

## Entropy and Decisions



## Volunteer note-taker

- Upload notes for students registered with AS
- You:
- Make a positive contribution to their academic success
- Improve your note-taking skills
- Maintain your class attendance
- Get a swanky Certificate of Appreciation
- Check Quercus announcement or UofT's Student Life Volunteer Note Taking page


## Entropy

## LMs and Information Theory

- LMs may be evaluated extrinsically through their embedded performance on other tasks
- An LM may be evaluated intrinsically according to how accurately it predicts language
- Information Theory was developed in the 1940s for data compression and transmission
- Many of the concepts, chiefly entropy, apply directly to LMs


## Information

- Imagine Darth Vader is about to say either "yes" or "no" with equal probability.
- You don't know what he'll say.
- You have a certain amount of uncertainty - a lack of information.



## Information

- Imagine you then observe Darth Vader saying "no"
- You'd be surprised: he could've said "yes"
- Your uncertainty is gone; you've received information.
- How much information do you receive about event $x$ when you observe it?



## Information

- Imagine communicating the outcome in binary
- The amount of information is the size of the message
- What's the minimum, average number of bits needed to encode any outcome?
- Answer: 1
- Example:



## Information

- What about 4 equiprobable words?

- In general $S(x)=\log _{2}\left(\frac{1}{P(x)}\right)=-\log _{2} P(x)$


## Information

- Imagine Darth Vader is about to roll a fair die.
- You have more uncertainty about an event because there are more (equally probable) possibilities.
- You receive more information when you observe it.
- You are more surprised by any given outcome.


$$
\begin{aligned}
S(x) & =\log _{2} \frac{1}{P(x)} \\
& =\log _{2} \frac{1}{1 / 6} \approx 2.58 \mathrm{bits}
\end{aligned}
$$

## Information can be additive

- One property of $\mathrm{S}(x)=\log _{2} \frac{1}{P(x)}$ is additivity.
- From $k$ independent events $x_{1} \ldots x_{k}$ :
- Does $S\left(x_{1} \ldots x_{k}\right)=S\left(x_{1}\right)+S\left(x_{2}\right)+\cdots+S\left(x_{k}\right)$ ?
- The answer is yes!

$$
\begin{aligned}
& S\left(x_{1} \ldots x_{k}\right)=\log _{2} \frac{1}{P\left(x_{1} \ldots x_{k}\right)} \\
& =\log _{2} \frac{1}{P\left(x_{1}\right) \ldots P\left(x_{k}\right)}=\log _{2} \frac{1}{P\left(x_{1}\right)}+\cdots+\log _{2} \frac{1}{P\left(x_{k}\right)} \\
& =S\left(x_{1}\right)+S\left(x_{2}\right)+\cdots+S\left(x_{k}\right)
\end{aligned}
$$

## Events with unequal information

- Events are not always equally likely
- Surprisal will therefore be dependent on the event
- How surprising is the distribution overall?

- Suppose you still have 6 outcomes that are possible - but you're fairly sure it will be ' $N o$ '.
- We expect to be less surprised on average

| $\square$ Yes (0.1) | $\square$ No (0.7) |
| :--- | :--- |
| $\square$ Maybe (0.04) | $\square$ Sure (0.03) |

$\square$ Darkside (0.06) ■ Destiny (0.07)

## Entropy

- Entropy: n. the average uncertainty/information/surprisal of a (discrete) random variable $X$.

$$
H(X)=\underbrace{\sum_{x} P(x) \log _{2} \frac{1}{P(x)}}_{\text {Expectation over } X}
$$

- A lower bound on the average number of bits necessary to encode $X$ (more on this later)


## Entropy - examples



$$
\begin{aligned}
& H(X)=\sum_{i} p_{i} \log _{2} \frac{1}{p_{i}} \\
& =0.7 \log _{2}(1 / 0.7)+0.1 \log _{2}(1 / 0.1)+\cdots \\
& =1.542 \text { bits }
\end{aligned}
$$

There is less average uncertainty when the probabilities are 'skewed'.

$$
H(X)=\sum_{i} p_{i} \log _{2} \frac{1}{p_{i}}=6\left(\frac{1}{6} \log _{2} \frac{1}{1 / 6}\right)
$$

$=2.585$ bits

## Entropy characterizes the distribution

- Flatter distributions $\Rightarrow$ higher entropy $\Rightarrow$ hard to predict
- Peaky distributions $\Rightarrow$ lower entropy $\Rightarrow$ easy to predict




## Bounds on entropy

- Maximum: uniformly distributed $X_{1}$. Given $V$ choices,

$$
H\left(X_{1}\right)=\sum_{i} p_{i} \log _{2} \frac{1}{p_{i}}=\sum_{i} \frac{1}{V} \log _{2} \frac{1}{1 / V}=\log _{2} V
$$

- Minimum: only one choice, $H\left(X_{2}\right)=p_{i} \log _{2} \frac{1}{p_{i}}=1 \operatorname{lof}_{2}^{0} 1=0$




## Coding with fewer bits is better

- If we want to transmit Vader's words efficiently, we can encode them so that more probable words require fewer bits.
- On average, fewer bits will need to be transmitted.


| Word <br> (sorted) | Linear <br> Code | Probabil <br> ity | Huffman <br> Code |
| :--- | :--- | :--- | :--- |
| No | 000 | 0.7 | 0 |
| Yes | 001 | 0.1 | 100 |
| Destiny | 010 | 0.07 | 101 |
| Darkside | 011 | 0.06 | 110 |
| Maybe | 100 | 0.04 | 1111 |
| Sure | 101 | 0.03 | 1110 |

Average codelength (Huffman) $=1 * 0.7+3^{*}(0.1+.07+.06)+$ $4^{*}(.04+.03)=1.67$ bits $>1.54$ bits $\approx H(X)$

## The entropy rate of language

- Can we use entropy to measure how predictable language is?
- Imagine that language follows an LM $P$ which infinitely generates one word after another: $X=X_{1}, X_{2}, \ldots$
- A corpus $c$ is a prefix of $x$
- Uh oh: $H(X)=\infty$
- Instead, we take the per-word entropy rate

$$
H_{\text {rate }}(X)=\lim _{N \rightarrow \infty} \frac{1}{N} H\left(X_{1}, \ldots, X_{N}\right) \leq \log _{2} V
$$

- How do we handle more than one variable?
- How do we evaluate $P(x)$ ?


## Entropy of several variables

- Consider the vocabulary of a meteorologist describing Iemperature and Wetness.
- Temperature $\in\{\text { hot, mild, cold }\}^{\infty} T \in\{1,2,3\}$
- Wetness $\in\{d r y$, wet $\}$

$$
\begin{array}{lc}
P(W=\text { dry })=0.6, & \boldsymbol{H}(W)=0.6 \log _{2} \frac{1}{0.6}+0.4 \log _{2} \frac{1}{0.4}=\mathbf{0 . 9 7 0 9 5 1} \text { bits } \\
P(W=\text { wet })=0.4 & \\
P(T=\text { hot })=0.3, & \boldsymbol{H}(T)=0.3 \log _{2} \frac{1}{0.3}+0.5 \log _{2} \frac{1}{0.5}+0.2 \log _{2} \frac{1}{0.2}=\mathbf{1 . 4 8 5 4 8} \text { bits } \\
P(T=\text { mild })=0.5, & \text { D. THT Und } T \text { mennt indennndent }
\end{array}
$$

But $W$ and $T$ are not independent,

$$
P(W, T) \neq P(W) P(T)
$$

## Joint entropy

- Joint Entropy: $n$. the average amount of information needed to specify multiple variables simultaneously.

$$
H(X, Y)=\sum_{x} \sum_{y} p(x, y) \log _{2} \frac{1}{p(x, y)}
$$

- Hint: this is very similar to univariate entropy - we just replace univariate probabilities with joint probabilities and sum over everything.


## Entropy of several variables

- Consider joint probability, $P(W, T)$

|  | cold | mild | hot |  |
| :---: | :---: | :---: | :---: | :---: |
| dry | 0.1 | 0.4 | 0.1 | 0.6 |
| wet | 0.2 | 0.1 | 0.1 | 0.4 |
|  | 0.3 | 0.5 | 0.2 | 1.0 |

- Joint entropy, $H(W, T)$, computed as a sum over the space of joint events $(W=w, T=t)$
$H(W, T)=0.1 \log _{2} 1 / 0.1+0.4 \log _{2} 1 / 0.4+0.1 \log _{2} 1 / 0.1$

$$
+0.2 \log _{2} 1 / 0.2+0.1 \log _{2} 1 / 0.1+0.1 \log _{2} 1 / 0.1=2.32193 \text { bits }
$$

Notice $H(W, T) \approx 2.32<2.46 \approx H(W)+H(T)$

## Entropy given knowledge

- In our example, joint entropy of two variables together is lower than the sum of their individual entropies

$$
\cdot H(W, T) \approx 2.32<2.46 \approx H(W)+H(T)
$$

- Why?
- Information is shared among variables
- There are dependencies, e.g., between temperature and wetness.
- E.g., if we knew exactly how wet it is, is there less confusion about what the temperature is ... ?


## Conditional entropy

- Conditional entropy: $n$. the average amount of information needed to specify one variable given that you know another.

$$
H(Y \mid X)=\sum_{x \in X} p(x) H(Y \mid X=x)
$$

- Comment: this is the expectation of $\mathrm{H}(\mathrm{Y} \mid \mathrm{X})$, w.r.t. x.


## Entropy given knowledge

- Consider conditional probability, $P(T \mid W)$



## Entropy given knowledge

- Consider conditional probability, $P(T \mid W)$

| $\boldsymbol{P}(\boldsymbol{T} \mid \boldsymbol{W})$ | $\boldsymbol{T}=$ cold | mild | hot |  |
| :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{W}=$ dry | $1 / 6$ | $2 / 3$ | $1 / 6$ | 1.0 |
| wet | $1 / 2$ | $1 / 4$ | $1 / 4$ | 1.0 |

- $H(T \mid W=d r y)=H\left(\left\{\frac{1}{6}, \frac{2}{3}, \frac{1}{6}\right\}\right)=\mathbf{1} .25163$ bits
- $H(T \mid W=w e t)=H\left(\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right\}\right)=1.5$ bits
- Conditional entropy combines these:

$$
\begin{aligned}
& \boldsymbol{H}(\boldsymbol{T} \mid \boldsymbol{W}) \\
& =[p(W=d r y) H(T \mid W=d r y)]+[p(W=\text { wet }) H(T \mid W=w e t)] \\
& =\mathbf{1} .350978 \text { bits }
\end{aligned}
$$

## Equivocation removes uncertainty

- Remember $H(T)=1.48548$ bits
- $H(W, T)=2.32193$ bits
- $H(T \mid W)=1.350978$ bits

Entropy (i.e., confusion) about temperature is reduced if we know how wet it is outside.

- How much does $W$ tell us about $T$ ?
- $H(T)-H(T \mid W)=1.48548-1.350978 \approx 0.1345$ bits
- Well, a little bit!


## Perhaps $T$ is more informative?

- Consider another conditional probability, $P(W \mid T)$

| $P(W \mid T)$ | $T=$ cold | mild | hot |
| :---: | :---: | :---: | :---: |
| $W=$ dry | $0.1 / 0.3$ | $0.4 / 0.5$ | $0.1 / 0.2$ |
| wet | $0.2 / 0.3$ | $0.1 / 0.5$ | $0.1 / 0.2$ |
|  | 1.0 | 1.0 | 1.0 |

- $H(W \mid T=$ cold $)=H\left(\left\{\frac{1}{3}, \frac{2}{3}\right\}\right)=0.918295$ bits
- $H(W \mid T=$ mild $)=H\left(\left\{\frac{4}{5}, \frac{1}{5}\right\}\right)=0.721928$ bits
- $H(W \mid T=h o t)=H\left(\left\{\frac{1}{2}, \frac{1}{2}\right\}\right)=1$ bit
- $H(W \mid T)=0.8364528$ bits


## Equivocation removes uncertainty

- $H(T)=1.48548$ bits
- $H(W)=0.970951$ bits
- $H(W, T)=2.32193$ bits
- $H(T \mid W)=1.350978$ hits
- $\boldsymbol{H}(T)-\boldsymbol{H}(T \mid W) \approx 0.1345$ bits

Previously computed

- How much does $T$ tell us about $W$ on average?
- $\boldsymbol{H}(W)-\boldsymbol{H}(W \mid T)=0.970951-0.8364528$ $\approx 0.1345$ bits
- Interesting ... is that a coincidence?


## Mutual information

- Mutual information: n. the average amount of information shared between variables.

$$
\begin{aligned}
I(X ; Y) & =H(X)-H(X \mid Y)=H(Y)-H(Y \mid X) \\
& =\sum_{x, y} p(x, y) \log _{2} \frac{p(x, y)}{p(x) p(y)}
\end{aligned}
$$

- Hint: The amount of uncertainty removed in variable $X$ if you know $Y$.
- Hint2: If $X$ and $Y$ are independent, $p(x, y)=p(x) p(y)$, then
$\log _{2} \frac{p(x, y)}{p(x) p(y)}=\log _{2} 1=0 \forall x, y$ - there is no mutual information!


## Relations between entropies



$$
H(X, Y)=H(X)+H(Y)-I(X ; Y)
$$

## Returning to language

- Recall $H_{\text {rate }}(X)=\lim _{N \rightarrow \infty} \frac{1}{N} H\left(X_{1}, X_{2}, \ldots, X_{N}\right)$
- Now we have

$$
H\left(X_{1}, X_{2}, \ldots, X_{N}\right)=\sum_{x_{1}, \ldots, x_{N}} P\left(x_{1}, \ldots, x_{N}\right) \log _{2} \frac{1}{P\left(x_{1} \ldots, x_{N}\right)}
$$

- But we still don't know how to compute $P(\ldots$ )
- We will approximate the log terms with our trained LM $Q$


## Cross-entropy

- Cross-entropy measures the uncertainty of a distribution $Q$ of samples drawn from $P$

$$
H(X ; Q)=\sum_{x} P(x) \log _{2} \frac{1}{Q(x)}
$$

- As $Q$ nears $P$, cross-entropy nears entropy
- We pay for this mismatch with added uncertainty
- More on this shortly


## Estimating cross-entropy

- We can evaluate $Q$ but not $P$
- But corpus $\mathrm{c}=x_{1}, \ldots, x_{N}$ is drawn from $P$ !
- Let $s_{1}, s_{2}, \ldots, s_{M}$ be $c$ 's sentences where $\sum_{m}\left|s_{m}\right|=N$

$$
\begin{aligned}
& H_{\text {rate }}(X) \approx \frac{1}{N} H\left(X_{1}, \ldots X_{N}\right) \\
& \approx \frac{1}{N} H\left(X_{1}, \ldots X_{N} ; Q\right) \\
& \approx \frac{1}{N} \log _{2} \frac{1}{Q(c)} \\
&\left.\approx \frac{1}{N} \sum_{m=1}^{M} \log _{2} \frac{1}{Q\left(s_{m}\right)}=\text { (large } N\right) \\
&=\text { Negative Log Likelihood (NLL) }
\end{aligned}
$$

- Aside: With time invariance, ergodicity, and $Q=P$, NLL approaches $H_{\text {rate }}$ as $N \rightarrow \infty$


## Quantifying the approximation

- How well does cross-entropy approximate entropy?
- Well if $P$ and $Q$ are close
- Poorly if $P$ and $Q$ are far apart
- If we can quantify the "closeness" of $P$ and $Q$, we can quantify how good/bad our NLL estimate is


## Relatedness of two distributions

- How similar are two probability distributions?
- e.g., Distribution $P$ learned from Kylo Ren Distribution $Q$ learned from Darth Vader



## Relatedness of two distributions

- An optimal code based on Vader $(Q)$ instead of Kylo $(P)$ will be less efficient at coding symbols that Kylo will say.
- What is the average number of extra bits required to code symbols from $P$ when using a code based on $Q$ ?




## Kullback-Leibler divergence

- KL divergence: $n$. the average log difference between the distributions $P$ and $Q$, relative to $Q$. a.k.a. relative entropy. caveat: we assume $0 \log 0=0$



## Kullback-Leibler divergence

$$
D_{K L}(P \| Q)=\sum_{x} P(x) \log _{2} \frac{P(x)}{Q(x)}
$$

- It is somewhat like a 'distance' :
- $D_{K L}(P \| Q) \geq 0 \quad \forall P, Q$
- $D_{K L}(P \| Q)=0$ iff $P$ and $Q$ are identical.
- It is not symmetric, $D_{K L}(P \| Q) \neq D_{K L}(Q \| P)$
- Aside: normally computed in base $e$


## KL and cross-entropy

- Manipulating KL, we get

$$
\begin{aligned}
& D_{K L}(P \| Q) \\
& =\sum_{x} P(x) \log _{2} \frac{1}{Q(x)}-\sum_{x} P(x) \log _{2} \frac{1}{P(x)} \\
& =H(X ; Q)-H(X) \geq 0
\end{aligned}
$$

- Therefore,

$$
\begin{aligned}
\mathrm{H}_{\text {rate }}(\mathrm{X}) & \approx \frac{1}{N} H\left(X_{1}, \ldots X_{N}\right) \\
& \leq \frac{1}{N} H\left(X_{1}, \ldots X_{N} ; Q\right) \approx N L L(c ; Q)
\end{aligned}
$$

- The NLL is an approximate upper bound on $\mathrm{H}_{\text {rate }}(\mathrm{X})$


## Perplexity

- The intrinsic quality of an LM is often quantified by its perplexity on held-out data $c$ by exponentiating its NLL
- A uniform $Q$ over a vocabulary of size $V$ gives $P P(c ; Q)=V$
- PP is sort of like an "effective" vocabulary size
- If an LM $Q$ has a lower PP than $Q^{\prime}$ (for large $N$ ), then
- $Q$ better predicts $c$
- $D_{K L}(P \| Q)<D_{K L}\left(P \| Q^{\prime}\right)$
- $P P(c ; Q)$ is a tighter bound on $2^{H_{\text {rate }}(X)}$


## Decisions

## Deciding what we know

- (Cross-)entropy, KL divergence, and perplexity can all be used to justify a preference for one method/idea over another
- " $Q$ is a better language model than $Q^{\prime \prime}$
- Shallow statistics are often not enough to be truly meaningful.
- "My ASR system is 95\% accurate on my test data. Yours is only 94.5\% accurate! Heh heh heh"
- What if the test data was biased somehow?
- What if our estimates were inaccurate due to simple randomness?
- We need tests to increase our confidence in our results.


## (Alleged) procedure of a statistical

## test

Step 1: State a hypothesis (and choose a test)

- Decide on the null hypothesis $H_{0}$

Step 2: Compute some test statistics and associated p -value

- Such as the $t$-statistic

Step 3: Reject $H_{0}$ if $p \leq \alpha$, otherwise do not reject it

- Significance level $\alpha$ usually $\leq 0.05$
- If you can reject $H_{0}$, then the result is significant


## Null hypothesis and $p$-value

- Null hypothesis $H_{0}$ usually states that "there is no effect".
- It is the negation of what you hope for
- The phrasing of "there is no effect" dictates the appropriate test (and its negation)
- "The sample is drawn from a normal distribution with some fixed mean"
- You want to cast doubt on the plausibility of $H_{0}$
- It's very unlikely that this measurement would be observed randomly under the $H_{0}$
- The $p$-value of is the probability that the measured effect occurs under $H_{0}$ by chance


## Statistical tests

- Here are some popular tests (no need to memorize)
- $\bar{X}=\frac{1}{N} \sum_{n} X_{n}$ is the sample mean

| Test | $H_{0}$ | Example use case |
| :--- | :--- | :--- |
| Two-sided, one- <br> sample $t$ test | $\bar{X} \sim \mathcal{N}(\mu, \sigma)$ for known $\mu$, <br> unknown $\sigma$ | Whether Elon's average tweet <br> length is different from the <br> average user's $(\mu=100)$ |
| One-sided, two- <br> sample $t$ test | $\bar{A} \sim \mathcal{N}\left(\mu_{A}, \sigma\right), \bar{B} \sim \mathcal{N}\left(\mu_{B}, \sigma\right)$ <br> for unknown $\mu_{A}, \mu_{B}, \sigma$ where <br> $\mu_{A} \leq \mu_{B}$ (or $\left.\mu_{A} \geq \mu_{B}\right)$ | Whether ASR system A (trained <br> $N$ times) makes fewer mistakes <br> than B (trained $N$ times) |
| One-way ANOVA | $\bar{X}_{1}, \bar{X}_{2}, \ldots \sim \mathcal{N}(\mu, \sigma)$ for <br> unknown $\mu, \sigma$ | Whether network architecture <br> predicts accuracy |
| One-sided Mann <br> Whitney U test | $P\left(A_{n}>B_{n^{\prime}}\right) \leq 0.5$ (or $\left.\geq 0.5\right)$ | Whether ASR system A (trained <br> $N$ times) makes fewer mistakes <br> than B (trained $N$ times) |

## Pitfall 1: parametric assumptions

- Parametric tests make assumptions about the parameters and distribution of RVs
- Often normally distributed with some fixed variance
- If untrue, $H_{0}$ could be rejected for spurious reasons
- For smaller $N$, must first pass tests of normality
- If non-normal, must use non-parametric tests
- Tend to be less powerful ( $p$-values are higher)


## Pitfall 2: multiple comparisons

- Imagine you're flipping a coin to see if it's fair. You claim that if you get 'heads' in 9/10 flips, it's biased.
- Assuming $H_{0}$, the coin is fair, the probability that one fair coin would come up heads $\geq 9$ out of 10 times is

$$
p_{1}=11 \times 0.5^{10} \approx 0.01
$$

- But the probability that any of $\mathbf{1 7 3}$ coins hits $\geq \frac{9}{10}$ is

$$
p_{173}=1-\left(1-p_{1}\right)^{173} \approx 0.84
$$

- The more tests you conduct with a statistical test, the more likely you are to accidentally find spurious (incorrect) significance accidentally.


## Pitfall 3: effect size

- Just because an effect is reliably measured doesn't make it important
- Even $\mu_{1}=1$ and $\mu_{2}=1.00000000000001$ can be significantly different
- One must decide whether the purported difference is worth the extra attention
- There are various measures of effect size to support this


## More information

- This is a cursory introduction to experimental statistics and hypothesis testing
- You should be aware of their key concepts and some of their pitfalls
- Before you run your own experiments, you should do one or more of:
- Take STA248 "Statistics for computer scientists"
- Look up stats packages for R, Python
- Read a book
- Beg a statistician for help


## Appendix

Everything beyond this slide is not on the exam.

## Samples, events, and probabilities

- Samples are the unique outcomes of an experiment
- The set of all samples is the sample space
- Examples:
- What DV could say ("yes" or "no")
- The face-up side of a die (1..6)
- Events are subsets of the sample space assigned a probability
- This is usually any subset of the sample space
- Examples:
- \{"yes"\}, \{"no"\}, \{"yes", "no"\}, $\varnothing$
- The face-up side is even
- The function assigning probabilities to events is the probability function


## Random variables

- Random variables (RVs) are real-valued functions on samples/outcomes of a probability space
- The RV is usually upper-case $X$ while its value is lower $x$
- Examples:
- A function returning the sum of face-up sides of $N$ dice
- A function counting a discrete sample space
- E.g. "Yes" = 1, "No" = 2
- Like a programming variable, but with uncertainty
- Let $X$ be defined over samples $\omega$ and $a, b$ real
- $Z=a X+b$ means $\forall \omega: Z(\omega)=a X(\omega)+b$
- $X=x$ occurs with some probability $P(x)$


## PMFs and laziness

- A probability mass function (pmf) sums the probabilities of samples mapped to a given RV value

$$
P(X=x)=\sum_{\omega \in \Omega_{x}} P(\{\omega\}), \Omega_{x}=\{\omega: X(\omega)=x\}
$$

- It is often expressed as $P(x)$ or $p(x)$
- If the values of $X$ are 1-to-1 with samples, the pmf is easily confused with the probability function
- $P(x)$ could be either
- $P(X=x)$ is the pmf
- $P(X=$ yes $)$ is an abuse of notation


## Expected value

- The expected value of an RV is its average (or mean) value over the distribution
- More formally, the expected value of $X$ is the arithmetic mean of its values weighted by the pmf

$$
E_{X}[X]=\sum_{x} P(X=x) x
$$

- E.[•] is a linear operator
- $E_{X, Y}[a X+Y+b]=a E_{X}[X]+E_{Y}[Y]+b$


## Expected value - examples

- What is the average sum of face-up values of 2 fair, 6 -sided dice?
- Let $X_{2}$ be the sum

| $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\{1,1\}$ | $\{2,1\}$ | $\{3,1\}$ | $\{4,1\}$ | $\{5,1\}$ | $\{6,1\}$ | $\{6,2\}$ | $\{6,3\}$ | $\{6,4\}$ | $\{6,5\}$ | $\{6,6\}$ |
|  | $\{1,2\}$ | $\{2,2\}$ | $\{3,2\}$ | $\{4,2\}$ | $\{5,2\}$ | $\{5,3\}$ | $\{5,4\}$ | $\{5,5\}$ | $\{5,6\}$ |  |
|  |  | $\{1,3\}$ | $\{2,3\}$ | $\{3,3\}$ | $\{4,3\}$ | $\{4,4\}$ | $\{4,5\}$ | $\{4,6\}$ |  |  |
|  |  |  | $\{1,4\}$ | $\{2,4\}$ | $\{3,4\}$ | $\{3,5\}$ | $\{3,6\}$ |  |  |  |
|  |  |  |  | $\{1,5\}$ | $\{2,5\}$ | $\{2,6\}$ |  |  |  |  |
|  |  |  |  |  | $\{1,6\}$ |  |  |  |  |  |

- $E\left[X_{2}\right]=\sum_{x=2}^{12} P\left(X_{2}=x\right) x=\frac{1}{36} 2+\frac{2}{36} 3+\cdots=7$
- Alternatively, let $X_{2}=2 X_{1}$
- $E\left[2 X_{1}\right]=2 E\left[X_{1}\right]=2 \times 3.5=7$

