

Entropy and decisions

 CSC401/2511 - Natural Language Computing - Winter 2023

University of Toronto Heter

Overview

- This lecture: Information theory.
- Entropy.
- Mutual information, etc.
- Next lecture: Decisions.
- Hypothesis testing.

Scan me

- T tests.
- Multiple comparisons.

Information

- Imagine Darth Vader is about to say either "yes" or "no" with equal probability.
- You don’t know what he'll say.
- You have a certain amount of uncertainty - a lack of information.

Information

- Imagine you then observe Darth Vader saying "no"
- Your uncertainty is gone; you've received information.
- How much information do you receive about event x when you observe it?

"Choosing 1 out of 2" gives a bit of information

$$
I(x)=1 \text { bit for } P(x)=\frac{1}{2}
$$

Information

- Imagine there is both Darth Vader and Varth Dader.
- Observing what both DV and VD say gives us 2 bits of information.
- There are 2^{2} scenarios with equal possibilities:
- Yes/Yes, Yes/No, No/Yes, No/No

Information

- So $I(x)=2$ bits is brought by $P(x)=\frac{1}{2^{2}}$
- $I(x)$ doubles when $\frac{1}{P(x)}$ is squared.
- Let's describe $I(x)$ with negative log likelihood:

$$
I(x)=\frac{\log _{2}}{\uparrow}
$$

For capturing the Logarithm relationship

$$
I(x)=-\log _{2} P(x)
$$

So here comes the negation

Going back to the "yes/no" example:

$$
I(n o)=\log _{2} \frac{1}{P(n o)}=\log _{2} \frac{1}{1 / 2}=1 \text { bit }
$$

Note 1: Negative log likelihood is also called surprisal.
Note 2: information contents computed with log base 2 has unit "bit". Log base e => unit "nat".

Information

- Imagine Darth Vader is about to roll a fair die.
- You have more uncertainty about an event because there are more possibilities.
- You receive more information when you observe it.

$$
\begin{aligned}
I(x) & =\log _{2} \frac{1}{P(6)} \\
& =\log _{2} \frac{1}{1 / 6} \approx 2.58 \mathrm{bits}
\end{aligned}
$$

Information can be additive

- One property of $\mathrm{I}(x)=\log _{2} \frac{1}{P(x)}$ is additivity.
- From k independent events $x_{1} \ldots x_{k}$:
- Does $I\left(x_{1} \ldots x_{k}\right)=I\left(x_{1}\right)+I\left(x_{2}\right)+\cdots+I\left(x_{k}\right)$?
- The answer is yes!

$$
\begin{aligned}
& I\left(x_{1} \ldots x_{k}\right)=\log _{2} \frac{1}{P\left(x_{1} \ldots x_{k}\right)} \\
& =\log _{2} \frac{1}{P\left(x_{1}\right) \ldots P\left(x_{k}\right)}=\log _{2} \frac{1}{P\left(x_{1}\right)}+\cdots+\log _{2} \frac{1}{P\left(x_{k}\right)} \\
& =I\left(x_{1}\right)+I\left(x_{2}\right)+\cdots+I\left(x_{k}\right)
\end{aligned}
$$

Aside: Information in computers

- The unit bit appears familiar to the units describing file sizes...
- And they are related!
- $1 G B=2{ }^{10} M B=2{ }^{20} K B=2{ }^{30}$ Bytes, where:
- 1 Byte $=8$ bits.
- Historically: 1 byte was used to store one character.
- File sizes in computers are described by the amount of information.
- The file sizes also depend on the method of encoding (approx. "file format")

Events and random variables

- An event x is a sample from a random variable X.
- Example 1:
- X : Darth Vader saying something (either yes or no)
- x : What DV says ($x=$ "no")
- Example 2:
- X: Darth Vader rolling a die
- x : The side facing upwards (e.g., $x=3$)
- x is deterministic. X is random.
- x is the output emitted by the "source" X.

Information with unequal events

- The random variable X can take possible values: $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
- Each value has its own probability $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$

- What is the average amount of information we get in observing the output of X ?
- You still have 6 events that are possible - but you're fairly sure it will be ' $N o$ '.

Entropy

- Entropy: n. the expected information gaining from observing the events of the random variable X.

Notes:

1. Entropy is defined towards a random variable.
2. Entropy is the average uncertainty inherent in a random variable.

Entropy - examples

$$
\begin{aligned}
& H(X)=\sum_{i} p_{i} \log _{2} \frac{1}{p_{i}} \\
& =0.7 \log _{2}(1 / 0.7)+0.1 \log _{2}(1 / 0.1)+\cdots \\
& =1.542 \text { bits }
\end{aligned}
$$

There is less average uncertainty when the probabilities are 'skewed'.

$$
\begin{aligned}
& H(X)=\sum_{i} p_{i} \log _{2} \frac{1}{p_{i}}=6\left(\frac{1}{6} \log _{2} \frac{1}{1 / 6}\right) \\
& =2.585 \text { bits }
\end{aligned}
$$

Entropy characterizes the distribution

- 'Flatter' distributions have a higher entropy because the choices are more equivalent, on average.
- So which of these distributions has a lower entropy?

Low entropy makes decisions easier

- When predicting the next event, we'd like a distribution with lower entropy.
- Low entropy \equiv less uncertainty

Bounds on entropy

- Maximum: uniform distribution X_{1}. Given M choices,

$$
H\left(X_{1}\right)=\sum_{i} p_{i} \log _{2} \frac{1}{p_{i}}=\sum_{i} \frac{1}{M} \log _{2} \frac{1}{1 / M}=\log _{2} M
$$

- Minimum: only one choice, $H\left(X_{2}\right)=p_{i} \log _{2} \frac{1}{p_{i}}=1 \operatorname{lof}_{2}^{0} 1=0$

Alternative notions of entropy

- Entropy is equivalently:
- The average amount of information provided by an observation of a random variable,
- The average amount of uncertainty you have before an observation of a random variable,
- The average amount of 'surprise' you receive during the observation,
- The number of bits needed to communicate that random variable
- Aside: Shannon showed that you cannot have a coding scheme that can communicate it more efficiently than $H(S)$

Some terms

- Joint entropy
- Conditional entropy
- Mutual information
- Cross entropy

Entropy of several variables

- Consider the vocabulary of a meteorologist describing \underline{T} emperature and Wetness.
- Temperature = \{hot, mild, cold\}
- \underline{W} etness $=\{d r y, w e t\}$
$P(W=d r y)=0.6$,
$P(W=w e t)=0.4$
$P(T=h o t)=0.3$,
$P(T=$ mild $)=0.5$, $P(T=$ cold $)=0.2$

$$
\boldsymbol{H}(\boldsymbol{T})=0.3 \log _{2} \frac{1}{0.3}+0.5 \log _{2} \frac{1}{0.5}+0.2 \log _{2} \frac{1}{0.2}=\mathbf{1} .48548 \text { bits }
$$

But W and T are not independent, $P(W, T) \neq P(W) P(T)$

Joint entropy

- Joint Entropy: n. the average amount of information needed to specify multiple variables simultaneously.

$$
H(X, Y)=\sum_{x} \sum_{y} p(x, y) \log _{2} \frac{1}{p(x, y)}
$$

- Hint: this is very similar to univariate entropy - we just replace univariate probabilities with joint probabilities and sum over everything.

Entropy of several variables

- Consider joint probability, $P(W, T)$

	cold	mild	hot	
dry	0.1	0.4	0.1	0.6
wet	0.2	0.1	0.1	0.4
	0.3	0.5	0.2	1.0

- Joint entropy, $H(W, T)$, computed as a sum over the space of joint events $(W=w, T=t)$
$H(W, T)=0.1 \log _{2} 1 / 0.1+0.4 \log _{2} 1 / 0.4+0.1 \log _{2} 1 / 0.1$

$$
+0.2 \log _{2} 1 / 0.2+0.1 \log _{2} 1 / 0.1+0.1 \log _{2} 1 / 0.1=2.32193 \text { bits }
$$

Notice $H(W, T) \approx 2.32<2.46 \approx H(W)+H(T)$

Entropy given knowledge

- In our example, joint entropy of two variables together is lower than the sum of their individual entropies
- $H(W, T) \approx 2.32<2.46 \approx H(W)+H(T)$
- Why?
- Information is shared among variables
- There are dependencies, e.g., between temperature and wetness.
- E.g., if we knew exactly how wet it is, is there less confusion about what the temperature is ... ?

Conditional entropy

- Conditional entropy: n. the average amount of information needed to specify one variable given that you know another.

$$
H(Y \mid X)=\sum_{x \in X} p(x) H(Y \mid X=x)
$$

- Comment: this is the expectation of $\mathrm{H}(\mathrm{Y} \mid \mathrm{X})$, w.r.t. x .

Entropy given knowledge

- Consider conditional probability, $P(T \mid W)$

$P(W, T)$	$T=$ cold	mild	hot	
$W=$ dry	0.1	0.4	0.1	0.6
wet	0.2	0.1	0.1	0.4
	0.3	0.5	0.2	1.0

$$
P(T \mid W)=P(W, T) / P(W)
$$

$P(T \mid W)$	$T=$ cold	mild	hot	
$W=$ dry	$0.1 / 0.6$	$0.4 / 0.6$	$0.1 / 0.6$	1.0
wet	$0.2 / 0.4$	$0.1 / 0.4$	$0.1 / 0.4$	1.0

Entropy given knowledge

- Consider conditional probability, $P(T \mid W)$

$\boldsymbol{P}(\boldsymbol{T} \mid \boldsymbol{W})$	$\boldsymbol{T}=$ cold	mild	hot	
$\boldsymbol{W}=$ dry	$1 / 6$	$2 / 3$	$1 / 6$	1.0
wet	$1 / 2$	$1 / 4$	$1 / 4$	1.0

- $H(T \mid W=d r y)=H\left(\left\{\frac{1}{6}, \frac{2}{3}, \frac{1}{6}\right\}\right)=\mathbf{1} .25163$ bits
- $H(T \mid W=w e t)=H\left(\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right\}\right)=\mathbb{1} .5$ bits
- Conditional entropy combines these:

$$
\begin{aligned}
& \boldsymbol{H}(\boldsymbol{T} \mid \boldsymbol{W}) \\
& =[p(W=d r y) H(T \mid W=d r y)]+[p(W=\text { wet }) H(T \mid W=w e t)] \\
& =\mathbf{1 . 3 5 0 9 7 8} \text { bits }
\end{aligned}
$$

Equivocation removes uncertainty

- Remember $H(T)=1.48548$ bits
- $H(W, T)=2.32193$ bits
- $H(T \mid W)=1.350978$ bits

Entropy (i.e., confusion) about temperature is reduced if we know how wet it is outside.

- How much does W tell us about T ?
- $H(T)-H(T \mid W)=1.48548-1.350978 \approx 0.1345$ bits
- Well, a little bit!

Perhaps T is more informative?

- Consider another conditional probability, $P(W \mid T)$

$P(W \mid T)$	$T=$ cold	mild	hot
$W=$ dry	$0.1 / 0.3$	$0.4 / 0.5$	$0.1 / 0.2$
wet	$0.2 / 0.3$	$0.1 / 0.5$	$0.1 / 0.2$
	1.0	1.0	1.0

- $H(W \mid T=$ cold $)=H\left(\left\{\frac{1}{3}, \frac{2}{3}\right\}\right)=0.918295$ bits
- $H(W \mid T=$ mild $)=H\left(\left\{\frac{4}{5}, \frac{1}{5}\right\}\right)=0.721928$ bits
- $H(W \mid T=h o t)=H\left(\left\{\frac{1}{2}, \frac{1}{2}\right\}\right)=1$ bit
- $H(W \mid T)=0.8364528$ bits

Equivocation removes uncertainty

- $H(T)=1.48548$ bits
- $H(W)=0.970951$ bits
- $H(W, T)=2.32193$ bits
- $H(T \mid W)=1.350978$ hits
- $\boldsymbol{H}(T)-\boldsymbol{H}(T \mid W) \approx 0.1345$ bits

Previously
computed

- How much does T tell us about W on average?
- $\boldsymbol{H}(W)-\boldsymbol{H}(W \mid T)=0.970951-0.8364528$ ≈ 0.1345 bits
- Interesting ... is that a coincidence?

Mutual information

- Mutual information: n. the average amount of information shared between variables.

$$
\begin{aligned}
I(X ; Y) & =H(X)-H(X \mid Y)=H(Y)-H(Y \mid X) \\
& =\sum_{x, y} p(x, y) \log _{2} \frac{p(x, y)}{p(x) p(y)}
\end{aligned}
$$

- Hint: The amount of uncertainty removed in variable X if you know Y.
- Hint2: If X and Y are independent, $p(x, y)=p(x) p(y)$, then
$\log _{2} \frac{p(x, y)}{p(x) p(y)}=\log _{2} 1=0 \forall x, y$ - there is no mutual information!

Relations between entropies

$$
H(X, Y)=H(X)+H(Y)-I(X ; Y)
$$

Aside: Kullback-Leibler divergence

- KL divergence measures the dis-similarity between two probability distributions $p(X)$ and $q(X)$:

$$
K L(p \| q)=\sum_{X} p(X) \log \frac{p(X)}{q(X)}
$$

- $K L \geq 0$, with equality reached at $p(X)=q(X)$.
- KL is asymmetrical: $K L(p \| q) \neq K L(q \| p)$.
- Usually, it's hard to precisely know the KL divergence of two distributions.
- KL is frequently used in reinforcement learning.

Aside: Cross-entropy

- Cross-entropy also measures the dis-similarity between two distributions.
- It is used to measure the quality of a predicted distribution $q(Y \mid X)$ with respect to the ground truth $p(Y \mid X)$:

$$
H(p, q)=\frac{1}{N} \sum_{X} p(Y \mid X) \log \frac{1}{q(Y \mid X)}
$$

- Cross-entropy is frequently used in machine learning as the target for optimization, i.e., cross-entropy loss.
- More details in CSC311.
- But ML uses cross-entropy in base e.

Lecture review questions

By the end of this lecture, you should be able to:

- Describe random variable and random events.
- Compute entropy, joint entropy, conditional entropy, and mutual information.
- (Not on exam) Be familiar with the terms KL divergence and cross entropy.
- Anonymous feedback form: https://forms.gle/W3i6AHaE4uRx2FAJA

Decisions

Does the sun rise from the east?

- Why are you sure it's the east, but not the west?
- Because there are repeated observations!

How does new knowledge occur?

Knowledge: "The sun rises from the east."
The knowledge comes from repeated observations of the "sun rise" event.

There is a "hypothesize - confirm" workflow in discovering new knowledge from the observations.

Hypothesis testing is a standardized procedure of this type of discovery.

Procedure of a statistical test

Step 1: State a hypothesis.

- Null hypothesis H_{0} and alternative hypothesis H_{1}; more in the next slide.

Step 2: Compute some test statistics.

- For example: p-value

Step 3: Compare the statistics to a critical value and report the test results.

- E.g., compare p to $\alpha=0.05$ ("significance level"). If p<0.05, reject H_{0}. Otherwise, do not reject H_{0}.

Null and Alternative Hypotheses

- Null hypothesis H_{0} usually states that "nothing has changed".
- Alternative hypothesis H_{1} usually states that "there are some meaningful findings".

t tests

t-test is very frequently used in NLP. Some problems that can be studied by t-test include:

Q1: Does Elon send tweets of 100 words long?
Q2: I added a layer to the neural network. Is the prediction accuracy better than the baseline?

Q3: A group of participants try a recipe for a month. Do their weights change?

Sample vs. population

Samples are known to you, but the population is not.
Q1: Does Elon send tweets of 100 words long?

A sample is an event "observe a tweet".
The population is the random variable "Elon sends tweets".
Recall: "Darth Vader saying something vs. what DV says"

One-sample t test

Does Elon send tweets of 100 words long?
H_{1} : The population mean is different from 100.
H_{0} : Otherwise. There's no new finding here.
Compare the sample mean (average tweet length of a sample of e.g., $\mathrm{N}=50$ Elon tweets) with the hypothetical population mean ($\mu=100$).
from scipy.stats import ttest_1samp
$\mathrm{t}, \mathrm{p}=$ ttest_1samp(lengths, popmean=100)
Note 1: The true population mean is unknown.

One-sample t test

from scipy.stats import ttest_1samp
t, p = ttest_1samp(lengths, popmean=100)

- Note 2: We need to assume the population is normally distributed.
- You can double check by Shapiro-Wilks test (also in scipy.stats package)
- If the population does not follow normal distribution, use Mann-Whitney U test instead.
- As an exploratory analysis, just do a quantile-quantile plot (Q-Q plot) against a normal distribution.

One-sample t test

from scipy.stats import ttest_1samp
t, $\mathrm{p}=$ ttest_1samp(lengths, popmean=100)

- Note 3: The p value means, approximately, how likely is the sample mean equal 100.
- $\mathrm{p}<0.05$: reject the null hypothesis H_{0}.
- Otherwise: we don't have sufficient evidence to reject H_{0}.
- Note 4: The degree-of-freedom equals $N-1$.
- For details, please refer to a statistics course.

One-sample t test

- Note 5: The alternative hypotheses can differ. H_{0} means "otherwise" in all cases.
t, $\mathrm{p}=$ ttest_1samp(lengths, popmean=100, alternative="two-sided")
- H_{1} : the population mean is different from 100.
- Two-sided t-test is the default in ttest_1samp.
t, p = ttest_1samp(lengths, popmean=100, alternative="greater")
- H_{1} : the population mean is greater than 100.
t, p = ttest_1samp(lengths, popmean=100, alternative="less")
- H_{1} : the population mean is less than 100.

Two-sample t test

I added a layer to the neural network. Is the prediction accuracy better than the baseline?
H_{1} : Yes. The new configuration has higher accuracy. H_{0} : Otherwise. There's no new finding here.

Collect the samples (accuracy from N_{1} experiments) using the new and N_{2} from the old configuration.
from scipy.stats import ttest_ind $\mathrm{t}, \mathrm{p}=\mathrm{ttest}$ _ind(old_results, new_results)

Two-sample t test

from scipy.stats import ttest_ind
t, $p=$ ttest_ind(old_results, new_results)

- Note 1: The population means of both populations are unknown.
- Note 2: The two populations should be independent.
- Note 3: The p value means, approximately, how likely the two population means are equal.
- p<0.05: reject H_{0}
- Note 4: The degree-of-freedom equals $N_{1}+N_{2}-2$

Paired t test

A group of N participants try a recipe for a month. Do their weights change?
H_{1} : Yes. This recipe changes the weights.
H_{0} : Otherwise.
Collect the participants' weights before and after the month, and plug in the formula:
from scipy.stats import ttest_rel $\mathrm{t}, \mathrm{p}=$ ttest_rel(before_weights, after_weights)

Paired t test

from scipy.stats import ttest_rel
t, $p=$ ttest_rel(before_weights, after_weights)

- Note 1: The degree of freedom is $N-1$
- Note 2: Paired t-test is equivalent to one-sample t test of the weight differences against 0 .
- Note 3: The p value means, approximately, how likely the difference is 0 .
- p<0.05: reject H_{0}.
- Note 4: If we incorrectly use two-sample t test when there are obvious one-to-one correspondence between groups, then the p values could be inflated.

Summary: Types of t-tests

- One-sample t-test: whether the population mean equals μ.
- Population mean X is a random variable.
- scipy.stats.ttest_1samp
- Two-sample t-test: whether the mean of two populations, X and Y, equal each other.
- scipy.stats.ttest_ind
- Paired t-test: whether $X-Y$ equals a known value μ.
- scipy.stats.ttest_rel

Multiple comparisons

- Imagine you're flipping a coin to see if it's fair. You claim that if you get 'heads' in $9 / 10$ flips, it's biased.
- Assuming H_{0}, the coin is fair, the probability that a fair coin would come up heads ≥ 9 out of 10 times (i.e., appear biased) is:

$$
(10+1) \times 0.5^{10}=0.0107
$$

Number of ways 9 Number of ways all 10 flips are heads flips are heads

Multiple comparisons

- But imagine that you're simultaneously testing 173 coins you're doing 173 (multiple) comparisons.
- If you want to see if a specific chosen coin is fair, you still have only a 1.07% chance that it will appear biased.
- But if you don't preselect a coin, what is the probability that none of these fair coins will accidentally appear biased?

$$
(1-0.0107)^{173} \approx 0.156
$$

- If you're testing 1000 coins?

$$
(1-0.0107)^{1000} \approx 0.0000213
$$

Multiple comparisons

- The more tests you conduct with a statistical test, the more likely you are to accidentally find spurious (incorrect) significance accidentally.
- Bonferroni correction is an adjustment method:
- Divide your level of significance required α, by the number of comparisons.
- E.g., if $\alpha=0.05$, and you're doing 173 comparisons, each would need $p<\frac{0.05}{173} \approx 0.00029$ to be considered significant.

P-hacking

- Once you get a result, do not do any of the following to try to increase the significance:
- Re-sample the data.
- Change one-tailed test to two-tailed tests.
- Change the type of tests and pick a significant one.
- These are called "p-hacking".
- The harm of p-hacking? "Discovery of false knowledge".
- If a statistical test leads to insignificant results, just say "the result is not significant".
- Perhaps also report the p value in your report.

Lecture review questions

By the end of this lecture, you should be able to:

- Describe statistical tests.
- Describe and carry out t-test.
- Check data for the assumptions of t-tests.
- Identify different types of t-tests and know when to use which test.
- Describe the multiple comparison problem and adjust for the problem.
- Be familiar with p-hacking, and its harm.
- Anonymous feedback form: https://forms.gle/W3i6AHaE4uRx2FAJA

