise,
and are trained specifically to
reduce error.

CSC401/2511 – Winter 2024 12

Deep

It’s a cat.

‘hidden’ representations are learned here

Depression.

Can we find hidden patterns in words?

CSC401/2511 – Winter 2024 13

Words

• Given a corpus with G (e.g., = 100H) unique words, the

classical approach is to uniquely assign each word with an

index in G-dimensional vectors (‘one-hot’ representation).

• Classic word-feature representation assigns features

to each index in a much denser vector.

• E.g., psychology based features ‘cheerful’, ‘emotional-tone’.

• Can we learn a dense representation? What will it give us?

0 0 0 0 .. 0 1 0 … 0

!

1 0.8 2.5 0.81 … 99
" ≪ !

lugubrious

https://docs.receptiviti.com/frameworks/liwc

been feeling lugubrious all day
felt a lugubrious sadness in

…

-($' = ./&/0123/4|$'(# = 677.28&,$'() = 0778,…)

https://code.google.com/p/word2vec/

Here, we’re predicting the center word given the context.
This is called the ‘continuous bag of words’ (CBOW) model1.

14CSC401/2511 – Winter 2024

"You shall know a word by the company it keeps."

— J.R. Firth (1957)

Learning word semantics

1 Mikolov T, Corrado G, Chen K, et al. Efficient Estimation of Word Representations in Vector Space. Proc (ICLR 2013) 2013;:1–12.

https://code.google.com/p/word2vec/

Continuous bag of words (1 word context)

15

feeling lugubrious all

a lugubrious sadness

…

*
+#
(-×/)

1$
+%
(/×-)

2

D
 =

 1
00

K

0,0,0, … 1,… , 0
feeling

D
 =

 1
00

K

0,1,0, … , 0, … , 0
lugubrious

Note: we have two
vector representations of
each word:
1$ = *⊺+# (3'(row of +#)
4$ = +%

⊺2 (3'(col of +%)

CSC401/2511 – Winter 2024

5 3) 3* =
exp(4$!

⊺ 1$")
∑$+!
, exp(4$⊺1$")Where

 1$ is the ‘input’ vector for word 3,
 4$ is the ‘output’ vector for word 3,

‘softmax’:

‘embedding’

w

W

Continuous bag of words (! words context)

16CSC401/2511 – Winter 2024

• If we want to use more context, I,

we need to change the network

architecture somewhat.

• Each input word will produce one

of I embeddings

• We just need to add an

intermediate layer, usually this

just averages the embeddings.

been feeling lugubrious all

felt a lugubrious sadness

…

Skip-grams

17CSC401/2511 – Winter 2024

• Skip-grams invert the task – we predict

context words given the current word.

• According to Mikolov,

Skip-gram: works well with small amounts

of training data, represents rare words.

CBOW: several times faster to train, slightly

better accuracy for frequent words

Mikolov T, Corrado G, Chen K, et al. Efficient Estimation of Word
Representations in Vector Space. Proc (ICLR 2013) 2013;:1–12.
https://arxiv.org/pdf/1301.3781.pdf

https://arxiv.org/pdf/1301.3781.pdf

Actually doing the learning

18CSC401/2511 – Winter 2024

! =

#!
#!!"#$!"%

⋮
#&'()"*'

%!
%!!"#$!"%

⋮
%&'()"*'

∈ ℝ+,×.

• Given J-dimensional embeddings, and K word types, our

parameters, L, are:

Actually doing the learning

19CSC401/2511 – Winter 2024

We have many options. Gradient descent is popular.

Given M tokens of training data, optimize objective:

/ 0 =
1
34!"#

$
4

%&'('&,(*+
log 8(:!,(|:!)

And we want to update vectors K:!"# then N:! within L

! !"# = ! $%& − $%'& !
So, we’ll need to take the derivative of the (log of the) softmax

function:

- $; $! =
exp(><%

⊺ ?<&)

∑<"#
> exp(><

⊺?<&)

Where 1$ is the ‘input’ vector for word 3,
and 4$ is the ‘output’ vector for word 3,

Actually doing the learning

20CSC401/2511 – Winter 2024

We need the derivative of the (log of the) softmax function:

;

;<#!
log@ A$%& A$ =

;

;<#!
log

exp(F#!"#
⊺ <#!)

∑#()
* exp(F#⊺<#!)

=
;

;<#!
log exp F#!"#

⊺ <#! − logI
#()

*
exp(F#⊺<#!)

= F#!"# 	 −
;

;<#!
logI

#()

*
exp(F#⊺<#!)

[apply the chain rule -.-/-.
= -.

-0
-0
-/-.

]

= F#!"# −I#()

*
K A A$ F#

More details: http://arxiv.org/pdf/1411.2738.pdf

http://arxiv.org/pdf/1411.2738.pdf

Using word representations

21CSC401/2511 – Winter 2024

* +#

D
 =

 1
00

K

Without a latent space,

 lugubrious = 0,0,0, … , 0,1,0, … , 0 , &

 sad = 0,0,0, … , 0,0,1, … , 0 so

Similarity = cos((, 7) = 0.0

In latent space,

 lugubrious = 0.8,0.69,0.4, … , 0.05 L, &

 sad = 0.9,0.7,0.43, … , 0.05 L so

Similarity = cos((, 7) = 0.9

EMBEDDING

"# = $⊺%(
H = 300

Reminder:
cos O, < =

O ⋅ <

O ×| < |

Skip-grams with negative sampling

22CSC401/2511 – Winter 2024

• The default process is inefficient.
• For one – what a waste of time!

We don’t want to update A×C weights!
• For two – we want to avoid confusion!

‘Hallucinated’ (negative) contexts should be
minimized.

• For the observed (true) pair (lugubrious, sadness),
only the output neuron for sadness should be 1, and
all C − 1 others should be 0.

• Mathematical Intuition:

• X #S #T) =
UVW(X$%Y&)

∑'()* UVW(X'%Y&) Computationally

infeasible

Skip-grams with negative sampling

23CSC401/2511 – Winter 2024

• We want to maximize the association of

observed (positive) contexts:

 lugubrious sad
 lugubrious feeling
 lugubrious tired

• We want to minimize the association of

‘hallucinated’ contexts:

 lugubrious happy
 lugubrious roof
 lugubrious truth

Skip-grams with negative sampling

24CSC401/2511 – Winter 2024

• Choose a small number D of ‘negative’ words, and just
update the weights for the ‘positive’ word plus the D
‘negative’ words.
• 5 ≤ \ ≤ 20	can work in practice for fewer data.
• For ^ = 100_, we only update 0.006%

of the weights in the output layer.

• Mimno and Thompson (2017) choose the top
D words by modified unigram probability:

@∗ A$%) =
` A$%)

,
-

∑#` A
,
-

Mimno, D., & Thompson, L. (2017). The strange geometry of skip-gram with negative sampling. EMNLP 2017. [link]

/ 0 = log 	?(@1$@&) 	+	4
2"#

3
B(~5(7)[log ?(−@2$@&)]

Unigram dist.

https://doi.org/10.18653/v1/d17-1308

Instead of predicting words at particular positions, look at the
co-occurrence matrix within the corpus

Smell the GloVe

25CSC401/2511 – Winter 2024

https://nlp.stanford.edu/projects/glove/
Pennington J, Socher R, Manning CD. (2014) GloVe: Global Vectors for Word Representation.

Proc EMNLP 2014:1532–43.

• GloVe (‘Global Vectors’) is an alternative method of

obtaining word embeddings.

Word 3* occurs
?*,0(= ?0,*)

times with word 30,
within some context

window (e.g., 10 words,
 a sentence, …).

https://nlp.stanford.edu/projects/glove/

Smell the GloVe

26CSC401/2511 – Winter 2024

https://nlp.stanford.edu/projects/glove/
Pennington J, Socher R, Manning CD. (2014) GloVe: Global Vectors for Word Representation.

Proc EMNLP 2014.

• Populating the co-occurrence matrix requires a complete

pass through the corpus, but needs only be done once.

• Let X$,3 = X #3 #$ = Y$,3/Y$,

https://nlp.stanford.edu/projects/glove/

Aside – smell the GloVe

27CSC401/2511 – Winter 2024

• Minimize Z = ∑
$,34-
Y

\ Y$,3 N:+
a N:# +]$ +]̂3 − logY$,3

.

where, 0! and E0@ are input and output bias terms associated
 with $! and $@, respectively, V is vocab. size

• Weighting function \ Y$,3 :

Weighting function f with alpha = ¾, xmax = 100

Aside – evaluation

28CSC401/2511 – Winter 2024

• Intrinsic evaluation: popular (though perhaps dishonest) method was
to cherry-pick a few k-nearest neighbours examples that match
expectations.

Redacted

• Extrinsic evaluation: embed resulting vectors into a variety of
tasks[1,2].

1 https://gluebenchmark.com/tasks
2 https://super.gluebenchmark.com/tasks

Linguistic regularities in vector space

29CSC401/2511 – Winter 2024

Trained on the Google news corpus with over 300 billion words.

Linguistic regularities in vector space

30CSC401/2511 – Winter 2024 (from GloVe)

Linguistic regularities in vector space

31CSC401/2511 – Winter 2024

Expression Nearest token
Paris – France + Italy Rome
Bigger – big + cold Colder
Sushi – Japan + Germany bratwurst
Cu – copper + gold Au
Windows – Microsoft + Google Android

Analogies: apple:apples :: octopus:octopodes

Hypernymy: shirt:clothing :: chair:furniture

Semantic: queen – king ≈ woman – man

Importance of in-domain data

32CSC401/2511 – Winter 2024

Wang Y, Liu S, Afzal N, et al. (2018) A Comparison of Word Embeddings for the Biomedical
Natural Language Processing. 2018;:1–21. http://arxiv.org/abs/1802.00400

http://arxiv.org/abs/1802.00400

Biases: let’s talk about gender

34CSC401/2511 – Winter 2024

Bolukbasi T, Chang K, Zou J, et al. Man is to Computer Programmer as Woman is to Homemaker?
Debiasing Word Embeddings. In: NIPS. 2016. 1–9.

However, in word2vec trained on Google News,
man:woman::programmer:homemaker.

Biases: let’s talk about gender

35CSC401/2511 – Winter 2024

Solution?

36CSC401/2511 – Winter 2024

1. Hand-pick words $b that are ’gender definitional’.

‘Neutral’ words are the complement, _	 = K	\	$b.

Solution?

37CSC401/2511 – Winter 2024

2. Project away gender subspace from gender-neutral words,

≔ # −# ⋅ a for # ∈ _, where a is the gender subspace.

Solution?

38CSC401/2511 – Winter 2024

2. Project away gender subspace from gender-neutral words,

≔ # −# ⋅ a for # ∈ _, where a is the gender subspace.

Results

39CSC401/2511 – Winter 2024

He:Blue :: She: ?
He:Doctor :: She: ?
He:Brother :: She: ?

• Generate many analogies, see which ones preserve gender

stereotypes.

Appropriate. he:brother -> she:sister

Stereotypic. He:Doctor-> She: __

Irrelevant.

NEURAL LANGUAGE MODELS

CSC401/2511 – Winter 2024 40

CSC401/2511 – Winter 2024 41

Trigram models

• CBOW: prediction of current word (E given (EFG.
• Let’s reconsider predicting (E given multiple (EFH?
• I.e., let’s think about language modelling.

2

ℎ

*

MLP

ℎ = B +#C + E
F = +%G + H

I'

ℎ'

trigram

ℎ' = B +#[K123; K124] + E
N1 = OPQRS&*(+%G1 + H)

3'2" 3'2!

Here:
• 3* is a one-hot vector,
• I' is a distribution, and
• 3* = I' = |4|

 (i.e., the size of the vocabulary)

CSC401/2511 – Winter 2024 42

Sampling from trigram models

• Since)E ∼ +((E|(EF+	(EFG), we just feed forward and
sample from the output vector.

ℎ'

3'2" 3'2!

two riders

were

I'

ℎ'5!

3'2! 3'

riders were

I'5!

approaching

CSC401/2511 – Winter 2024 43

Training trigram models

• Here’s one approach:

1. Randomly choose a batch (e.g., 10K consecutive words)
2. Propagate words through the current model
3. Obtain word likelihoods (loss)
4. Back-propagate loss
5. Gradient step to update model
6. Go to (1)

CSC401/2511 – Winter 2024 44

Training trigram models

• The typical training objective is the cross entropy (see Lecture 3)

of the corpus 0 given the model 1:
 ℱ = J(I;e) = −

cde, f- g

g

I'

ℎ'

ℎ' = B +#[K123; K124] + E
N1 = OPQRS&*(+%G1 + H)

3'2" 3'2!

Here:
• 3* is a one-hot vector, and
• I' is a distribution.

EPOR'

3'

log) -$(I) = log)J

'"U

V

-($') =#
'"U

V
log) - $'

Minimize

Maximize

log) -($') = $'
⊺ log K'

CSC401/2511 – Winter 2024 45

Training trigram models

I'

ℎ'

ℎ' = B +#[K123; K124] + E
N1 = OPQRS&*(+%G1 + H)

3'2" 3'2!

Here:
• 3* is a one-hot vector, and
• I' is a distribution.

EPOR'

3'

• Compute our gradients, using ℱ = −)*+! ," -
- and

log. +(-/) = -/⊺ log // and back-propagate.

Lℱ

LWW
= −

1

I
#

'

LO34P'

LK'

LK'

LQW

Lℱ

LWX
= −

1

I
#

'

LO34P'

LK'

LK'

Lℎ'

Lℎ'

LQX

CSC401/2511 – Winter 2024 47

Evaluating trigram (language) models

• Popular, intrinsic measure is perplexity (over unseen
sentences)
• Information theoretic measure of how well a probability

model predicts a sample – lower is better

• Given a text corpus C of n words ((G, … , (I), and a
language model, 41 = P (J (G:JFG)

Perplexityh LM =	2
2
-

i
∑+()
.

cde, j/ :+ 	:):+0))	

 = 	2
2
123, 45-(7)	

| 7 |

 = 	2L(g;	j/)

CSC401/2511 – Winter 2024 48

So what?

• J Neural language models of this type:
• Can generalize better than MLE LMs to unseen n-grams,
• Can use semantic information as in word2vec.

• L Neural language models of this type:
• Can take relatively long to train. “GPUs kill the Earth.”
• Number of parameters scale poorly with increasing

context. Large vocab and training corpus is prohibitive.

- Pℎ7	O%P	4%P	38	Pℎ7	TUV ≈ -(Pℎ7	O%P	4%P	38	Pℎ7	XYZ)

Let’s improve both of these issues…

CSC401/2511 – Winter 2024 49

Dealing with that bottleneck

• Traditional datasets for neural language modeling include:
• AP News (14M tokens, 17K types)
• HUB-4 (1M tokens, 25K types)
• Google News (6B tokens, 1M types)
• Wikipedia (3.2B tokens, 2M types)

• Datasets for medical/clinical LM include:
• EMRALD/ICES (3.5B tokens, 13M types)

• Much of the computational effort is in the initial
embedding, and in the softmax.
• Can we simplify and speed up the process?

CSC401/2511 – Winter 2024 50

Dealing with that bottleneck

• Replace rare words with <out-of-vocabulary> token.
• Subsample frequent words.

• Hierarchical softmax.
• Noise-contrastive estimation.
• Negative sampling.

[Morin & Bengio, 2005, Mikolov et al, 2011, 2013b;
Mnih & Teh 2012, Mnih & Kavukcuoglu, 2013]

e.g., <unk>

CSC401/2511 – Winter 2024 51

Hierarchical softmax with grouping

• Group words into distinct classes, 6, e.g., by frequency.
• E.g., p- is top 5% of words by frequency, p. is the next 5%, …

• Factorize q #S #$ = q #S #$, I = 	∑ q p #$ q(#S|#$, p)

5 3) 3* =
exp(4$!

⊺ 1$")

∑$+!
|7| exp(4$⊺1$")Where

 1$ is the ‘input’ vector for word 3,
 4$ is the ‘output’ vector for word 3,

‘softmax’:

[Mikolov et al, 2011, Auli et al, 2013]

exp(E01$")
∑8 exp(E1$")

×
exp(4$!

⊺ 1$")
∑$∈8 exp(4$⊺1$")

RECURRENT NEURAL NETWORKS

CSC401/2511 – Winter 2024 52

Statistical language models

53CSC401/2511 – Winter 2024

• Probability is conditioned on (window of) n previous words*

*From Lecture 2

• A necessary (but incorrect) Markov assumption: each

observation only depends on a short linear history of

length L.

• Probabilities are estimated by computing unigrams and

bigrams

- 4 = 	J

!")

'

-($!|$!()$!(#)- 4 =J

!"#

'

-($!|$!(#)

X(#i|#-: i2-) ≈ X(#i|# i2jm- : i2-)

bigram trigram

Statistical language models

54CSC401/2511 – Winter 2024

• Using higher n-gram counts (with smoothing) improves

performance*

*From Lecture 2

• Computational burden: too many n-grams (combinations)

• Infeasible RAM requirements

• RNN intuition:
• Use the same set of weight parameters for each word

(or across all time steps)

• Condition the neural network on all previous words (or

time steps)

• Memory requirement now scales with number of words

Recurrent neural networks (RNNs)

55CSC401/2511 – Winter 2024

• An RNN has feedback connections in its structure so that it

‘remembers’ previous states, when reading a sequence.

Elman network feed hidden units back

Jordan network (not shown) feed output units back

h

Y2

x

Whx

Whh

Why

ZPOO

2 Ground Truth

Backpropagate

Why

Whh

Whx

RNNs: Unrolling the !!

56CSC401/2511 – Winter 2024

• Copies of the same network can be applied (i.e., unrolled) at

each point in a time series.

• These can be applied to various tasks.

2:

ℎ:

*:

→
2!

ℎ!

*!

2"

ℎ"

*"

You lovely person

PRP ADJ NN

ℎ' = B +#[G124; C] + E
F1 = +%G1 + H

RNNs: One time step snapshot

57CSC401/2511 – Winter 2024

• Given a list of word vectors t: 	(-, (., …, (n , (nm-, … , (a

were

ℎ' = & [Q[[\\(] +Q[^^9] + O

ℎ'

_2'

*'

approaching

ℎ'2! ℎ'5!

Whx

Whh

Why

Two riders .. approaching horses...

• At a single time-step:

@ %$%) = <& %$, … , %)) = 	 pq$,&

ℎ' = 	& QX[\\(]; ^9] + O (equivalent notation)

ab' 	= 436Pc%!	(Q[`\\ + 0)

RNNs: Training

58CSC401/2511 – Winter 2024

• Given a list of word vectors t: 	(-, (., …, (n , (nm-, … , (a

were

ℎ'

_2'

*'

approaching

ℎ'2! ℎ'5!

Whx

Whh

Why

Two riders .. approaching horses...

@ %$%) = <& %$, … , %)) = 	 pq$,&

ab	 ∈ 	ℝ|a| is a probability distribution
over the vocabulary

The output fb',@	 is the word (index) prediction
of the next word (xt+1)

Evaluation
- Same cross-entropy loss function

g ' h = −	#

@"#

|a|

b',@ log ib',@

- Perplexity: 2J (lower is better)
prediction

Ground truth

Sampling from a RNN LM

59CSC401/2511 – Winter 2024

• If ℎ$ < |K|, we’ve already reduced the number of

parameters from the trigram NN.

• In ‘theory’, information is maintained in ℎ$ across arbitrary

lengths of time…

2:

ℎ'2!

*'2!

2!

ℎ'

*'

riders were

were approaching

Karpathy (2015),
The Unreasonable Effectiveness of Recurrent Neural Networks

ℎ' = B [+((G124;+(;C$] + E
_2' 	= OPQRS&*	(+(<G1 + H)

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNNs and retrograde amnesia

60CSC401/2511 – Winter 2024

• Unfortunately, catastrophic forgetting is common.

• E.g., the relevant context in “The teacher taught
transformers terribly telling tiring, tortuous theories …”
has likely been overwritten by the time ℎ-r is produced.

2:

ℎ:

*:

2!

ℎ!

*!

2!=

ℎ!=

*!=

The teacher theories

Bengio Y, Simard P, Frasconi P. (1994) Learning Long-Term Dependencies with Gradient Descent
is Difficult. IEEE Trans. Neural Networks.;5:157–66. doi:10.1109/72.279181

…

Informational bottleneck

RNNs and retrograde amnesia

61CSC401/2511 – Winter 2024

• One challenge with RNNs is that the gradient decays quickly

as one pushes it back in time. Can we store relevant

information?

Imagery and sequence from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Here, ‘A’ represents identical recurrent cell blocks.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

%!

ℎ!"# ℎ!

62CSC401/2511 – Winter 2024

• Within each recurrent unit or cell:
• Self-looping recurrence for cell state using vector C

'!"# '!

• Information flow regulating structures called gates

Sigmoid neural net layer

Pointwise multiplication

Long short-term memory (LSTM)

LSTM – core ideas

63CSC401/2511 – Winter 2024

• In each cell (i.e. recurrent unit) in an LSTM, there are four

interacting neural network layers.

The cell state is a special vector stream that
runs through the entire chain and stores the
long-term information.

LSTM – core ideas

64CSC401/2511 – Winter 2024

• In each cell (i.e. recurrent unit), there are four interacting

neural network layers.

Gates decide what information should be withheld in the cell state.
They are a sigmoid followed by a pointwise ×.
Values near 0 block information; values near 1 pass information.

LSTM step 1: decide what to forget

65CSC401/2511 – Winter 2024

• The forget gate layer compares ℎn2- and the current input (n

to decide which elements in cell state In2- to keep and which

to turn off.

• E.g., the cell state might ‘remember’ the number (sing./plural) of the
current subject, in order to predict appropriately conjugated verbs,
but decide to forget it when a new subject is mentioned at !'.
• (There’s scant evidence that such information is so explicit.)

LSTM step 2: decide what to store

66CSC401/2511 – Winter 2024

• The input gate layer has two steps.

• First, a sigmoid layer j decides which cell units to update.
• Next, a tanh layer creates new candidate values EI'.
• E.g., the) can turn on the ‘number’ units, and the tanh can push

information on the current subject.
• The) layer is important – we don’t want to push information on

units (i.e., latent dimensions) for which we have no information.

LSTM step 3: update the cell state

67CSC401/2511 – Winter 2024

• Update In2- to I'.
• First, forget what we want to forget: multiply I'(# by 6'.
• Then, create a ‘mask vector’ of information we want to store, 2'×EI'.
• Finally, write this information to the new cell state I'.

→...

d>2!

→...

×Q'

→...

...
e'×fd'

+
...

d>

I' = 6'×I'(# + 2'×EI'

LSTM step 4: output and feedback

68CSC401/2511 – Winter 2024

• Output something, yn, based on the current (n and ℎ'(#.
• Combine the output with the cell to give your ℎn.

• Normalize cell I' on [-1,1] using tanh and combine with 3'

• In some sense, I' is long-term memory and ℎ' is the short-term
memory (hence the name).

P' = g +) ℎ'2!, *' + H)

ℎ' = P'×tanh(d')

Variants of LSTMs

69CSC401/2511 – Winter 2024

• There are many variations on LSTMs.

• ‘Bidirectional LSTMs’ (and bidirectional RNNs generally),

learn. (Similar: Multi-stack RNNs)

Schuster, Mike, and Kuldip K. Paliwal. (1997) Bidirectional recurrent neural networks. Signal
Processing, IEEE Transactions on 45(11) (1997): 2673-2681.2.

Variants of LSTMs

70CSC401/2511 – Winter 2024

• Gers & Schmidhuber (2000) add ‘peepholes’ that allow

all sigmoids to read the cell state.

• We can couple the ‘forget’ and ‘input’ gates.

• Joint decisioning is more efficient.

Aside - Variants of LSTMs

71CSC401/2511 – Winter 2024

Reset gate (0: replace units in ℎ()*
 with those in ;()

Update gate

• Which of these variants is best? Do the differences matter?

• Greff, et al. (2015) do a nice comparison of popular variants,
finding that they’re all about the same

• Jozefowicz, et al. (2015) tested more than ten thousand RNN
architectures, finding some that worked better than LSTMs on
certain tasks.

• Gated Recurrent units (GRUs; Cho et al (2014)) go a step

further and also merge the cell and hidden states.

http://arxiv.org/pdf/1503.04069.pdf
http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf
https://arxiv.org/pdf/1406.1078v3.pdf

CONTEXTUAL WORD EMBEDDINGS

CSC401/2511 – Winter 2024 72

Deep contextualized representations

73CSC401/2511 – Winter 2024

Peters ME, Neumann M, Iyyer M, et al. (2018) Deep contextualized word representations.
Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/abs/1802.05365

• What does the word play mean?

http://arxiv.org/abs/1802.05365

ELMo: Embeddings from Language Models

74CSC401/2511 – Winter 2024

• Instead of a fixed embedding for each word type, ELMo

considers the entire sentence before embedding each token.

• It uses a bi-directional LSTM trained on a specific task.

• Outputs are softmax probabilities on words, as before.

2:

ℎ:

*:

2!

ℎ!

*!

The play

ℎ′: ℎ′!
LSTMs

2:

ℎ?2!

*?2!

2!

ℎ?

*?

the actors

ℎ′?2! ℎ′?

exhausted

Peters, Mathew E., et al. "Deep contextualized word representations. (2018)." arXiv preprint arXiv:1802.05365 (2018).

https://arxiv.org/pdf/1802.05365.pdf

75CSC401/2511 – Winter 2024

• Task specific weighting produces the final embedding for

word token z.

• where km is the set of all l hidden layers, hn,@
 4@

'opn is the task’s weight on the layer, and
 n'opn is a weight on the entire task

ELMo: Embeddings from Language Models
For each token, a L-layer biLM computes (2L+1) representations:

ELMo: Embeddings from Language Models

76CSC401/2511 – Winter 2024

2!

ℎ!

*!

play

ℎ′!

2:

ℎ!

*!

play

ℎ′!

ℎ′! ℎ′!

ℎ! ℎ!

1. Concatenate

2. Multiply by weight vectors

3. Sum:

*!

ℎ′! ℎ′!

ℎ! ℎ!

*!

×	O"
'@AB

×	O!
'@AB

×	O:
'@AB

qrstB+!
'@AB

[*B; qrstB
'@AB] Final

embedding:

77CSC401/2511 – Winter 2024

Peters ME, Neumann M, Iyyer M, et al. (2018) Deep contextualized word representations.
Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/abs/1802.05365

• What does the word play mean?

ELMo: Embeddings from Language Models

http://arxiv.org/abs/1802.05365

78CSC401/2511 – Winter 2024

ELMo: Embeddings from Language Models

Q&A
Textual entailment

Semantic role labelling
Coreference resolution
Name entity resolution

Sentiment analysis

• Research in neural networks is exciting, expansive, and

explorative.

• We have many hyper-parameters we can tweak

 (e.g., activation functions, number and size of layers).

• We have many architectures we can use

 (e.g., deep networks, LSTMs, attention mechanisms).

• Given the fevered hype, it’s important to retain our scientific

skepticism.

• What are our biases and expectations?

• When are neural networks the wrong choice?

• How are we actually evaluating these systems?

Neural networks research

79CSC401/2511 – Winter 2024

