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Neural models of language

CSC401/2511 — Natural Language Computing — Winter 2024

— T VT ~ - | actiire ;L
CSC401/2511 — Winter 2024 Lecture 4

1

University of Toronto



Logistics

* Assighment 1: due Feb 9, 2024
* Assighment 2: release Feb 10, 2024
® Lectures:

* Reading week break: Feb 19-23 (no lectures, OHs)
® Final exam: planned in-person
® Lecture feedback: E

®* Anonymous
* Please share any thoughts/suggestions
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Lecture plan: Neural networks

Lecture 4 (L4): Neural Language Models (~2 sessions)
° Introduction
* Word-level representations (word2vec, CBOW)
* Neural language models
* Recurrent neural networks (RNN, LSTM)
* Contextual word embeddings

® Lecture 5 (L5): Machine Translation (MT) (~3 sessions)
* Sequence-to-sequence (seg2seq) and attention models
* Transformers

® Lecture 6 (L6): Transformer & Variants (~1 session)
* Transformers deep-dive.

With material from Phil Blunsom, Piotr Mirowski, Adam Kalai, and James Zou &
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Historical Background

A

Research and development activities
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* Artificial neural networks (ANNs)

°* Not new. Few iterations, peaks and troughs with

different monikers

1. Saqur, Raeid, et al. "Hype, Media Frenzy, and Mass Societal Hysteria: Perspectives on Human-imitative Intelligence.”. ICVSS 2023
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Artificial neural networks

* Artificial neural networks (ANNs) were (kind of) inspired
from neurobiology (Widrow and Hoff, 1960).
® Each unit has many inputs (dendrites), one output (axon).
* The nucleus fires (sends an electric signal along the axon)
given input from other neurons.
* ‘Learning’ occurs at the synapses that connect neurons,
either by amplifying or attenuating signals.

Dendrites

’4’7.1
UNIVERSITY OF
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Perceptron: an artificial neuron

® Each neuron calculates a weighted sum of its inputs and
compares this to a threshold, 7. If the sum exceeds the
threshold, the neuron fires.
* Inputs a; are activations from adjacent neurons, each
weighted by a parameter w;.

fx>1,5:=1
Else, S :=0

v

Ay
McCullogh-Pitts model b
&
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Perceptron output

* Perceptron output is determined by activation functions,
g (), which can be non-linear functions of weighted input.

® Popular activation functions include tanh and the sigmoid:

1
gx) =ox) = T—x

* The sigmoid’s derivative is the easily computable 6’ = o - (1 — a)

sigmoid

Output

- =y = cosh(x)
vy = tanh(x)

From Wikipedia

Input Input .
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Rectified Linear Units (RelLUs)

® Since 2011, the RelLU S = g(x) = max(0, x) has become
more popular.

* More biologically plausible, sparse activation, limited (vanishing)
gradient problems, efficient computation.

Nonlinearites

* A smooth approximation is . otols
the softplus log(1 + e*),
which has a simple

-
derivative 1/(1 + e™%) o -
5
@)
* Why do we care about the -~ _
derivatives? T T T om Wikipeds

Iﬁput

X Glorot, A Bordes, Y Bengio (2011). Deep sparse rectifier neural networks. AISTATS.
8 s
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Perceptron learning

* Weights are adjusted in proportion to the error (i.e., the
difference between the desired, v, and the actual output, 5.
* The derivative g’ allows us to assign blame proportionally.

* Given a small learning rate, « (e.g., 0.05), we can repeatedly
adjust each of the weight parameters by

Assumes

R
. e— ) . E .o Y ena.l1 mean-square
W] W] + Errl g (xl) a] [l] } error objective
=1

where Err; = (y; — 5;), among R training examples.

et
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Threshold perceptra and XOR

* Some relatively simple logical functions cannot be learned by
threshold perceptra (since they are not linearly separable).

:“"' UNIVERSITY OF
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Artificial neural networks

* Complex functions can be represented by layers of
perceptron (multi-layer perceptron, MLPs).

® Inputs are passed to the

* Activations are propagated
through hidden layers
to the output layer.

°* MLPs are quite robust to noise,
MLP and are trained specifically to
reduce error.

et

‘7-77 UNIVERSITY OF
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output layer

‘hidden’ representations are learned here

Can we find hidden patterns in words?

12

%
&
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Words

e Given a corpus with D (e.g., = 100K) unique words, the

classical approach is to uniquely assign each word with an
index in D-dimensional vectors (‘one-hot’ representation).

WP, o o o . o PEMo . o |
D

e Classic word-feature representation assigns features

to each index in a much denser vector.
* E.g., psychology based features ‘cheerful’, ‘emotional-tone’.

_EIBM_?;

 Can we learn a dense representation? What will it give us?

o
- UNIVERSITY OF
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https://docs.receptiviti.com/frameworks/liwc

Learning word semantics

"You shall know a word by the company it keeps."
— J.R. Firth (1957)

P(w; = lugubrious|we_q = feeling, wy_, = been, ...)

[ l—l lﬁ |

been feeling  lugubrious all day

felt a lugubrious sadness in

Here, we're predicting the center word given the context.
This is called the ‘continuous bag of words’ (CBOW) modelX.

1 Mikolov T, Corrado G, Chen K, et al. Efficient Estimation of Word Representations in Vector Space. Proc (ICLR 2013) 2013;:1-12.
https://code.google.com/p/word2vec/ &

UNIVERSITY OF
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https://code.google.com/p/word2vec/

Continuous bag of words (1 word context)

Note: we have two
vector representations of

each word:

% % v, = X W (W row of W,)
8 o W, =Wy (wt col of W)
[0,0,0,...1, ..., 0] JURL MG 0]
feeling lugubrious
exp(Vy, Viw,)
( d ‘softmax’: P(W, |lw;) = WOVV:
feeling  lugubrious all Where w=1€XP(Nyvw,)

v,, is the ‘input’ vector for word w,

I, is the ‘output’ vector for word w,
&

- UNIVERSITY OF
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a lugubrious  sadness



Continuous bag of words (¢ words context)

* |f we want to use more context, C, '
we need to change the network —
architecture somewhat. N

* Each input word will produce one " L
of C embeddings s [

 We just need to add an
intermediate layer, usually this

just averages the embeddings.

( Y

been feeling lugubrious all

y abdyany
v
l

felt a lugubrious sadness .

&
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Skip-grams

* Skip-grams invert the task — we predict
context words given the current word.

* According to Mikolov,
Skip-gram: works well with small amounts
of training data, represents rare words.

CBOW: several times faster to train, slightly
better accuracy for frequent words

Mikolov T, Corrado G, Chen K, et al. Efficient Estimation of Word
Representations in Vector Space. Proc (ICLR 2013) 2013;:1-12.
https://arxiv.org/pdf/1301.3781.pdf
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https://arxiv.org/pdf/1301.3781.pdf

Actually doing the learning

* Given H-dimensional embeddings, and V word types, our
parameters, 0, are:
— Ua -

Vaardvark

v
__ | "Aymurgy c R2VXH

0 = v,

Vaardvark

L szmurgy |

o
UNIVERSITY OF
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Actually doing the learning

We have many options. Gradient descent is popular.
Given T tokens of training data, optimize objective:

1(9)—TZ > logP(wijlw)

—c<j<c,j*0

And we want to update vectors VWH]. then v, within 6
H(new) - H(Old) — ](9)

So, we’ll need to take the of the (log of the) softmax

function: eXp(VMT/O D)

Z\vavzl EXp(VMEUWi)

Where v, is the ‘input’ vector for word w,
and I, is the ‘output’ vector for word w,

P(welw;) =

’4‘1';
UNIVERSITY OF
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Actually doing the learning

We need the derivative of the (log of the) softmax function:

l P( | ) 5 l eXp(VV\-EH_ th)
og P(wyyilwe) = 0
Sy, 5 t+j1e Sy, Syw w=1exp(Vivy,)
0 T v T
m [log exp (thﬂ-th) — log zwzlexp(vwth)]
RN wooo o
= Vv, —! St logzw_lexp(VWth) |
- |
Sf _ 8f &z
______ [fpip_ly_ttuicham rule 5o, 52 6vy,
I w |
: VWH_] _:z p(wlw)V, :
| w=1 I
More details: http://arxiv.org/pdf/1411.2738.pdf &

UNIVERSITY OF
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http://arxiv.org/pdf/1411.2738.pdf

Using word representations

Without a latent space,
lugubrious = [0,0,0, ...,0,1,0, ...,0], &
sad = 10,0,0,...,0,0,1, ...,0] so
Similarity = cos(x,y) = 0.0

EMBEDDING

D = 100K

H =300

In latent space,
lugubrious = [0.8,0.69,0.4, ...,0.05]4, & e dar-
sad = [0.9,0.7,0.43, ...,0.05], so uew

cos(u,v) =

Similarity = cos(x,y) = 0.9 [lul| ][]

UNIVERSITY OF

o
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Skip-grams with negative sampling

* The default process is inefficient.
* For one — what a waste of time!
We don’t want to update H XD weights!
* For two — we want to avoid confusion!
‘Hallucinated’ (negative) contexts should be

minimized.
Ehl

e For the observed (true) pair (/lugubrious, sadness),
only the output neuron for sadness should be 1, and
all D — 1 others should be 0.

[ T[] ]

[ ]

l

J

L L ]

1

|

e Mathematical Intuition:

* P(w,|w.) =

LI T T TTT Tl

exp(v!V,)
ZD —1 EXP(UWVC) } Computationally

infeasible af“;d‘

UNIVERSITY OF
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Skip-grams with negative sampling

[ 1]

 We want to maximize the association of
observed (positive) contexts:
lugubrious sad
lugubrious feeling |
lugubrious tired . 0 Vis

[ 111

[

| |

|

TTTT]
[T

* \We want to minimize the association of
‘hallucinated’ contexts:
lugubrious happy
lugubrious roof
lugubrious truth

[ | T

[ 111

[

[

&
-
w
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Skip-grams with negative sampling

* Choose a small number k of ‘negative’ words, and just
update the weights for the ‘positive’ word plus the k

‘negative’ words.

e 5 <k < 20canwork in practice for fewer data.
e ForD = 100K, we only update 0.006%

of the weights in the output layer. Xo
k X4 [lu

J©) =log o(vive) + ) By_palloga(—viv,)] »Ha—

i=1 Unigram dist. hy,

e Mimno and Thompson (2017) choose the top

k words by modified unigram probability:

3
C(Wei1)t

Dw C(W)%

Mimno, D., & Thompson, L. (2017). The strange geometry of skip-gram with negative sampling. EMNLP 20&7. [link]

P*(Wt+1) =

UNIVERSITY OF

CSC401/2511 — Winter 2024 24 W TORONTO

[ T[]

l

l

| [T T 1T T b PPl T ]

I

l


https://doi.org/10.18653/v1/d17-1308

Smell the GloVe

* GloVe (‘Global Vectors’) is an alternative method of
obtaining word embeddings.

Instead of predicting words at particular positions, look at the
co-occurrence matrix within the corpus

I like enjoy deep learning NLP flying .
I 0 2 1 0 0 0 0 0 /
like 2 0 0 1 0 1 0 0
enjoy 1 0 0 0 0 0 1 0 Word w; occurs
y_ dep |0 1 0 0 1 0 0 0 - X (= X
N learning 0 O 0 1 0 0 0 1 times with word wy,
WL 0 1 0 0 0 0 0 1 within some context
window (e.g., 10 words,
flying | 001 0 0 0 0 1 a sentence, ...).
0 O 0 0 1 1 1 0 |

Pennington J, Socher R, Manning CD. (2014) GloVe: Global Vectors for Word Representation.
Proc EMINLP 2014:1532—43. https://nlp.stanford.edu/projects/glove/ & 4

CSC401/2511 — Winter 2024 25 W TORONTO



https://nlp.stanford.edu/projects/glove/

Smell the GloVe

* Populating the co-occurrence matrix requires a complete
pass through the corpus, but needs only be done once.
* Let P ; = P(wj|lw;) = X, ;/X,,

Table 1: Co-occurrence probabilities for target words ice and steam with selected context words from a 6
billion token corpus. Only in the ratio does noise from non-discriminative words like water and fashion
cancel out, so that large values (much greater than 1) correlate well with properties specific to ice, and
small values (much less than 1) correlate well with properties specific of steam.

Probability and Ratio | k = solid k = gas k = water  k = fashion
P(klice) 1.9%x107* 6.6x107° 3.0x107° 1.7x107°
P(k|steam) 22x107° 7.8x107% 22x107% 1.8x 107>
P(klice)/P(k|steam) 8.9 8.5 x 1072 1.36 0.96

Pennington J, Socher R, Manning CD. (2014) GloVe: Global Vectors for Word Representation.
Proc EMNLP 2014. https://nlp.stanford.edu/projects/glove/ &
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https://nlp.stanford.edu/projects/glove/

Aside — smell the GloVe

* Minimize ] = Y/ i j= 1f(Xi,j) (chiij +b; + B; B logXi'f)z

where, b; and bj are input and output bias terms associated
with w; and w;, respectively, V is vocab. size

* Weighting function f(Xl-J-):

(%) Xma)®  if X < Xpax 1. f (O).= O: If fis Viev.ved as a continuous
f (x) = 1 otherwise function, it should vanish as x — O fast
) enough that the lim,_,q f(x) log® x is finite.

1ot 2. f(x) should be non-decreasing so that rare
08 | co-occurrences are not overweighted.

f(Xij) . f(x) should be relatively small for large val-
ues of x, so that frequent co-occurrences are

not overweighted.

04 -

)

02

O'O“.\“‘o“‘\.‘.\‘.‘lXij

xmax

Weighting function f with alpha =%, x_._ =100 &

max
UNIVERSITY OF
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Aside — evaluation

+ Intrinsic evaluation: popular

ethod was

to cherry-pick a few k-nearest neighbours examples that match

expectations.

. frog

frogs

toad

litoria
leptodactylidae
rana

lizard
eleutherodactylus

Nooh~wnd O

3. litoria

e Extrinsic evaluation: embed resulting vectors into a variety of

1,2
tasks!t2, *1 SuperGLUE *3 GLUE

Leaderboard Version: 2.0

7. eleutherodactylus

Rank Name Model

URL Score BoolQ CB

COPA MultiRC ReCoRD

RTE WIiC WSC AX-b AX-g

‘ 1 Liam Fedus SS-MoE
‘ 2 Microsoft Alexander v-team  Turing NLR v5

| 3 ERNIE Team - Baidu ERNIE 3.0

1 https://gluebenchmark.com/tasks
2 https://super.gluebenchmark.com/tasks
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91.0 92.3 96.9/98.0

90.9 92.0 95.9/97.6

90.6 91.0 98.6/99.2

99.2 89.2/65.2 95.0/94.2 935 774 96,6 723 96.1/94.1

98.2 88.4/63.0 96.4/95.9 94.1 771 97.3 67.8 93.3/95.5

97.4 88.6/63.2 94.7/94.2 92.6 774 97.3 686 92.7/94.7

S5

-
e
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Linguistic regularities in vector

space

) 1 1 ] ' I !

Chinac
Beijing
151 Russia« -
Japanx
1| Moscow :
Turkey« Ankara TOkyo
0.5 o —4
Polandk
0 Germxany( N
France Warsaw
» Berlin
05 Italy« Paris -
Greecer xno;:ethens
1 | Spain .
X Madrid
-1.5 | Portugal Lishon
_2 1 1 1 1 L L 1
-2 -15 -1 05 0 0.5 1 15

Trained on the Google news corpus with over 300 billion words.

CSC401/2511 — Winter 2024 29

@

UNIVERSITY OF

%/ TORONTO



Linguistic regularities in vector space

05 | I I I I | | | |
_ _ — — slowest
0.4+ e .
_ “slower _ _ _ _ — — —-shortest
P L \ees
03k Ay ~‘shorter |
' slow y
7~
7~
short~
0.2 ]
0.1} ]
0r J/stonger” T T T — - = - — strongest }
7
/ _~Touder ~ T T T = — — — - _ _ _ .
strong < P loudest
—0.1 — |0Ud}4_/ _______ .
. ‘f-’le"ir e T T T T T — clearest
oo T T e s softest
-0.2 AN -
- clear =~ - darker — ~ - - - - _ _ _ _ dark
soft ~ - arkest
dark «
-0.3 | | L I 1 1 | ! !
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 05 4 06
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Linguistic regularities in vector space

Paris — France + ltaly Rome

Bigger — big + cold Colder
Sushi —Japan + Germany bratwurst
Cu — copper + gold Au

Windows — Microsoft + Google Android

Analogies: apple:apples :: octopus:octopodes
Hypernymy: shirt:clothing :: chair:furniture
Semantic: gueen — king = woman — man

&
3 UNIVERSITY OF
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Importance of in-domain data

~ @ogaine
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: rimaces . .
y\acule nosmia [ . docaine
‘leeglessnesioothache . maﬁgf?dﬁknﬁﬁ.lttering *nedrorf
@199 Msm easickness
eracusis ac gm
‘ieafnggp ‘Xc’phthalknl%swﬂw Ba%cié\é%ﬁwme
tension onvulsion : 8 .
@lonus WpessiaR le hafos asm 0hOtOPSI%nastc:u)ég'stalrasitemia. gluca.gen @'tro9
‘rergglr(ness ; ‘netatarsag;}ta‘qrald;a P P ephonia" e andemia “Ct'vafooxitin
‘V stagmus 9 ‘1emicrania ‘yswg Iwbstomy%hed
g @!cohol . annitol @
‘C‘a&ﬁﬁn R accinia @
euralgia , ‘ardi,my*ba%%pgl&gg @vandia @ropo
iplegia ® ° atatorf! 11¢IS @@REntias
¢ 2 .g}/spoproteinemia
. @iardi
S @9oranulg

lague
@29 @chistosomia

@ngina  gomatose @emophilia .
infertili ; occidioidomycosis ermatitis @rythromyc
@ feibixvulation & o Sriasic ..
orticollis ycosis gsetonuria
‘atarar;tﬂ £, ¢ .‘1rterlosclerosi‘tarvation‘thanol
@iieha @oiter _ gachexia glermatomyositis _ _ il
GPIW@Mential e @velosuppggdrHocytosis eenicillin
‘13 nutrition . emoglobinop ypﬂﬁ}ﬂkﬂma
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jron -
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ahrolithiasis

Wang, Liu S, Afzal N, et al. (2018) A Comparison of Word Embeddings for the Biomedical
Natural Language Processing. 2018;:1-21. http://arxiv.org/abs/1802.00400
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Biases: let’s talk about gender

tote reading records clip commit game

browsing  sites S?konds slow arrival tactical
crafts credifs

: drop reel fi
simastar tanning usber s p firepower
ultrasound usy i d hoped command
\ : housing C3US€Cill gerimmage
modeling beautiful jjs  self gel looks seg| builder_ drafted

biased

However, in word2vec trained on Google News,

pa an
man:woman::programmer:homemaker.
SasSy vases irmly iac burly

homemaker dancer |_ . folks friend buddies

WltCh W|tCheS dads bO)% cousin Chap boyhOOd he
actresses gals fiance wives lad
e sons son
sisters grandmother wife dadc{y nephew
ladies flancee
daughters : okay

Bolukbasi T, Chang K, Zou J, et al. Man is to Computer Programmer as Woman is to Homemaker?
Debiasing Word Embeddings. In: NIPS. 2016. 1-9. &
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Biases: let’s talk about gender

Man is to Computer Programmer as Woman is to
Homemaker? Debiasing Word Embeddings

Tolga Bolukbasi', Kai-Wei Chang?, James Zou’, Venkatesh Saligrama'-?, Adam Kalai’
'Boston University, 8 Saint Mary’s Street, Boston, MA
2Microsoft Research New England, 1 Memorial Drive, Cambridge, MA
tolgab@bu.edu, kw @kwchang.net, jamesyzou @ gmail.com, srv@bu.edu, adam.kalai @ microsoft.com

Abstract

The blind application of machine learning runs the risk of amplifying biases present
in data. Such a danger is facing us with word embedding, a popular framework to
represent text data as vectors which has been used in many machine learning and

Extreme she Extreme he .
Gender stereotype she-he analogies

1. homemaker 1. maestro g tered nurse.physicis housewife-shonk
S 5 s sewing-carpentry registered nurse-physician ousewife-shopkeeper

’ s - SK1Ipp nurse-surgeon interior designer-architect softball-baseball
3. receptionist 3. protege blond-burly feminism-conservatism cosmetics-pharmaceuticals
4. llbr.arl.an 4. ph110§0pher giggle-chuckle  vocalist-guitarist petite-lanky
5. socialite 5. captain sassy-snappy diva-superstar charming-affable
6. hairdresser 6. architect volleyball-football cupcakes-pizzas lovely-brilliant
7. nanny 7. financier . .
8. bookkeeper 8. warrior Gender appropriate she-he analogies
9. stylist 0 Broadeasias qugen-kmg . 51ste.r-br0ther mother-father

i waitress-waiter ~ ovarian cancer-prostate cancer convent-monastery

10. housekeeper 10. magician

UNIVERSITY OF
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Solution?

1. Hand-pick words S, that are ‘gender definitional’.
‘Neutral’ words are the complement, N =V \ S,.

N blue

rogrammer
Prog smart
he N pink
king . cute

", homemaker

she N
queen ™
218 gender-definitional words ™,

Linear SVM

&
3 UNIVERSITY OF
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Solution?

2. Project away gender subspace from gender-neutral words,
w:=w—w - B forw € N, where B is the gender subspace.

blue
programmer .
he B pink
king cute
homemaker
B,
she
qgueen

S5
UNIVERSITY OF
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Solution?

2. Project away gender subspace from gender-neutral words,
w:=w—w - B forw € N, where B is the gender subspace.

“hard debiasing”
ink
blub
cute
o B smart
homemaker
king 0 er 299 dimensions
B
she y
queen

S5
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Results

* Generate many analogies, see which ones preserve gender

stereotypes. He:Blue
He:Doctor
He:Brother
* -0 'beforev Y ' T Y 0 ¢
25 {| = hard-debiased ‘.»'
# stereotypic | o
analogies | |

-9 -9 " . .
0 20 40 60 80 100 120 140 160

# analogies generated

. She: ? Irrelevant.
:: She: ?

.t She: ? Appropriate. he:brother -> she:sister

Stereotypic. He:Doctor-> She:

80 - -

e - e before
70| hard-debiased
w s

# appropriate |
analogies

30}

20+

10 / 5

0 20 40 60 80 100 120 140 16

# analogies generated

CSC401/2511 — Winter 2024
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NEURAL LANGUAGE MODELS
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Trigram models

* CBOW: prediction of current word w; given w;_;.
* Let’s reconsider predicting w; given multiple w;_;?
* |.e., let’s think about language modelling.

trigram '

Here:

* w; is aone-hot vector,

* p,isadistribution, and

* |wil = lp| = V|

(i.e., the size of the vocabulary)

MLP

h=gWx+c) hy = gWi[we_2;we_q] +¢)
y=Woh+b p: = softmax(Woh; + b)

UNIVERSITY OF
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Sampling from trigram models

* Since p; ~ P(W¢|we_, we_1), we just feed forward and
sample from the output vector.

were approaching

Pt+1

rldU ride
UNIVERSITY OF
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Training trigram models

* Here’s one approach:

Randomly choose a batch (e.g., 10K consecutive words)
Propagate words through the current model

Obtain word likelihoods (loss)

Back-propagate loss

Gradient step to update model

Go to (1)

S

e

‘T.‘,,‘ UNIVERSITY OF
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Training trigram models

* The typical training objective is the cross entropy (see Lecture 3)
of the corpus C given the model M:

F=HC;M) = __logy Py (C)
log, P(w) =

ICll
(et

hy = gW;[we_g; wy_q] + ) Here:
P = softmax(Woh, + b) * w; is a one-hot vector, and
* p;isadistribution.

Minimize

Maximize T T
l0g2 Pu(C) =logz [ | Pwe) = ) logz P(we)
t=0 B

&
3 UNIVERSITY OF
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Training trigram models

: : log, Py (C
°* Compute our gradients, using F = gZIICII\I/I( ) and
log, P(w;) = w/, log p; and back-propagate.
oF 1 o0costy Op;
oWy ICI| &<t 6pe W
oF 1 ocosty Opy Ohy
oW ICI| &= 6pe 6he SW

hy = g(Wi[we—z; we_1] +¢)  Here:
pt = softmax(Woh, +b)  + w;isaone-hot vector, and
* p;is adistribution.

UNIVERSITY OF
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Evaluating trigram (language) models

® Popular, intrinsic measure is perplexity (over unseen
sentences)

* Information theoretic measure of how well a probability
model predicts a sample — lower is better

* Given a text corpus C of n words (wq, ..., wy), and a
language model, LM = P(w;|wy.;_1)

1 n . .
Perplexity-(LM) = 2~ Li=1 1082 LM(Wi| wy:i—1)
_logz Py m(C)
= 2 [ICl|
_ H(C; LM)

e

‘7-'«' UNIVERSITY OF
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So what?

* © Neural language models of this type:
® Can generalize better than MLE LMs to unseen n-grams,
® Can use semantic information as in word2vec.

P(the cat sat on the mat) =~ P(the cat sat on the rug)

* ® Neural language models of this type:
* Can take relatively long to train. “GPUs kill the Earth.”
* Number of parameters scale poorly with increasing
context. Large vocab and training corpus is prohibitive.

Let’s improve both of these issues...

ot

UNIVERSITY OF
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Dealing with that bottleneck

* Traditional datasets for neural language modeling include:
°* AP News (14M tokens, 17K types)
°* HUB-4 (1M tokens, 25K types)
* Google News (6B tokens, 1M types)
* Wikipedia (3.2B tokens, 2M types)

* Datasets for medical/clinical LM include:
°* EMRALDY/ICES (3.5B tokens, 13M types)

* Much of the computational effort is in the initial
embedding, and in the softmax.

* Can we simplify and speed up the process?
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Dealing with that bottleneck

* Replace rare words with <out-of-vocabulary> token.
* Subsample frequent words. & <"

* Hierarchical softmax. -
®* Noise-contrastive estimation.
* Negative sampling.

[Morin & Bengio, 2005, Mikolov et al, 2011, 2013b;
Mnih & Teh 2012, Mnih & Kavukcuoglu, 2013]

et
UNIVERSITY OF
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Hierarchical softmax with grouping

* Group words into distinct classes, ¢, e.g., by frequency.
* E.g., ¢, is top 5% of words by frequency, ¢, is the next 5%, ...

* Factorize p(w, [w;) = p(W,lw;, €) = X p(clw)p(w,|w;, )

exp(¢;vy,) exp(Vy, ;)
ZC eXp(CvWi) ZWEC exp(VV\EvWi)

exp(V,) v,,.)
‘softmax’: P(w, |w;) = 7 uds MTZL
- Sl exp(Vv,)
v, is the ‘input’ vector for word w,
1, is the ‘output’ vector for word w,

[Mikolov et al, 2011, Auli et al, 2013]

S5
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RECURRENT NEURAL NETWORKS
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Statistical language models

* Probability is conditioned on (window of) n previous words”

* A necessary (but incorrect) Markov assumption: each
observation only depends on a short linear history of
length L.

P(Wn|wi.(n-1)) = P(Wn|Wm-r+1):(n-1))

* Probabilities are estimated by computing unigrams and
bigrams

t
t
P(s) = HP(Wi|Wi_1) P(s) = DP(Wil‘/Vi_ZWi_l)

et

*From Lecture 2
W UNIVERSITY OF
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Statistical language models

* Using higher n-gram counts (with smoothing) improves
performance®

* Computational burden: too many n-grams (combinations)
* Infeasible RAM requirements

®* RNN intuition:
* Use the same set of weight parameters for each word
(or across all time steps)
* Condition the neural network on all previous words (or
time steps)
°* Memory requirement now scales with number of words

*From Lecture 2 &
UNIVERSITY OF
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Recurrent neural networks (RNNs)

°* An RNN has feedback connections in its structure so that it
‘remembers’ previous states, when reading a sequence.

Ground Truth

Backpropagate

W Elman network feed hidden units back
hx

Jordan network (not shown) feed output units back

UNIVERSITY OF

&
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RNNSs: Unrolling the h;

* Copies of the same network can be applied (i.e., unrolled) at
each point in a time series.
* These can be applied to various tasks.

PRP ADJ NN

You lovely person

hy = g(Wi[hy_1; x] + )
Yt = WOht + b % UNIVERSITY OF
%/ TORONTO
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RNNs: One time step snapshot

Two riders .. approaching .. horses.

* Given a list of word vectors X: x1, X5, ..., X, X1y o) XT

approaching

were

P(x¢s1 = vi|xe, oo %1) = 75

CSC401/2511 — Winter 2024

* At a single time-step:

he = g([Whpheq + X¢| + ¢)
g(WI [ht—l; xt] + C) (equivalent notation)

h, + b)

S
~
I

= softmax (

import numpy as np

def softmax(x):

f_x = np.exp(x) / np.sum(np.exp(x))
return f_x

class RNN:
# ...
def step(self, x, is_normalized=False):
# update the hidden state
self.h = np.tanh(np.dot(self.W_hh, self.h) + np.dot(self.w_xh, x))

# compute the output vector
y = np.dot(self.wW_hy, self.h)

return softmax(y) if is_normalized else y

&
3 UNIVERSITY OF
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RNNs: Training

Two riders .. approaching .. horses.
* Given a list of word vectors X: x1, X5, ..., X, X1y o) XT

approaching

y € RI"lis a probability distribution
over the vocabulary

The output y; ; is the word (index) prediction
of the next word (X,4)

Evaluation

- Same cross-entropy loss function
V] Ground truth

JO() = zyt] log yt

were prediction
- Perplexity: 2 (Iower is better)

\;'f'a.\"

P(xt+1 = Vj|X¢, e X1) = Vi
UNIVERSITY OF
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Sampling from a RNN LM

° If |h;] < |V|, we've already reduced the number of
parameters from the trigram NN.
* In ‘theory’, information is maintained in h; across arbitrary
lengths of time...
were

.

approaching

-

(—

riders were
h, = Wy Ryp_q: x| + ¢ Karpathy (2015),
4 g([ el t] ) The Unreasonable Effectiveness of Recurrent Neural Networks
= softmax (//,,, hy + b) &

o UNIVERSITY OF
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http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNNs and retrograde amnesia

* Unfortunately, catastrophic forgetting is common.
* E.g., the relevant context in “The teacher taught
transformers terribly telling tiring, tortuous theories ...”
has likely been overwritten by the time h,5 is produced.

Informational bottleneck

& &

The teacher theories

Bengio Y, Simard P, Frasconi P. (1994) Learning Long-Term Dependencies with Gradient Descent
is Difficult. IEEE Trans. Neural Networks.;5:157-66. doi:10.1109/72.279181 e I
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RNNs and retrograde amnesia

* One challenge with RNNs is that the gradient decays quickly
as one pushes it back in time. Can we store relevant
information?

t t t
e N N N
—> —>
. O
A A
} Neural Network Pointwise
j ) ) j ) Layer Operation
Here, ‘A’ represents identical recurrent cell blocks. Nactor
Transfer Concatenate Copy

Imagery and sequence from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

R
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long short-term memory (LSTM)

* Within each recurrent unit or cell:
* Self-looping recurrence for cell state using vector C
* Information flow regulating structures called gates

Q —®— Pointwise multiplication
> C,

@_» _’Q Sigmoid neural net layer

S5
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LSTM — core ideas

* In each cell (i.e. recurrent unit) in an LSTM, there are four
interacting neural network layers.

&

®

4 )
r~ O
A Neural Network Pointwise
Layer Operation
-
N\ J

Vector

Transfer Concatenate Copy

CSC401/2511 — Winter 2024

The cell state is a special vector stream that
runs through the entire chain and stores the
long-term information.

et
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LSTM — core ideas

* In each cell (i.e. recurrent unit), there are four interacting
neural network layers.

& O, <ET9

~
— —CO= @ > —> O

AN J

A e A Neural Network Pointwise
= Layer Operation
—> > ->

Vector
_®_ Transfer Concatenate Copy

Gates decide what information should be withheld in the cell state.
They are a sigmoid followed by a pointwise X.
Values near 0 block information; values near 1 pass information.

UNIVERSITY OF
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LSTM step 1: decide what to forget

* The forget gate layer compares h;_; and the current input x;
to decide which elements in cell state C;_; to keep and which

to turn off.
* E.g., the cell state might ‘remember’ the number (sing./plural) of the
current subject, in order to predict appropriately conjugated verbs,

but decide to forget it when a new subject is mentioned at x;.
* (There’s scant evidence that such information is so explicit.)

o previous cell state
° forget gate output
© >
»
fe ]r‘ ?
© l >
Tt

s = U(Wf‘[ht—laf’?t] T bf)
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LSTM step 2: decide what to store

* The input gate layer has two steps.
* First, a sigmoid layer o decides which cell units to update.
°* Next, a layer creates new candidate values C;.
* E.g., the o can turn on the ‘number’ units, and the tanh can push
information on the current subject.
* The o layer is important — we don’t want to push information on
units (i.e., latent dimensions) for which we have no information.

, iy = 0 (Wi-[hi—1,2¢] + b;)
Ci = tanh(We - [he—1,2¢] + be)

e
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LSTM step 3: update the cell state

* Update C;_ to C;.
* First, forget what we want to forget: multiply C¢_; by f;.
* Then, create a ‘mask vector’ of information we want to store, i XCj.
* Finally, write this information to the new cell state C;.

OO0 - O0-000-0-000- -0~ 000 0O
Ct—1 Xft O0.0 Ct

i, xCy
Ci_1 C

it >
(@

@
\ 4

—»x
=P

Cr = feXCiq + i XCy

qus
UNIVERSITY OF
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LSTM step 4: output and feedback

® Output something, o;, based on the current x; and h;_;.

®* Combine the output with the cell to give your h;.
* Normalize cell C; on [-1,1] using tanh and combine with o

* In some sense, C; is long-term memory and h; is the short-term
memory (hence the name).

he &\
Ctanh>
o1 X or = o(W,lhe—q, x¢] + by)
h 5 &
t—1 ht == Otxtanh(Ct)

et
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Variants of LSTMs

®* There are many variations on LSTMs.
* ‘Bidirectional LSTMs’ (and bidirectional RNNs generally),
learn. (Similar: Multi-stack RNNSs)

005 C
OO0 |[BEEEE

(@) (b)

Structure overview

(a) unidirectional RNN
(b) bidirectional RNN

Schuster, Mike, and Kuldip K. Paliwal. (1997) Bidirectional recurrent neural networks. Signal
Processing, IEEE Transactions on 45(11) (1997): 2673-2681.2.

e!‘;.s
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Variants of LSTMs

* Gers & Schmidhuber (2000) add ‘peepholes’ that allow
all sigmoids to read the cell state.

ft =0 (Wg-[Cyor,he—1,2¢] + by)
it = 0 (Wi [Ci—1,he—1,2¢] + b;)
-

or = 0 (Wo-[Ct, hi—1, 2] + bo)

* We can couple the ‘forget’ and ‘input’ gates.
* Joint decisioning is more efficient.

P@-’ Ct:ft*ct—1+(1_ft)*ét

e
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Aside - Variants of LSTMs

* Gated Recurrent units (GRUs; Cho et a/ (2014)) go a step
further and also merge the cell and hidden states.

zs = o (W, - [ht—1,x¢]) Update gate

re = o (W, - [hi—1,x¢]) Reset gate (0: replace units in hy_q
Fos = tanh (W - [ry % hy_1, 74)) with those in x;)

ht:(l—zt)*ht_l —|—Zt>|<ibt

 Which of these variants is best? Do the differences matter?
 Greff, et al. (2015) do a nice comparison of popular variants,
finding that they’re all about the same

e Jozefowicz, et al. (2015) tested more than ten thousand RNN
architectures, finding some that worked better than LSTMs on
certain tasks.

e
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http://arxiv.org/pdf/1503.04069.pdf
http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf
https://arxiv.org/pdf/1406.1078v3.pdf

CONTEXTUAL WORD EMBEDDINGS

&
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Deep contextualized representations

* What does the word play mean?

AllenNLP

Peters ME, Neumann M, lyyer M, et al. (2018) Deep contextualized word representations.
Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/gps/1802.05365

UNIVERSITY OF
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http://arxiv.org/abs/1802.05365

ELMo: Embeddings from Language Models

* Instead of a fixed embedding for each word type, ELMo

considers the entire sentence before embedding each token.
® |t uses a bi-directional LSTM trained on a specific task.

® QOutputs are softmax probabilities on words, as before.

The play exhausted the actors

Peters, Mathew E., et al. "Deep contextualized word representations. (2018)." arXiv preprint arXiv:1802.05365 (2018).
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&
CSC401/2511 — Winter 2024 74 ¥ TORONTO


https://arxiv.org/pdf/1802.05365.pdf

ELMo: Embeddings from Language Models

For each token, a L-layer biLM computes (2L+1) representations:

_)
Ry = {ka7 h%éw,zLM |.7 =1,. L}
{hgf |j=0,...,L},

* Task specific weighting produces the final embedding for
word token k.

ELMOZaSk _ E(Rk @task: task: Z taskhLM

* where Rk is the set of all L hidden layers, hy, ;

s! task

J

yE4SK is a weight on the entire task &

CSC401/2511 — Winter 2024 75 W TORONT O
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ELMo: Embeddings from Language Models

IF
1. Concatenate
h'y

play 2. Multiply by weight vectors

h'y h'y X shask
) X n x stask
( ' ; x stask
play emlgcler;ﬂing:{ R - 2 universiTy oF
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ELMo: Embeddings from Language Models

* What does the word play mean?

Source Nearest Neighbors

playing, game, games, played, players, plays, player,
Play, football, multiplayer

Chico Ruiz made a spec- | Kieffer , the only junior in the group , was commended
tacular play on Alusik ’s | for his ability to hit in the clutch , as well as his all-round
grounder {...} excellent play .

Olivia De Havilland | {...} they were actors who had been handed fat roles in
signed to do a Broadway | a successful play , and had talent enough to fill the roles
play for Garson {...} competently , with nice understatement .

GloVe play

biLM

Table 4: Nearest neighbors to “play” using GloVe and the context embeddings from a biLM.

Peters ME, Neumann M, lyyer M, et al. (2018) Deep contextualized word representations.
Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/gps/1802.05365
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ELMo: Embeddings from Language Models

INCREASE
TASK PREVIOUS SOTA OUR ELMO\ (ABSOLUTE/

BASELINE BASELINE RELATIVE)

Q&ASQuAD | Liu et al. (2017) 84.4 || 81.1 85.8 4.7124.9%
Textual entailment SNLI Chen et al. (2017) 88.6 || 88.0 88.7 = 0.17 0.7/5.8%

Semantic role labelling SRL He et al. (2017) 81.7 || 81.4 84.6 3.2/17.2%
Coreference resolution Coref Lee et al. (2017) 67.2 || 67.2 70.4 3.2/9.8%
Name entity resolution NER Peters et al. (2017) 91.93 +0.19 || 90.15 92.224+0.10 2.06/21%
Sentiment analysis SST-5 McCann et al. (2017) 53.7 || 51.4 4.1 =05 3.3/6.8%

Table 1: Test set comparison of ELMo enhanced neural models with state-of-the-art single model baselines across
six benchmark NLP tasks. The performance metric varies across tasks — accuracy for SNLI and SST-5; F; for
SQuAD, SRL and NER; average F; for Coref. Due to the small test sizes for NER and SST-5, we report the mean
and standard deviation across five runs with different random seeds. The “increase” column lists both the absolute
and relative improvements over our baseline.

UNIVERSITY OF

CSC401/2511 — Winter 2024 78 @ TORONTO



Neural networks research

~ *® Research in neural networks is exciting, expansive, and
- explorative.
~_* We have many hyper-parameters we can tweak
» (e.g., activation functions, number and size of layers).
* We have many architectures we can use
(e.g., deep networks, LSTMs, attention mechanisms).

ﬁ * Given the fevered hype, it’s important to retain our scientific 3
skepticism. =) -

* What are our biases and expectations? S

°* When are neural networks the wrong choice?
®* How are we actually evaluating these systems?




