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Logistics

2CSC401/2511 – Winter 2024

• Assignment 1: due Feb 9, 2024

• Assignment 2: release Feb 10, 2024

• Lectures: 

• Reading week break: Feb 19-23 (no lectures, OHs)

• Final exam: planned in-person

• Lecture feedback:

• Anonymous
• Please share any thoughts/suggestions

• Questions? 



Lecture plan: Neural networks
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• Lecture 4 (L4): Neural Language Models (~2 sessions)

• Introduction
• Word-level representations (word2vec, CBOW)
• Neural language models
• Recurrent neural networks (RNN, LSTM)
• Contextual word embeddings

With material from Phil Blunsom, Piotr Mirowski, Adam Kalai, and James Zou

• Lecture 5 (L5): Machine Translation (MT) (~3 sessions)

• Sequence-to-sequence (seq2seq) and attention models
• Transformers

• Lecture 6 (L6): Transformer & Variants (~1 session)

• Transformers deep-dive.
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Historical Background

• Artificial neural networks (ANNs)
• Not new. Few iterations, peaks and troughs with 

different monikers

1950 1960 1970 1980 1990 2000 2010 2020

Turing Test
1950

AI Winter
1974-1980

Dartmouth
Conference

1956

AI Winter
1987-1993

AI Boom
2012 - Current

AlexNet
2012

Transformer
2017

Perceptron
1957

ADALINE
1960

Backpropagation
1986

ELIZA
1965

Deep Blue
1996

ChatGPT
2022

DALL-E
2021

SNAR
1951

XCON
1980

SVM
1995

Watson
2011

AlphaFold
2021

AlphaZero
2017

AlphaGo
2015

DeepFace
2014

GPT-1
2018

LISP
1958

SGD
1967

TD-Gammon
1992

POMDPs
1998

LSTM
1997

iRobot
2002

RNN
2009

ReLU
1969

LeNet
1998

CNN
1989

Prolog
1972

KAISSA
1974

AIBO
1999

SHAKEY
1966

Neocognitron
1979 NavLab

1986
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1. Saqur, Raeid, et al. "Hype, Media Frenzy, and Mass Societal Hysteria: Perspectives on Human-imitative Intelligence.”. ICVSS 2023
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Artificial neural networks

• Artificial neural networks (ANNs) were (kind of) inspired 
from neurobiology (Widrow and Hoff, 1960).
• Each unit has many inputs (dendrites), one output (axon).

• The nucleus fires (sends an electric signal along the axon) 

given input from other neurons.

• ‘Learning’ occurs at the synapses that connect neurons, 

either by amplifying or attenuating signals.

Dendrites
Axon

Nucleus
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Perceptron: an artificial neuron

• Each neuron calculates a weighted sum of its inputs and 

compares this to a threshold, !. If the sum exceeds the 

threshold, the neuron fires.

• Inputs "$  are activations from adjacent neurons, each 

weighted by a parameter #$.

If % > ', ) ≔ 1

Else, ) ≔ 0
"-
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!"#
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McCullogh-Pitts model

&()
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Perceptron output

• Perceptron output is determined by activation functions, 

%(), which can be non-linear functions of weighted input.

• Popular activation functions include tanh and the sigmoid:

% ( = * ( =
1

1 + -01

• The sigmoid’s derivative is the easily computable )% = ) ⋅ (1 − ))
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From Wikipedia

tanh sigmoid

0

1
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Rectified Linear Units (ReLUs)

• Since 2011, the ReLU  $ = % ( = max(0, () has become 

more popular.

• More biologically plausible, sparse activation, limited (vanishing) 
gradient problems, efficient computation.

Input

O
u

tp
u

t

From Wikipedia

X Glorot, A Bordes, Y Bengio (2011). Deep sparse rectifier neural networks. AISTATS.

• A smooth approximation is

the softplus log(1 + -1), 
which has a simple 

derivative 1/(1 + -21)

• Why do we care about the 
derivatives?
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Perceptron learning

• Weights are adjusted in proportion to the error (i.e., the 

difference between the desired, 7, and the actual output, $.

• The derivative %′ allows us to assign blame proportionally.

• Given a small learning rate, 9 (e.g., 0.05), we can repeatedly 

adjust each of the weight parameters by

#3 ≔ #3 + 9 ⋅ 	?

$4-

5

@AA$ ⋅ %′(($) ⋅ "3[C]

 where @AA$ = (7$ − $$), among F training examples.

!"

# =%&'!'
(

')"

!*

!(

&"
&*
&(

…
+

McCullogh-Pitts model

,()

Assumes 
mean-square 
error objective
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Threshold perceptra and XOR

• Some relatively simple logical functions cannot be learned by 

threshold perceptra (since they are not linearly separable).

&!

&"

6! ∧ 6"
&!

&"

6! ∨ 6"
&!

&"

6!⨁6"
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Artificial neural networks

• Complex functions can be represented by layers of 
perceptron (multi-layer perceptron, MLPs). 

MLP

...

...
• Inputs are passed to the 

input layer.
• Activations are propagated 

through hidden layers
to the output layer. 

• MLPs are quite robust to noise, 
and are trained specifically to 
reduce error.
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Deep

It’s a cat.

‘hidden’ representations are learned here

Depression.

Can we find hidden patterns in words?
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Words

• Given a corpus with G (e.g., = 100H) unique words, the 

classical approach is to uniquely assign each word with an 

index in G-dimensional vectors (‘one-hot’ representation).

• Classic word-feature representation assigns features 

to each index in a much denser vector.

• E.g., psychology based features ‘cheerful’, ‘emotional-tone’.

• Can we learn a dense representation? What will it give us?

0 0 0 0 .. 0 1 0 … 0

!

1 0.8 2.5 0.81 … 99
" ≪ !

lugubrious

https://docs.receptiviti.com/frameworks/liwc


been feeling lugubrious all day
felt a lugubrious sadness in

…

-($' = ./&/0123/4|$'(# = 677.28&,$'() = 0778,… )

https://code.google.com/p/word2vec/ 

Here, we’re predicting the center word given the context.
This is called the ‘continuous bag of words’ (CBOW) model1. 
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"You shall know a word by the company it keeps." 

— J.R. Firth (1957) 

Learning word semantics

1 Mikolov T, Corrado G, Chen K, et al. Efficient Estimation of Word Representations in Vector Space. Proc (ICLR 2013) 2013;:1–12.

https://code.google.com/p/word2vec/


Continuous bag of words (1 word context)

15

feeling lugubrious all

a lugubrious sadness

…

*
+#
(-×/)

1$
+%
(/×-)

2

D
 =

 1
00

K

0,0,0, … 1,… , 0
feeling

D
 =

 1
00

K

0,1,0, … , 0, … , 0
lugubrious

Note: we have two 
vector representations of 
each word:
1$ = *⊺+# (3'( row of +#)
4$ = +%

⊺2 (3'( col of +%) 
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5 3) 3* =
exp(4$!

⊺ 1$")
∑$+!
, exp(4$⊺1$")Where 

 1$ is the ‘input’ vector for word 3,
 4$ is the ‘output’ vector for word 3,

‘softmax’:

‘embedding’

w

W



Continuous bag of words (! words context)
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• If we want to use more context, I, 

we need to change the network 

architecture somewhat.

• Each input word will produce one 

of I embeddings

• We just need to add an

intermediate layer, usually this 

just averages the embeddings. 

been feeling lugubrious all

felt a lugubrious sadness

…



Skip-grams
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• Skip-grams invert the task – we predict 

context words given the current word.

• According to Mikolov, 

Skip-gram: works well with small amounts 

of training data, represents rare words.

CBOW: several times faster to train, slightly 

better accuracy for frequent words 

Mikolov T, Corrado G, Chen K, et al. Efficient Estimation of Word 
Representations in Vector Space. Proc (ICLR 2013) 2013;:1–12.
https://arxiv.org/pdf/1301.3781.pdf 

https://arxiv.org/pdf/1301.3781.pdf


Actually doing the learning
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! =

#!
#!!"#$!"%

⋮
#&'()"*'

%!
%!!"#$!"%

⋮
%&'()"*'

∈ ℝ+,×.

• Given J-dimensional embeddings, and K word types, our 

parameters, L, are:



Actually doing the learning
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We have many options. Gradient descent is popular.

Given M tokens of training data, optimize objective: 

/ 0 =
1
34!"#

$
4

%&'('&,(*+
log 8(:!,(|:!)

And we want to update vectors K:!"#  then N:!  within L

! !"# = ! $%& − $%'& !
So, we’ll need to take the derivative of the (log of the) softmax 

function:

- $; $! =
exp(><%

⊺ ?<&)

∑<"#
> exp(><

⊺?<&)

Where 1$ is the ‘input’ vector for word 3,
and 4$ is the ‘output’ vector for word 3,



Actually doing the learning
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We need the derivative of the (log of the) softmax function:

;

;<#!
log@ A$%& A$ =

;

;<#!
log

exp(F#!"#
⊺ <#!)

∑#()
* exp(F#⊺<#!)

=
;

;<#!
log exp F#!"#

⊺ <#! − logI
#()

*
exp(F#⊺<#!)

= F#!"# 	 −
;

;<#!
logI

#()

*
exp(F#⊺<#!)

[apply the chain rule -.-/-.
= -.

-0
-0
-/-.

]

= F#!"# −I#()

*
K A A$ F#

More details: http://arxiv.org/pdf/1411.2738.pdf 

http://arxiv.org/pdf/1411.2738.pdf


Using word representations
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* +#

D
 =

 1
00

K

Without a latent space,

 lugubrious = 0,0,0, … , 0,1,0, … , 0 , &

 sad      = 0,0,0, … , 0,0,1, … , 0  so

Similarity = cos((, 7) = 0.0

In latent space,

 lugubrious = 0.8,0.69,0.4, … , 0.05 L, &

 sad      = 0.9,0.7,0.43, … , 0.05 L  so

Similarity = cos((, 7) = 0.9

EMBEDDING

"# = $⊺%(
H = 300

Reminder:
cos O, < =

O ⋅ <

O ×| < |



Skip-grams with negative sampling
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• The default process is inefficient.
• For one – what a waste of time! 

We don’t want to update A×C weights! 
• For two – we want to avoid confusion!

‘Hallucinated’ (negative) contexts should be 
minimized.

• For the observed (true) pair (lugubrious, sadness), 
only the output neuron for sadness should be 1, and 
all C − 1 others should be 0.

• Mathematical Intuition:

• X #S #T) =
UVW(X$%Y&)

∑'()* UVW(X'%Y&) Computationally 

infeasible 



Skip-grams with negative sampling
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• We want to maximize the association of 

observed (positive) contexts:

 lugubrious sad
 lugubrious feeling
 lugubrious tired

• We want to minimize the association of 

‘hallucinated’ contexts:

 lugubrious happy
 lugubrious roof
 lugubrious truth



Skip-grams with negative sampling
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• Choose a small number D of ‘negative’ words, and just 
update the weights for the ‘positive’ word plus the D 
‘negative’ words.
• 5 ≤ \ ≤ 20	can work in practice for fewer data. 
• For ^ = 100_, we only update 0.006% 

of the weights in the output layer.

• Mimno and Thompson (2017) choose the top
D words by modified unigram probability:

@∗ A$%) =
` A$%)

,
-

∑#` A
,
-

Mimno, D., & Thompson, L. (2017). The strange geometry of skip-gram with negative sampling. EMNLP 2017. [link]

/ 0 = log 	?(@1$@&) 	+	4
2"#

3
B(~5(7)[log ?(−@2$@&)]

Unigram dist.

https://doi.org/10.18653/v1/d17-1308


Instead of predicting words at particular positions, look at the 
co-occurrence matrix within the corpus

Smell the GloVe
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https://nlp.stanford.edu/projects/glove/ 
Pennington J, Socher R, Manning CD. (2014) GloVe: Global Vectors for Word Representation. 

Proc EMNLP 2014:1532–43. 

• GloVe (‘Global Vectors’) is an alternative method of 

obtaining word embeddings. 

Word 3*  occurs 
?*,0(= ?0,*)

times with word 30, 
within some context 

window (e.g., 10 words,
 a sentence, …).

https://nlp.stanford.edu/projects/glove/


Smell the GloVe
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https://nlp.stanford.edu/projects/glove/ 
Pennington J, Socher R, Manning CD. (2014) GloVe: Global Vectors for Word Representation. 

Proc EMNLP 2014.

• Populating the co-occurrence matrix requires a complete 

pass through the corpus, but needs only be done once. 

• Let X$,3 = X #3 #$ = Y$,3/Y$,

https://nlp.stanford.edu/projects/glove/


Aside – smell the GloVe
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• Minimize Z = ∑
$,34-
Y

\ Y$,3 N:+
a N:# + ]$ + ]̂3 − logY$,3

.

 

where,  0! and E0@ are input and output bias terms associated
   with $! and $@, respectively, V is vocab. size

• Weighting function \ Y$,3 : 

Weighting function f with alpha = ¾, xmax = 100



Aside – evaluation

28CSC401/2511 – Winter 2024

• Intrinsic evaluation: popular (though perhaps dishonest) method was 
to cherry-pick a few k-nearest neighbours examples that match 
expectations.

Redacted

• Extrinsic evaluation: embed resulting vectors into a variety of 
tasks[1,2]. 

1 https://gluebenchmark.com/tasks
2 https://super.gluebenchmark.com/tasks



Linguistic regularities in vector space
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Trained on the Google news corpus with over 300 billion words.



Linguistic regularities in vector space
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Linguistic regularities in vector space
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Expression Nearest token
Paris – France + Italy Rome
Bigger – big + cold Colder
Sushi – Japan + Germany bratwurst
Cu – copper + gold Au
Windows – Microsoft + Google Android

Analogies: apple:apples :: octopus:octopodes

Hypernymy: shirt:clothing :: chair:furniture

Semantic: queen – king ≈ woman – man



Importance of in-domain data
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Wang Y, Liu S, Afzal N, et al. (2018) A Comparison of Word Embeddings for the Biomedical 
Natural Language Processing. 2018;:1–21. http://arxiv.org/abs/1802.00400 

http://arxiv.org/abs/1802.00400


Biases: let’s talk about gender
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Bolukbasi T, Chang K, Zou J, et al. Man is to Computer Programmer as Woman is to Homemaker? 
Debiasing Word Embeddings. In: NIPS. 2016. 1–9.

However, in word2vec trained on Google News, 
man:woman::programmer:homemaker. 



Biases: let’s talk about gender
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Solution?
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1. Hand-pick words $b that are ’gender definitional’. 

‘Neutral’ words are the complement, _	 = K	\	$b.



Solution?
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2. Project away gender subspace from gender-neutral words,

# ≔ # −# ⋅ a for # ∈ _, where a is the gender subspace.  



Solution?
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2. Project away gender subspace from gender-neutral words,

# ≔ # −# ⋅ a for # ∈ _, where a is the gender subspace.  



Results
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He:Blue :: She: ?
He:Doctor :: She: ?
He:Brother :: She: ? 

• Generate many analogies, see which ones preserve gender 

stereotypes.

Appropriate. he:brother -> she:sister 

Stereotypic. He:Doctor-> She: __

Irrelevant. 



NEURAL LANGUAGE MODELS
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Trigram models

• CBOW: prediction of current word (E given (EFG. 
• Let’s reconsider predicting (E given multiple (EFH?
• I.e., let’s think about language modelling.

2

ℎ

*

MLP

ℎ = B +#C + E
F = +%G + H

I'

ℎ'

trigram

ℎ' = B +#[K123; K124] + E
N1 = OPQRS&*(+%G1 + H)

3'2" 3'2!

Here:
• 3*  is a one-hot vector,
• I' is a distribution, and
• 3* = I' = |4| 

   (i.e., the size of the vocabulary)
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Sampling from trigram models

• Since )E ∼ +((E|(EF+	(EFG), we just feed forward and 
sample from the output vector.

ℎ'

3'2" 3'2!

two riders

were

I'

ℎ'5!

3'2! 3'

riders were

I'5!

approaching
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Training trigram models

• Here’s one approach:

1. Randomly choose a batch (e.g., 10K consecutive words)
2. Propagate words through the current model
3. Obtain word likelihoods (loss)
4. Back-propagate loss
5. Gradient step to update model
6. Go to (1)
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Training trigram models

• The typical training objective is the cross entropy (see Lecture 3) 

of the corpus 0 given the model 1:
                            ℱ = J(I;e) = −

cde, f- g

g

I'

ℎ'

ℎ' = B +#[K123; K124] + E
N1 = OPQRS&*(+%G1 + H)

3'2" 3'2!

Here:
• 3*  is a one-hot vector, and
• I' is a distribution.

EPOR'

3'

log) -$(I) = log)J

'"U

V

-($') =#
'"U

V
log) - $'

Minimize

Maximize

log) -($') = $'
⊺ log K'
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Training trigram models

I'

ℎ'

ℎ' = B +#[K123; K124] + E
N1 = OPQRS&*(+%G1 + H)

3'2" 3'2!

Here:
• 3*  is a one-hot vector, and
• I' is a distribution.

EPOR'

3'

• Compute our gradients, using ℱ = − )*+! ," -
-  and 

log. +(-/) = -/⊺ log //  and back-propagate.

Lℱ

LWW
= −

1

I
#

'

LO34P'

LK'

LK'

LQW

Lℱ

LWX
= −

1

I
#

'

LO34P'

LK'

LK'

Lℎ'

Lℎ'

LQX
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Evaluating trigram (language) models

• Popular, intrinsic measure is perplexity (over unseen 
sentences)
• Information theoretic measure of how well a probability 

model predicts a sample – lower is better

• Given a text corpus C of n words ((G, … , (I), and a 
language model, 41 = P (J (G:JFG)

Perplexityh LM =	2
2
-

i
∑+()
.

cde, j/ :+ 	:):+0))	

     = 	2
2
123, 45-(7)	

| 7 |

     = 	2L(g;	j/)
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So what?

• J Neural language models of this type:
• Can generalize better than MLE LMs to unseen n-grams, 
• Can use semantic information as in word2vec.

• L Neural language models of this type:
• Can take relatively long to train. “GPUs kill the Earth.”
• Number of parameters scale poorly with increasing 

context. Large vocab and training corpus is prohibitive.

- Pℎ7	O%P	4%P	38	Pℎ7	TUV ≈ -(Pℎ7	O%P	4%P	38	Pℎ7	XYZ)

Let’s improve both of these issues…
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Dealing with that bottleneck

• Traditional datasets for neural language modeling include:
• AP News (14M tokens, 17K types)
• HUB-4 (1M tokens, 25K types)
• Google News (6B tokens, 1M types)
• Wikipedia (3.2B tokens, 2M types)

• Datasets for medical/clinical LM include:
• EMRALD/ICES (3.5B tokens, 13M types) 

• Much of the computational effort is in the initial 
embedding, and in the softmax.
• Can we simplify and speed up the process?   
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Dealing with that bottleneck

• Replace rare words with <out-of-vocabulary> token.
• Subsample frequent words.

• Hierarchical softmax.
• Noise-contrastive estimation.
• Negative sampling.

[Morin & Bengio, 2005, Mikolov et al, 2011, 2013b; 
Mnih & Teh 2012, Mnih & Kavukcuoglu, 2013]

e.g., <unk>
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Hierarchical softmax with grouping

• Group words into distinct classes, 6, e.g., by frequency.
• E.g., p- is top 5% of words by frequency, p. is the next 5%, … 

• Factorize q #S #$ = q #S #$ , I = 	∑ q p #$ q(#S|#$ , p)

5 3) 3* =
exp(4$!

⊺ 1$")

∑$+!
|7| exp(4$⊺1$")Where 

 1$ is the ‘input’ vector for word 3,
 4$ is the ‘output’ vector for word 3,

‘softmax’:

[Mikolov et al, 2011, Auli et al, 2013]

exp(E01$")
∑8 exp(E1$")

×
exp(4$!

⊺ 1$")
∑$∈8 exp(4$⊺1$")



RECURRENT NEURAL NETWORKS
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Statistical language models
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• Probability is conditioned on (window of) n previous words*

*From Lecture 2

• A necessary (but incorrect) Markov assumption: each 

observation only depends on a short linear history of 

length L.

• Probabilities are estimated by computing unigrams and 

bigrams

- 4 = 	J

!")

'

-($!|$!()$!(#)- 4 =J

!"#

'

-($!|$!(#)

X(#i|#-: i2- ) ≈ X(#i|# i2jm- : i2- )

bigram trigram



Statistical language models
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• Using higher n-gram counts (with smoothing) improves 

performance*

*From Lecture 2

• Computational burden: too many n-grams (combinations)

• Infeasible RAM requirements 

• RNN intuition: 
• Use the same set of weight parameters for each word 

(or across all time steps)

• Condition the neural network on all previous words (or 

time steps)

• Memory requirement now scales with number of words



Recurrent neural networks (RNNs)
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• An RNN has feedback connections in its structure so that it 

‘remembers’ previous states, when reading a sequence.

Elman network feed hidden units back 

Jordan network (not shown) feed output units back 

h

Y2

x

Whx

Whh

Why

ZPOO

2 Ground Truth

Backpropagate

Why

Whh

Whx



RNNs: Unrolling the !!
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• Copies of the same network can be applied (i.e., unrolled) at 

each point in a time series.

• These can be applied to various tasks. 

2:

ℎ:

*:

→
2!

ℎ!

*!

2"

ℎ"

*"

You lovely person

PRP ADJ NN

ℎ' = B +#[G124; C] + E
F1 = +%G1 + H



RNNs: One time step snapshot
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• Given a list of word vectors t: 	(-, (., …, (n , (nm-, … , (a

were

ℎ' = & [Q[[\\(] +Q[^^9] + O

ℎ'

_2'

*'

approaching

ℎ'2! ℎ'5!

Whx

Whh

Why

Two riders .. approaching horses...

• At a single time-step:

@ %$%) = <& %$, … , %)) = 	 pq$,&

ℎ' = 	& QX[\\(]; ^9] + O  (equivalent notation) 

ab' 	= 436Pc%!	(Q[`\\ + 0)



RNNs: Training
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• Given a list of word vectors t: 	(-, (., …, (n , (nm-, … , (a

were

ℎ'

_2'

*'

approaching

ℎ'2! ℎ'5!

Whx

Whh

Why

Two riders .. approaching horses...

@ %$%) = <& %$, … , %)) = 	 pq$,&

ab	 ∈ 	ℝ|a| is a probability distribution 
over the vocabulary

The output fb',@	 is the word (index) prediction 
of the next word (xt+1) 

Evaluation 
- Same cross-entropy loss function

g ' h = −	#

@"#

|a|

b',@ log ib',@

- Perplexity: 2J  (lower is better)
prediction

Ground truth



Sampling from a RNN LM
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• If ℎ$ < |K|, we’ve already reduced the number of 

parameters from the trigram NN.

• In ‘theory’, information is maintained in ℎ$  across arbitrary 

lengths of time…

2:

ℎ'2!

*'2!

2!

ℎ'

*'

riders were

were approaching

Karpathy (2015),
The Unreasonable Effectiveness of Recurrent Neural Networks

ℎ' = B [+((G124;+(;C$] + E
_2' 	= OPQRS&*	(+(<G1 + H)

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


RNNs and retrograde amnesia

60CSC401/2511 – Winter 2024

• Unfortunately, catastrophic forgetting is common.

• E.g., the relevant context in “The teacher taught 
transformers terribly telling tiring, tortuous theories …” 
has likely been overwritten by the time ℎ-r is produced. 

2:

ℎ:

*:

2!

ℎ!

*!

2!=

ℎ!=

*!=

The teacher theories

Bengio Y, Simard P, Frasconi P. (1994) Learning Long-Term Dependencies with Gradient Descent
is Difficult. IEEE Trans. Neural Networks.;5:157–66. doi:10.1109/72.279181

…

Informational bottleneck



RNNs and retrograde amnesia
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• One challenge with RNNs is that the gradient decays quickly 

as one pushes it back in time. Can we store relevant 

information?

Imagery and sequence from http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

Here, ‘A’ represents identical recurrent cell blocks.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


%!

ℎ!"# ℎ!
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• Within each recurrent unit or cell:
• Self-looping recurrence for cell state using vector C  

'!"# '!

• Information flow regulating structures called gates

Sigmoid neural net layer

Pointwise multiplication

Long short-term memory (LSTM)



LSTM – core ideas
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• In each cell (i.e. recurrent unit) in an LSTM, there are four 

interacting neural network layers.

The cell state is a special vector stream that 
runs through the entire chain and stores the 
long-term information.



LSTM – core ideas
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• In each cell (i.e. recurrent unit), there are four interacting 

neural network layers.

Gates decide what information should be withheld in the cell state.
They are a sigmoid followed by a pointwise ×. 
Values near 0 block information; values near 1 pass information.



LSTM step 1: decide what to forget
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• The forget gate layer compares ℎn2- and the current input (n  

to decide which elements in cell state In2- to keep and which 

to turn off.

• E.g., the cell state might ‘remember’ the number (sing./plural) of the 
current subject, in order to predict appropriately conjugated verbs, 
but decide to forget it when a new subject is mentioned at !'.
• (There’s scant evidence that such information is so explicit.)



LSTM step 2: decide what to store
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• The input gate layer has two steps.

• First, a sigmoid layer j decides which cell units to update.
• Next, a tanh layer creates new candidate values EI'.
• E.g., the ) can turn on the ‘number’ units, and the tanh can push 

information on the current subject.
• The ) layer is important – we don’t want to push information on 

units (i.e., latent dimensions) for which we have no information.



LSTM step 3: update the cell state
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• Update In2- to I'. 
• First, forget what we want to forget: multiply I'(# by 6'.
• Then, create a ‘mask vector’ of information we want to store, 2'×EI'.
• Finally, write this information to the new cell state I'.

→...

d>2!

→...

×Q'

→...

...
e'×fd'

+
...

d>

I' = 6'×I'(# + 2'×EI'



LSTM step 4: output and feedback 
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• Output something, yn, based on the current (n  and ℎ'(#.
• Combine the output with the cell to give your ℎn.

• Normalize cell I' on [-1,1] using tanh and combine with 3'

• In some sense, I' is long-term memory and ℎ' is the short-term 
memory (hence the name).

P' = g +) ℎ'2!, *' + H)

ℎ' = P'×tanh(d')



Variants of LSTMs

69CSC401/2511 – Winter 2024

• There are many variations on LSTMs.

• ‘Bidirectional LSTMs’ (and bidirectional RNNs generally), 

learn. (Similar: Multi-stack RNNs) 

Schuster, Mike, and Kuldip K. Paliwal. (1997) Bidirectional recurrent neural networks. Signal 
Processing, IEEE Transactions on 45(11) (1997): 2673-2681.2.



Variants of LSTMs
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• Gers & Schmidhuber (2000) add ‘peepholes’ that allow 

all sigmoids to read the cell state.

• We can couple the ‘forget’ and ‘input’ gates.

• Joint decisioning is more efficient. 



Aside - Variants of LSTMs
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Reset gate (0: replace units in ℎ()* 
 with those in ;()

Update gate

• Which of these variants is best? Do the differences matter?

• Greff, et al. (2015) do a nice comparison of popular variants, 
finding that they’re all about the same

• Jozefowicz, et al. (2015) tested more than ten thousand RNN 
architectures, finding some that worked better than LSTMs on 
certain tasks.

• Gated Recurrent units (GRUs; Cho et al (2014)) go a step 

further and also merge the cell and hidden states.

http://arxiv.org/pdf/1503.04069.pdf
http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf
https://arxiv.org/pdf/1406.1078v3.pdf


CONTEXTUAL WORD EMBEDDINGS
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Deep contextualized representations
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Peters ME, Neumann M, Iyyer M, et al. (2018) Deep contextualized word representations. 
Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/abs/1802.05365  

• What does the word play mean?

http://arxiv.org/abs/1802.05365


ELMo: Embeddings from Language Models
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• Instead of a fixed embedding for each word type, ELMo 

considers the entire sentence before embedding each token.

• It uses a bi-directional LSTM trained on a specific task.

• Outputs are softmax probabilities on words, as before.

2:

ℎ:

*:

2!

ℎ!

*!

The play

ℎ′: ℎ′!
LSTMs

2:

ℎ?2!

*?2!

2!

ℎ?

*?

the actors

ℎ′?2! ℎ′?

exhausted

Peters, Mathew E., et al. "Deep contextualized word representations. (2018)." arXiv preprint arXiv:1802.05365 (2018).

https://arxiv.org/pdf/1802.05365.pdf
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• Task specific weighting produces the final embedding for 

word token z.

• where km is the set of all l hidden layers, hn,@
  4@

'opn is the task’s weight on the layer, and
  n'opn is a weight on the entire task
  

ELMo: Embeddings from Language Models
For each token, a L-layer biLM computes (2L+1) representations:



ELMo: Embeddings from Language Models
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2!

ℎ!

*!

play

ℎ′!

2:

ℎ!

*!

play

ℎ′!

ℎ′! ℎ′!

ℎ! ℎ!

1. Concatenate

2. Multiply by weight vectors

3. Sum:

*!

ℎ′! ℎ′!

ℎ! ℎ!

*!

×	O"
'@AB

×	O!
'@AB

×	O:
'@AB

qrstB+!
'@AB

[	*B; qrstB
'@AB 	] Final 

embedding:
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Peters ME, Neumann M, Iyyer M, et al. (2018) Deep contextualized word representations. 
Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/abs/1802.05365  

• What does the word play mean?

ELMo: Embeddings from Language Models

http://arxiv.org/abs/1802.05365
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ELMo: Embeddings from Language Models

Q&A
Textual entailment

Semantic role labelling
Coreference resolution
Name entity resolution

Sentiment analysis



• Research in neural networks is exciting, expansive, and 

explorative.

• We have many hyper-parameters we can tweak 

 (e.g., activation functions, number and size of layers).

• We have many architectures we can use 

 (e.g., deep networks, LSTMs, attention mechanisms).

• Given the fevered hype, it’s important to retain our scientific 

skepticism. 

• What are our biases and expectations?

• When are neural networks the wrong choice?

• How are we actually evaluating these systems? 

Neural networks research
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