

Entropy and Decisions

the second states to

in the

CSC401/2511 – Natural Language Computing – Winter 2024 University of Toronto

Volunteer note-taker

- Upload notes for students registered with AS
- You:
 - Make a positive contribution to their academic success
 - Improve your note-taking skills
 - Maintain your class attendance
 - Get a swanky Certificate of Appreciation
- Check Quercus announcement or UofT's Student Life Volunteer Note Taking page

Entropy

CSC401/2511 – Winter 2024

LMs and Information Theory

- LMs may be evaluated **extrinsically** through their embedded performance on other tasks
- An LM may be evaluated intrinsically according to how accurately it predicts language
- Information Theory was developed in the 1940s for data compression and transmission
- Many of the concepts, chiefly entropy, apply directly to LMs

- Imagine Darth Vader is about to say either "yes" or "no" with equal probability.
 - You don't know what he'll say.
- You have a certain amount of uncertainty a lack of information.

Darth Vader is © Disney And the prequels and Rey/Finn Star Wars suck

- Imagine you then observe Darth Vader saying "no"
- You'd be surprised: he could've said "yes"
- Your uncertainty is gone; you've received information.
- How much information do you receive about event x when you observe it?

- Imagine communicating the outcome in binary
- The amount of information is the size of the message
- What's the minimum, average number of bits needed to encode any outcome?
- Answer: 1
- Example:

• What about 4 equiprobable words?

• In general
$$S(x) = \log_2\left(\frac{1}{P(x)}\right) = -\log_2 P(x)$$

- Imagine Darth Vader is about to roll a fair die.
- You have more uncertainty about an event because there are more (equally probable) possibilities.
- You receive more information when you observe it.
- You are more **surprised** by any given outcome.

Information can be additive

- One property of $S(x) = \log_2 \frac{1}{P(x)}$ is additivity.
- From kindependent events $x_1 \dots x_k$:
 - Does $S(x_1 \dots x_k) = S(x_1) + S(x_2) + \dots + S(x_k)$?
- The answer is yes!

$$S(x_1 \dots x_k) = \log_2 \frac{1}{P(x_1 \dots x_k)}$$

= $\log_2 \frac{1}{P(x_1) \dots P(x_k)} = \log_2 \frac{1}{P(x_1)} + \dots + \log_2 \frac{1}{P(x_k)}$
= $S(x_1) + S(x_2) + \dots + S(x_k)$

Events with unequal information

- Events are not always equally likely
- Surprisal will therefore be dependent on the event
- How surprising is the distribution overall?

- Suppose you still have 6
 outcomes that are possible but
 you're fairly sure it will be 'No'.
- We expect to be less surprised on average
- Yes (0.1)
 No (0.7)
 Maybe (0.04)
 Sure (0.03)
 Darkside (0.06)
 Destiny (0.07)

Entropy

• Entropy: *n*. the average uncertainty/information/surprisal of a (discrete) random variable *X*.

$$H(X) = \sum_{x} P(x) \log_2 \frac{1}{P(x)}$$
Expectation over X

• A lower bound on the average number of bits necessary to encode X (more on this later)

Entropy – examples

$$H(X) = \sum_{i} p_i \log_2 \frac{1}{p_i}$$

= 0.7 log₂(1/0.7) + 0.1 log₂(1/0.1) + ...
= 1.542 bits

There is **less** average uncertainty when the probabilities are 'skewed'.

$$H(X) = \sum_{i} p_i \log_2 \frac{1}{p_i} = 6\left(\frac{1}{6}\log_2 \frac{1}{1/6}\right)$$

= 2.585 bits

Entropy characterizes the distribution

- Flatter distributions \Rightarrow higher entropy \Rightarrow hard to predict
- **Peaky** distributions \Rightarrow **lower** entropy \Rightarrow **easy** to predict

Bounds on entropy

• Maximum: uniformly distributed X_1 . Given V choices,

$$H(X_1) = \sum_{i} p_i \log_2 \frac{1}{p_i} = \sum_{i} \frac{1}{V} \log_2 \frac{1}{1/V} = \log_2 V$$

• Minimum: only one choice, $H(X_2) = p_i \log_2 \frac{1}{p_i} = 1 \log_2 \frac{1}{2} = 0$

Coding with fewer bits is better

- If we want to transmit Vader's words efficiently, we can encode them so that more probable words require fewer bits.
 - On average, fewer bits will need to be transmitted.

Word (sorted)	Linear Code	Probabil ity	Huffman Code
No	000	0.7	0
Yes	001	0.1	100
Destiny	010	0.07	101
Darkside	011	0.06	110
Maybe	100	0.04	1111
Sure	101	0.03	1110

Average codelength (Huffman) = 1*0.7+3*(0.1+.07+.06)+4*(.04+.03) = 1.67 bits > 1.54 bits $\approx H(X)$

The entropy rate of language

- Can we use entropy to measure how predictable language is?
- Imagine that language follows an LM P which infinitely generates one word after another: $X = X_1, X_2, ...$
 - A corpus *c* is a prefix of *x*
- Uh oh: $H(X) = \infty$
- Instead, we take the per-word **entropy rate**

$$H_{rate}(X) = \lim_{N \to \infty} \frac{1}{N} H(X_1, \dots, X_N) \le \log_2 V$$

- How do we handle more than one variable?
- How do we evaluate P(x)?

Entropy of several variables

 $T \in \{1, 2, 3\}$

1733-23-155(1-155 M (1))。

- Consider the vocabulary of a meteorologist describing
 <u>Temperature and</u> <u>Wetness</u>.
 - <u>*T*</u>emperature ∈ {hot, mild, cold}
 - <u>W</u>etness ∈ {dry, wet}

$$P(W = dry) = 0.6,$$

 $P(W = wet) = 0.4$
 $H(W) = 0.6 \log_2 \frac{1}{0.6} + 0.4 \log_2 \frac{1}{0.4} = 0.970951$ bits

P(T = hot) = 0.3,P(T = mild) = 0.5,P(T = cold) = 0.2

$$H(T) = 0.3 \log_2 \frac{1}{0.3} + 0.5 \log_2 \frac{1}{0.5} + 0.2 \log_2 \frac{1}{0.2} = 1.48548$$
 bits

But W and T are *not* independent, $P(W,T) \neq P(W)P(T)$

Example from Roni Rosenfeld

Joint entropy

• Joint Entropy: *n.* the average amount of information needed to specify multiple variables simultaneously.

$$H(X,Y) = \sum_{x} \sum_{y} p(x,y) \log_2 \frac{1}{p(x,y)}$$

 Hint: this is very similar to univariate entropy – we just replace univariate probabilities with joint probabilities and sum over everything.

Entropy of several variables

• Consider joint probability, P(W,T)

	cold	mild	hot	
dry	0.1	0.4	0.1	0.6
wet	0.2	0.1	0.1	0.4
	0.3	0.5	0.2	1.0

 Joint entropy, H(W, T), computed as a sum over the space of joint events (W = w, T = t)

 $H(W,T) = 0.1 \log_2 \frac{1}{_{0.1}} + 0.4 \log_2 \frac{1}{_{0.4}} + 0.1 \log_2 \frac{1}{_{0.1}} + 0.2 \log_2 \frac{1}{_{0.2}} + 0.1 \log_2 \frac{1}{_{0.1}} + 0.1 \log_2 \frac{1}{_{0.1}} = 2.32193 \text{ bits}$

Notice $H(W, T) \approx 2.32 < 2.46 \approx H(W) + H(T)$

Entropy given knowledge

- In our example, joint entropy of two variables together is lower than the sum of their individual entropies
 - $H(W,T) \approx 2.32 < 2.46 \approx H(W) + H(T)$
- Why?
- Information is shared among variables
 - There are dependencies, e.g., between temperature and wetness.
 - E.g., if we knew **exactly** how **wet** it is, is there **less confusion** about what the **temperature** is ... ?

Conditional entropy

• Conditional entropy: *n.* the average amount of information needed to specify one variable given that you know another.

$$H(Y|X) = \sum_{x \in X} p(x)H(Y|X = x)$$

• **Comment**: this is the expectation of H(Y|X), w.r.t. x.

Entropy given knowledge

• Consider **conditional** probability, P(T|W)

	P(W,T)	T = cold	' = cold mild				
	W = dry	0.1	0.1 0.4		0.6		
	wet	0.2	0.1	0.1	0.4		
		0.2	1.0				
T	$\Gamma(W) = P(W,T)/P(W)$						
	P(T W)	T = cold	mild	hot			
	W = dry	0.1/0.6	0.4/0.6	0.1/0.6	1.0		
	wot	0.2/0.4	0.1/0.4	0.1/0.4	1 0		

 \boldsymbol{P}

Entropy given knowledge

• Consider **conditional** probability, P(T|W)

P(T W)	$T = \operatorname{cold}$	mild	hot	
W = dry	1/6	2/3	1/6	1.0
wet	1/2	1/4	1/4	1.0

- $H(T|W = dry) = H\left(\left\{\frac{1}{6}, \frac{2}{3}, \frac{1}{6}\right\}\right) = 1.25163$ bits
- $H(T|W = wet) = H\left(\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right\}\right) = 1.5$ bits
- Conditional entropy combines these:
 H(T|W)
 0.6
 [p(W = dry)H(T|W = dry)] + [p(W = wet)H(T|W = wet)]
 = 1.350978 bits

Equivocation removes uncertainty

- Remember H(T) = 1.48548 bits
- H(W,T) = 2.32193 bits
- H(T|W) = 1.350978 bits

Entropy (i.e., confusion) about
temperature is reduced if we know how wet it is outside.

- How much does W tell us about T?
 - $H(T) H(T|W) = 1.48548 1.350978 \approx 0.1345$ bits
 - Well, a little bit!

Perhaps T is more informative?

• Consider **another** conditional probability, P(W|T)

P(W T)	T = cold	mild	hot
W = dry	0.1/ <mark>0.3</mark>	0.4/ <mark>0.5</mark>	0.1/0.2
wet	0.2/ <mark>0.3</mark>	0.1/ <mark>0.5</mark>	0.1/0.2
	1.0	1.0	1.0

- $H(W|T = cold) = H\left(\left\{\frac{1}{3}, \frac{2}{3}\right\}\right) = 0.918295$ bits
- $H(W|T = mild) = H\left(\left\{\frac{4}{5}, \frac{1}{5}\right\}\right) = 0.721928$ bits
- $H(W|T = hot) = H\left(\left\{\frac{1}{2}, \frac{1}{2}\right\}\right) = 1$ bit
- H(W|T) = 0.8364528 bits

Equivocation removes uncertainty

- H(T) = 1.48548 bits
- H(W) = 0.970951 bits
- H(W, T) = 2.32193 bits
- H(T|W) = 1.350978 hits
- $H(T) H(T|W) \approx 0.1345$ bits

Previously computed

- How much does *T* tell us about *W* on average?
 - H(W) H(W|T) = 0.970951 0.8364528 $\approx 0.1345 \text{ bits}$
 - Interesting ... is that a coincidence?

Mutual information

 Mutual information: n. the average amount of information shared between variables.

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) = \sum_{x,y} p(x,y) \log_2 \frac{p(x,y)}{p(x)p(y)}$$

- **Hint**: The amount of uncertainty **removed** in variable *X* if you know *Y*.
- Hint2: If X and Y are independent, p(x, y) = p(x)p(y), then $\log_2 \frac{p(x,y)}{p(x)p(y)} = \log_2 1 = 0 \forall x, y - \text{there is no mutual information}!$

Relations between entropies

Returning to language

- Recall $H_{rate}(X) = \lim_{N \to \infty} \frac{1}{N} H(X_1, X_2, \dots, X_N)$
- Now we have

$$H(X_1, X_2, ..., X_N) = \sum_{x_1, ..., x_N} P(x_1, ..., x_N) \log_2 \frac{1}{P(x_1, ..., x_N)}$$

- But we still don't know how to compute P(...)
- We will approximate the log terms with our trained LM ${\it Q}$

Cross-entropy

• Cross-entropy measures the uncertainty of a distribution Q of samples drawn from P

$$H(X;Q) = \sum_{x} P(x) \log_2 \frac{1}{Q(x)}$$

- As Q nears P, cross-entropy nears entropy
- We pay for this mismatch with added uncertainty
 - More on this shortly

Estimating cross-entropy

- We can evaluate Q but not P
- But corpus $c = x_1, ..., x_N$ is drawn from P!
- Let $s_1, s_2, ..., s_M$ be c's sentences where $\sum_m |s_m| = N$ $H_{rate}(X) \approx \frac{1}{N} H(X_1, ..., X_N) \quad \leftarrow \text{(large } N\text{)}$ $\approx \frac{1}{N} H(X_1, ..., X_N; Q) \quad \leftarrow \text{(}Q \approx P\text{)}$ $\approx \frac{1}{N} \log_2 \frac{1}{Q(c)} \quad \rightleftharpoons \text{(see aside)}$ $\approx \frac{1}{N} \sum_{m=1}^M \log_2 \frac{1}{Q(s_m)} = \text{Negative Log Likelihood (NLL)}$
- Aside: With time invariance, ergodicity, and Q = P, NLL approaches H_{rate} as $N \to \infty$

CSC401/2511 - Winter 2024

Quantifying the approximation

• How well does cross-entropy approximate entropy?

- Well if *P* and *Q* are close
- **Poorly** if *P* and *Q* are far apart
- If we can quantify the "closeness" of *P* and *Q*, we can quantify how good/bad our NLL estimate is

Relatedness of two distributions

- How **similar** are two probability distributions?
 - e.g., Distribution *P* learned from *Kylo Ren* Distribution *Q* learned from *Darth Vader*

Relatedness of two distributions

- An optimal code based on Vader (*Q*) instead of Kylo (*P*) will be less *efficient* at coding symbols that Kylo will say.
- What is the average number of extra bits required to code symbols from P when using a code based on Q?

Kullback-Leibler divergence

KL divergence: n. the average log difference between the distributions P and Q, relative to Q.
 a.k.a. relative entropy.
 caveat: we assume 0 log 0 = 0

Kullback-Leibler divergence

$$D_{KL}(P||Q) = \sum_{x} P(x) \log_2 \frac{P(x)}{Q(x)}$$

- It is *somewhat* like a 'distance' :
 - $D_{KL}(P||Q) \ge 0 \quad \forall P, Q$
 - $D_{KL}(P||Q) = 0$ iff P and Q are identical.
- It is **not symmetric**, $D_{KL}(P||Q) \neq D_{KL}(Q||P)$
- Aside: normally computed in base *e*

KL and cross-entropy

• Manipulating KL, we get

$$D_{KL}(P||Q)$$

$$= \sum_{x} P(x) \log_2 \frac{1}{Q(x)} - \sum_{x} P(x) \log_2 \frac{1}{P(x)}$$

$$= H(X; Q) - H(X) \ge 0$$

• Therefore,

$$H_{\text{rate}}(\mathbf{X}) \approx \frac{1}{N} H(X_1, \dots X_N)$$

$$\leq \frac{1}{N} H(X_1, \dots X_N; Q) \approx NLL(c; Q)$$

• The NLL is an **approximate upper bound** on $H_{rate}(X)$

Perplexity

 The intrinsic quality of an LM is often quantified by its perplexity on held-out data c by exponentiating its NLL

$$PP(c;Q) = 2^{\frac{1}{N}\sum_{m=1}^{M}\log_2\frac{1}{Q(s_m)}} = \left(\prod_{m=1}^{M}\frac{1}{Q(s_m)}\right)^{1/N}$$

- A uniform Q over a vocabulary of size V gives PP(c; Q) = V
 - PP is sort of like an "effective" vocabulary size
- If an LM Q has a lower PP than Q' (for large N), then
 - Q better predicts c
 - $D_{KL}(P||Q) < D_{KL}(P||Q')$
 - PP(c; Q) is a tighter bound on $2^{H_{rate}(X)}$

Decisions

CSC401/2511 – Winter 2024

Deciding what we know

- (Cross-)entropy, KL divergence, and perplexity can all be used to justify a preference for one method/idea over another
 - "Q is a better language model than Q'"
- Shallow statistics are often not enough to be truly meaningful.
 - "My ASR system is 95% accurate on my test data. Yours is only 94.5% accurate! Heh heh heh"
 - What if the test data was **biased** somehow?
 - What if our estimates were inaccurate due to simple randomness?
- We need tests to increase our confidence in our results.

(Alleged) procedure of a statistical test

Step 1: State a hypothesis (and choose a test)

• Decide on the null hypothesis H_0

Step 2: Compute some test statistics and associated p-value

• Such as the *t*-statistic

Step 3: **Reject** H_0 if $p \leq \alpha$, otherwise **do not reject** it

- Significance level α usually ≤ 0.05
- If you can **reject** H_0 , then the result is **significant**

Null hypothesis and p-value

• Null hypothesis H_0 usually states that "there is no effect".

- It is the negation of what you hope for
- The phrasing of "there is no effect" dictates the appropriate test (and its negation)
 - "The sample is drawn from a normal distribution with some fixed mean"
- You want to **cast doubt** on the plausibility of H_0
 - It's very unlikely that this measurement would be observed randomly under the H_0
- The *p*-value of is the probability that the measured effect occurs under H₀ by chance

Statistical tests

• Here are **some** popular tests (**no need to memorize**)

• $\overline{X} = \frac{1}{N} \sum_{n} X_{n}$ is the sample mean

Test	H ₀	Example use case	
Two-sided, one- sample <i>t</i> test	$\overline{X} \sim \mathcal{N}(\mu, \sigma)$ for known μ , unknown σ	Whether Elon's average tweet length is different from the average user's ($\mu = 100$)	
One-sided, two- sample <i>t</i> test	$\bar{A} \sim \mathcal{N}(\mu_A, \sigma), \bar{B} \sim \mathcal{N}(\mu_B, \sigma)$ for unknown μ_A, μ_B, σ where $\mu_A \leq \mu_B$ (or $\mu_A \geq \mu_B$)	Whether ASR system A (trained <i>N</i> times) makes fewer mistakes than B (trained <i>N</i> times)	
One-way ANOVA	$ar{X}_1, ar{X}_2, \dots \sim \mathcal{N}(\mu, \sigma)$ for unknown μ, σ	Whether network architecture predicts accuracy	
One-sided Mann Whitney U test	$P(A_n > B_{n'}) \le 0.5 \text{ (or } \ge 0.5)$	Whether ASR system A (trained <i>N</i> times) makes fewer mistakes than B (trained <i>N</i> times)	

Pitfall 1: parametric assumptions

- Parametric tests make assumptions about the parameters and distribution of RVs
 - Often normally distributed with some fixed variance
- If **untrue**, *H*₀ could be **rejected** for spurious reasons
- For smaller *N*, must first pass tests of normality
- If non-normal, must use **non-parametric** tests
 - Tend to be less powerful (*p*-values are higher)

Pitfall 2: multiple comparisons

- Imagine you're flipping a coin to see if it's fair. You claim that if you get 'heads' in 9/10 flips, it's biased.
- Assuming H_0 , the coin is fair, the probability that **one** fair coin would come up heads \geq 9 out of 10 times is $p_1 = 11 \times 0.5^{10} \approx 0.01$
- But the probability that any of 173 coins hits $\geq \frac{9}{10}$ is $p_{173} = 1 - (1 - p_1)^{173} \approx 0.84$
- The more tests you conduct with a statistical test, the more likely you are to accidentally find spurious (incorrect) significance accidentally.

Pitfall 3: effect size

- Just because an effect is reliably measured doesn't make it important
 - Even $\mu_1 = 1$ and $\mu_2 = 1.0000000000001$ can be significantly different
- One must decide whether the purported difference is worth the extra attention
 - There are various measures of **effect size** to support this

More information

- This is a cursory introduction to experimental statistics and hypothesis testing
- You should be aware of their key concepts and some of their pitfalls
- Before you run your own experiments, you should do one or more of:
 - Take STA248 "Statistics for computer scientists"
 - Look up stats packages for R, Python
 - Read a book
 - Beg a statistician for help

Everything beyond this slide is **not** on the exam.

CSC401/2511 – Winter 2024

Samples, events, and probabilities

- Samples are the unique outcomes of an experiment
 - The set of all samples is the sample space
 - Examples:
 - What DV could say ("yes" or "no")
 - The face-up side of a die (1..6)
- Events are subsets of the sample space assigned a probability
 - This is usually *any* subset of the sample space
 - Examples:
 - {"yes"}, {"no"}, {"yes", "no"}, Ø
 - The face-up side is even
- The function assigning probabilities to events is the probability function

Random variables

- Random variables (RVs) are real-valued functions on samples/outcomes of a probability space
- The RV is usually upper-case X while its value is lower x
- Examples:
 - A function returning the sum of face-up sides of N dice
 - A function counting a discrete sample space

• E.g. "Yes" = 1, "No" = 2

- Like a programming variable, but with uncertainty
 - Let X be defined over samples ω and a, b real
 - Z = aX + b means $\forall \omega : Z(\omega) = aX(\omega) + b$
 - X = x occurs with some probability P(x)

PMFs and laziness

 A probability mass function (pmf) sums the probabilities of samples mapped to a given RV value

$$P(X = x) = \sum_{\omega \in \Omega_x} P(\{\omega\}), \Omega_x = \{\omega : X(\omega) = x\}$$

- It is often expressed as P(x) or p(x)
- If the values of X are 1-to-1 with samples, the pmf is easily confused with the probability function
 - P(x) could be either
 - P(X = x) is the pmf
 - P(X = yes) is an abuse of notation

Expected value

- The expected value of an RV is its average (or mean) value over the distribution
- More formally, the expected value of X is the arithmetic mean of its values weighted by the pmf

$$E_X[X] = \sum_x P(X = x) x$$

- $E_{\cdot}[\cdot]$ is a **linear operator**
 - $E_{X,Y}[aX + Y + b] = aE_X[X] + E_Y[Y] + b$

Expected value - examples

- What is the average sum of face-up values of 2 fair, 6-sided dice?
- Let X_2 be the sum

2	3	4	5	6	7	8	9	10	11	12
{1,1}	{2,1} {1,2}	{3,1} {2,2} {1,3}	{4,1} {3,2} {2,3} {1,4}	{5,1} {4,2} {3,3} {2,4} {1,5}	<pre>{6,1} {5,2} {4,3} {3,4} {2,5} {1,6}</pre>	{6,2} {5,3} {4,4} {3,5} {2,6}	{6,3} {5,4} {4,5} {3,6}	{6,4} {5,5} {4,6}	{6,5} {5,6}	{6,6}

- $E[X_2] = \sum_{x=2}^{12} P(X_2 = x) = \frac{1}{36} + \frac{2}{36} + \frac{2}{$
- Alternatively, let $X_2 = 2X_1$
 - $E[2X_1] = 2E[X_1] = 2 \times 3.5 = 7$

