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Volunteer note-taker

• Upload notes for students registered with AS
• You:

• Make a positive contribution to their 
academic success

• Improve your note-taking skills
• Maintain your class attendance
• Get a swanky Certificate of Appreciation

• Check Quercus announcement or UofT’s 
Student Life Volunteer Note Taking page
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LMs and Information Theory

• LMs may be evaluated extrinsically through their 
embedded performance on other tasks

• An LM may be evaluated intrinsically according to 
how accurately it predicts language

• Information Theory was developed in the 1940s for 
data compression and transmission

• Many of the concepts, chiefly entropy, apply directly 
to LMs
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Information

• Imagine Darth Vader is about to say either “yes” or 
“no” with equal probability.  
• You don’t know what he’ll say.

• You have a certain amount of uncertainty – a lack of 
information.

Darth Vader is © Disney
And the prequels and Rey/Finn Star Wars suck
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Information

• Imagine you then observe Darth Vader saying “no”
• You’d be surprised: he could’ve said “yes”
• Your uncertainty is gone; you’ve received information.
• How much information do you receive about event 𝑥𝑥 

when you observe it?
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Information

• Imagine communicating the outcome in binary
• The amount of information is the size of the message
• What’s the minimum, average number of bits needed 

to encode any outcome?
• Answer: 1
• Example:

“NO”“YES”

10 𝑆𝑆 𝑥𝑥 = 1 𝑏𝑏𝑏𝑏𝑏𝑏
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Information

• What about 4 equiprobable words?

• In general 𝑆𝑆 𝑥𝑥 = log2
1

𝑃𝑃 𝑥𝑥
= −log2𝑃𝑃 𝑥𝑥

“NO”“YES”

10

𝑆𝑆 𝑥𝑥 = 2 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
10 10

“Sure”“Maybe”
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Information

• Imagine Darth Vader is about to roll a fair die.
• You have more uncertainty about an event because 

there are more (equally probable) possibilities.
• You receive more information when you observe it.
• You are more surprised by any given outcome.

𝑆𝑆 𝑥𝑥 =  log2
1

𝑃𝑃(𝑥𝑥)
                           = log2

1
⁄1 6
≈ 2.58 bits
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Information can be additive

• One property of S 𝑥𝑥 = log2
1

𝑃𝑃(𝑥𝑥)
 is additivity.

• From k independent events 𝑥𝑥1 … 𝑥𝑥𝑘𝑘:
• Does 𝑆𝑆 𝑥𝑥1 … 𝑥𝑥𝑘𝑘 = 𝑆𝑆 𝑥𝑥1 + 𝑆𝑆 𝑥𝑥2 + ⋯+ 𝑆𝑆(𝑥𝑥𝑘𝑘) ?

• The answer is yes!
 𝑆𝑆 𝑥𝑥1 … 𝑥𝑥𝑘𝑘 = log2

1
𝑃𝑃 𝑥𝑥1…𝑥𝑥𝑘𝑘

= log2
1

𝑃𝑃 𝑥𝑥1) …𝑃𝑃(𝑥𝑥𝑘𝑘
= log2

1
𝑃𝑃(𝑥𝑥1)

+ ⋯+ log2
1

𝑃𝑃(𝑥𝑥𝑘𝑘)
= 𝑆𝑆 𝑥𝑥1 + 𝑆𝑆 𝑥𝑥2 + ⋯+ 𝑆𝑆(𝑥𝑥𝑘𝑘) 
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Events with unequal information
• Events are not always equally likely
• Surprisal will therefore be dependent on the event
• How surprising is the distribution overall?

Yes (0.1) No (0.7)
Maybe (0.04) Sure (0.03)
Darkside (0.06) Destiny (0.07)

• Suppose you still have 6 
outcomes that are possible – but 
you’re fairly sure it will be ‘No’.

• We expect to be less surprised on 
average
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Entropy
• Entropy: n. the average uncertainty/information/surprisal of 

a (discrete) random variable 𝑋𝑋.

• A lower bound on the average number of bits necessary to 
encode 𝑋𝑋 (more on this later)

𝐻𝐻 𝑋𝑋 = �
𝑥𝑥

𝑃𝑃 𝑥𝑥 log2
1

𝑃𝑃(𝑥𝑥)

Expectation over 𝑋𝑋
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Entropy – examples

Yes (0.1) No (0.7)
Maybe (0.04) Sure (0.03)
Darkside (0.06) Destiny (0.07)

𝐻𝐻 𝑋𝑋 = �
𝑖𝑖

𝑝𝑝𝑖𝑖 log2
1
𝑝𝑝𝑖𝑖

= 0.7 log2(1/0.7) + 0.1 log2(1/0.1) + ⋯
= 1.542 bits

1 2 3 4 5 6

𝐻𝐻 𝑋𝑋 = �
𝑖𝑖

𝑝𝑝𝑖𝑖 log2
1
𝑝𝑝𝑖𝑖

= 6
1
6 log2

1
1/6

= 2.585 bits

There is less average uncertainty when the 
probabilities are ‘skewed’.
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Entropy characterizes the distribution
• Flatter distributions ⇒ higher entropy ⇒ hard to predict
• Peaky distributions ⇒ lower entropy ⇒ easy to predict
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Bounds on entropy
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• Maximum: uniformly distributed 𝑋𝑋1. Given 𝑉𝑉 choices, 

𝐻𝐻 𝑋𝑋1 = �
𝑖𝑖

𝑝𝑝𝑖𝑖 log2
1
𝑝𝑝𝑖𝑖

= �
𝑖𝑖

1
𝑉𝑉 log2

1
1/𝑉𝑉 = 𝐥𝐥𝐥𝐥𝐥𝐥𝟐𝟐 𝑽𝑽

• Minimum: only one choice, 𝐻𝐻 𝑋𝑋2 = 𝑝𝑝𝑖𝑖 log2
1
𝑝𝑝𝑖𝑖

= 1 log2 1 = 𝟎𝟎
0
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Coding with fewer bits is better
• If we want to transmit Vader’s words efficiently, we can 

encode them so that more probable words require fewer bits.
• On average, fewer bits will need to be transmitted. 

Yes (0.1) No (0.7)
Maybe (0.04) Sure (0.03)
Darkside (0.06) Destiny (0.07)

Word
(sorted)

Linear 
Code

Probabil
ity

Huffman 
Code

No 000 0.7 0

Yes 001 0.1 100

Destiny 010 0.07 101

Darkside 011 0.06 110

Maybe 100 0.04 1111

Sure 101 0.03 1110

Average codelength (Huffman) = 1*0.7+3*(0.1+.07+.06)+ 
4*(.04+.03) = 1.67 bits > 1.54 bits ≈ 𝐻𝐻(𝑋𝑋)
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The entropy rate of language
• Can we use entropy to measure how predictable language is?
• Imagine that language follows an LM 𝑃𝑃 which infinitely 

generates one word after another: 𝑋𝑋 = 𝑋𝑋1 ,𝑋𝑋2 , …
• A corpus 𝑐𝑐 is a prefix of 𝑥𝑥

• Uh oh: 𝐻𝐻 𝑋𝑋 = ∞
• Instead, we take the per-word entropy rate

𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑋𝑋 = lim
𝑁𝑁→∞

1
𝑁𝑁
𝐻𝐻 𝑋𝑋1 , … ,𝑋𝑋𝑁𝑁 ≤ log2𝑉𝑉

• How do we handle more than one variable?
• How do we evaluate 𝑃𝑃 𝑥𝑥 ?
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Entropy of several variables
• Consider the vocabulary of a meteorologist describing 

Temperature and Wetness.
• Temperature ∈ {hot, mild, cold}
• Wetness ∈ {dry, wet}

18
Example from Roni Rosenfeld 

𝑃𝑃 𝑊𝑊 = dry = 0.6, 
𝑃𝑃 𝑊𝑊 = wet = 0.4

𝑃𝑃 𝑇𝑇 = hot  = 0.3, 
𝑃𝑃 𝑇𝑇 = mild = 0.5, 
𝑃𝑃 𝑇𝑇 = cold  = 0.2

𝑯𝑯 𝑾𝑾 = 0.6 log2
1

0.6 + 0.4 log2
1

0.4 = 𝟎𝟎.𝟗𝟗𝟗𝟗𝟎𝟎𝟗𝟗𝟗𝟗𝟗𝟗 bits

𝑯𝑯 𝑻𝑻 = 0.3 log2
1

0.3 + 0.5 log2
1

0.5 + 0.2 log2
1

0.2 =𝟗𝟗.𝟒𝟒𝟒𝟒𝟗𝟗𝟒𝟒𝟒𝟒  bits

But 𝑊𝑊 and 𝑇𝑇 are not independent, 
𝑃𝑃(𝑊𝑊,𝑇𝑇) ≠ 𝑃𝑃 𝑊𝑊 𝑃𝑃(𝑇𝑇)

𝑇𝑇 ∈ 1,2,3
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Joint entropy
• Joint Entropy: n. the average amount of information needed 

  to specify multiple variables simultaneously.

𝐻𝐻 𝑋𝑋,𝑌𝑌 =  �
𝑥𝑥

�
𝑦𝑦

𝑝𝑝(𝑥𝑥,𝑦𝑦) log2
1

𝑝𝑝(𝑥𝑥,𝑦𝑦)

• Hint: this is very similar to univariate entropy – we just replace 
univariate probabilities with joint probabilities and sum over 
everything.
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Entropy of several variables
• Consider joint probability, 𝑃𝑃(𝑊𝑊,𝑇𝑇)

20

cold mild hot

dry 0.1 0.4 0.1 0.6

wet 0.2 0.1 0.1 0.4

0.3 0.5 0.2 1.0

• Joint entropy, 𝐻𝐻(𝑊𝑊,𝑇𝑇), computed as a sum over the space 
of joint events (𝑊𝑊 = 𝑤𝑤,𝑇𝑇 = 𝑏𝑏)
𝐻𝐻 𝑊𝑊,𝑇𝑇 = 0.1 log2 ⁄1 0.1 + 0.4 log2 ⁄1 0.4 + 0.1 log2 ⁄1 0.1

                  +0.2 log2 ⁄1 0.2 + 0.1 log2 ⁄1 0 .1 + 0.1 log2 ⁄1 0.1 = 𝟐𝟐.𝟑𝟑𝟐𝟐𝟗𝟗𝟗𝟗𝟑𝟑 bits

Notice 𝐻𝐻 𝑊𝑊,𝑇𝑇 ≈ 2.32 < 2.46 ≈ 𝐻𝐻 𝑊𝑊 + 𝐻𝐻(𝑇𝑇)
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Entropy given knowledge
• In our example, joint entropy of two variables together is 

lower than the sum of their individual entropies
• 𝐻𝐻 𝑊𝑊 ,𝑇𝑇 ≈ 2.32 < 2.46 ≈ 𝐻𝐻 𝑊𝑊 + 𝐻𝐻(𝑇𝑇) 

• Why?

• Information is shared among variables
• There are dependencies, e.g., between temperature and 

wetness.
• E.g., if we knew exactly how wet it is, is there less 

confusion about what the temperature is … ?
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Conditional entropy
• Conditional entropy: n. the average amount of information 

   needed to specify one variable given 
    that you know another.

𝐻𝐻 𝑌𝑌|𝑋𝑋 =  �
𝑥𝑥∈𝑋𝑋

𝑝𝑝 𝑥𝑥 𝐻𝐻(𝑌𝑌|𝑋𝑋 = 𝑥𝑥)

• Comment: this is the expectation of H(Y|X), w.r.t. x.
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Entropy given knowledge
• Consider conditional probability, 𝑃𝑃(𝑇𝑇|𝑊𝑊)

𝑷𝑷(𝑾𝑾,𝑻𝑻) 𝑻𝑻 = cold mild hot

𝑊𝑊 = dry 0.1 0.4 0.1 0.6

wet 0.2 0.1 0.1 0.4

0.3 0.5 0.2 1.0

𝑷𝑷(𝑻𝑻 |𝑾𝑾) 𝑻𝑻 = cold mild hot

𝑾𝑾 = dry 0.1/0.6 0.4/0.6 0.1/0.6 1.0

wet 0.2/0.4 0.1/0.4 0.1/0.4 1.0

𝑃𝑃 𝑇𝑇 𝑊𝑊 = 𝑃𝑃(𝑊𝑊,𝑇𝑇)/𝑃𝑃(𝑊𝑊)
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Entropy given knowledge
• Consider conditional probability, 𝑃𝑃(𝑇𝑇|𝑊𝑊)

𝑷𝑷(𝑻𝑻 |𝑾𝑾) 𝑻𝑻 = cold mild hot

𝑾𝑾 = dry 1/6 2/3 1/6 1.0

wet 1/2 1/4 1/4 1.0

• 𝑯𝑯 𝑻𝑻 𝑾𝑾 = 𝒅𝒅𝒅𝒅𝒅𝒅 = 𝐻𝐻 1
6

, 2
3

, 1
6

= 𝟗𝟗.𝟐𝟐𝟗𝟗𝟗𝟗𝟐𝟐𝟑𝟑 bits

• 𝑯𝑯 𝑻𝑻 𝑾𝑾 = 𝒘𝒘𝒘𝒘𝒘𝒘 = 𝐻𝐻 1
2

, 1
4

, 1
4

= 𝟗𝟗.𝟗𝟗 bits
• Conditional entropy combines these:

𝑯𝑯 𝑻𝑻 𝑾𝑾
= 𝑝𝑝 𝑊𝑊 = 𝑑𝑑𝑑𝑑𝑦𝑦 𝐻𝐻 𝑇𝑇 𝑊𝑊 = 𝑑𝑑𝑑𝑑𝑦𝑦 + 𝑝𝑝 𝑊𝑊 = 𝑤𝑤𝑤𝑤𝑏𝑏 𝐻𝐻 𝑇𝑇 𝑊𝑊 = 𝑤𝑤𝑤𝑤𝑏𝑏
= 𝟗𝟗.𝟑𝟑𝟗𝟗𝟎𝟎𝟗𝟗𝟗𝟗𝟒𝟒 bits

0.6 0.4
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Equivocation removes uncertainty
• Remember 𝐻𝐻 𝑇𝑇 = 1.48548 bits 
• 𝐻𝐻 𝑊𝑊 ,𝑇𝑇 = 2.32193 bits
• 𝐻𝐻 𝑇𝑇 𝑊𝑊 = 1.350978 bits

• How much does 𝑊𝑊 tell us about 𝑇𝑇?
• 𝐻𝐻 𝑇𝑇 − 𝐻𝐻 𝑇𝑇 𝑊𝑊 = 1.48548 − 1.350978 ≈ 0.1345 bits 
• Well, a little bit!

Entropy (i.e., confusion) about 
temperature is reduced if we know
how wet it is outside.
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Perhaps 𝑻𝑻 is more informative?
• Consider another conditional probability, 𝑃𝑃(𝑊𝑊|𝑇𝑇)

• 𝐻𝐻 𝑊𝑊 𝑇𝑇 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 = 𝐻𝐻 1
3

, 2
3

= 0.918295 bits

• 𝐻𝐻 𝑊𝑊 𝑇𝑇 = 𝑚𝑚𝑏𝑏𝑐𝑐𝑑𝑑 = 𝐻𝐻 4
5

, 1
5
 = 0.721928 bits

• 𝐻𝐻 𝑊𝑊 𝑇𝑇 = ℎ𝑐𝑐𝑏𝑏 = 𝐻𝐻 1
2

, 1
2
 = 1 bit

• 𝑯𝑯 𝑾𝑾 𝑻𝑻 = 𝟎𝟎.𝟒𝟒𝟑𝟑𝟐𝟐𝟒𝟒𝟗𝟗𝟐𝟐𝟒𝟒 bits

𝑷𝑷(𝑾𝑾|𝑻𝑻) 𝑻𝑻 = cold mild hot

𝑾𝑾 = dry 0.1/0.3 0.4/0.5 0.1/0.2

wet 0.2/0.3 0.1/0.5 0.1/0.2

1.0 1.0 1.0
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Equivocation removes uncertainty
• 𝐻𝐻 𝑇𝑇 = 1.48548 bits 
• 𝐻𝐻 𝑊𝑊 = 0.970951 bits
• 𝐻𝐻 𝑊𝑊 ,𝑇𝑇 = 2.32193 bits
• 𝐻𝐻 𝑇𝑇 𝑊𝑊 = 1.350978 bits
• 𝑯𝑯 𝑻𝑻 −𝑯𝑯 𝑻𝑻 𝑾𝑾 ≈ 𝟎𝟎.𝟗𝟗𝟑𝟑𝟒𝟒𝟗𝟗 bits

• How much does 𝑇𝑇 tell us about 𝑊𝑊 on average?
• 𝑯𝑯 𝑾𝑾 − 𝑯𝑯 𝑾𝑾 𝑻𝑻 = 0.970951 − 0.8364528
            ≈  𝟎𝟎.𝟗𝟗𝟑𝟑𝟒𝟒𝟗𝟗 bits 

• Interesting … is that a coincidence?

Previously 
computed
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Mutual information
• Mutual information: n. the average amount of information 

   shared between variables.

𝐼𝐼 𝑋𝑋;𝑌𝑌 = 𝐻𝐻 𝑋𝑋 −𝐻𝐻 𝑋𝑋 𝑌𝑌 = 𝐻𝐻 𝑌𝑌 −𝐻𝐻 𝑌𝑌 𝑋𝑋
       = ∑𝑥𝑥,𝑦𝑦 𝑝𝑝(𝑥𝑥,𝑦𝑦) log2

𝑝𝑝(𝑥𝑥,𝑦𝑦)
𝑝𝑝 𝑥𝑥 𝑝𝑝(𝑦𝑦)

• Hint: The amount of uncertainty removed in variable 𝑋𝑋 if you know 𝑌𝑌.
• Hint2: If 𝑋𝑋 and 𝑌𝑌 are independent, 𝑝𝑝 𝑥𝑥, 𝑦𝑦 = 𝑝𝑝 𝑥𝑥 𝑝𝑝(𝑦𝑦), then 

 log2
𝑝𝑝(𝑥𝑥,𝑦𝑦)
𝑝𝑝 𝑥𝑥 𝑝𝑝(𝑦𝑦)

= log2 1 = 0 ∀𝑥𝑥, 𝑦𝑦 – there is no mutual information!
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Relations between entropies

𝐻𝐻 𝑋𝑋,𝑌𝑌 = 𝐻𝐻 𝑋𝑋 + 𝐻𝐻 𝑌𝑌 − 𝐼𝐼(𝑋𝑋;𝑌𝑌)
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Returning to language

• Recall 𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑋𝑋 = lim
𝑁𝑁→∞

1
𝑁𝑁
𝐻𝐻 𝑋𝑋1 ,𝑋𝑋2 , … ,𝑋𝑋𝑁𝑁

• Now we have

𝐻𝐻 𝑋𝑋1 ,𝑋𝑋2 , … ,𝑋𝑋𝑁𝑁 =  �
𝑥𝑥1 ,…,𝑥𝑥𝑁𝑁

𝑃𝑃 𝑥𝑥1 , … , 𝑥𝑥𝑁𝑁 log2
1

𝑃𝑃 𝑥𝑥1 … , 𝑥𝑥𝑁𝑁
• But we still don’t know how to compute 𝑃𝑃(… )
• We will approximate the log terms with our trained LM 𝑄𝑄
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Cross-entropy

• Cross-entropy measures the uncertainty of a 
distribution 𝑄𝑄 of samples drawn from 𝑃𝑃

𝐻𝐻 𝑋𝑋;𝑄𝑄 = �
𝑥𝑥

𝑃𝑃(𝑥𝑥) log2
1

𝑄𝑄(𝑥𝑥)
• As 𝑄𝑄 nears 𝑃𝑃, cross-entropy nears entropy
• We pay for this mismatch with added uncertainty

• More on this shortly
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Estimating cross-entropy

• We can evaluate 𝑄𝑄 but not 𝑃𝑃
• But corpus c = 𝑥𝑥1, … , 𝑥𝑥𝑁𝑁 is drawn from 𝑃𝑃!
• Let 𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑀𝑀 be 𝑐𝑐’s sentences where ∑𝑚𝑚 𝑏𝑏𝑚𝑚 = 𝑁𝑁

 𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑋𝑋 ≈ 1
𝑁𝑁
𝐻𝐻 𝑋𝑋1, …𝑋𝑋𝑁𝑁          ← (large 𝑁𝑁)

    ≈ 1
𝑁𝑁
𝐻𝐻 𝑋𝑋1, …𝑋𝑋𝑁𝑁;𝑄𝑄     ← (Q ≈ 𝑃𝑃)

    ≈ 1
𝑁𝑁

log2
1

𝑄𝑄 𝑐𝑐
                 ← (see aside)

    ≈ 1
𝑁𝑁
∑𝑚𝑚=1
𝑀𝑀 log2

1
𝑄𝑄 𝑠𝑠𝑚𝑚

• Aside: With time invariance, ergodicity, and 𝑄𝑄 = 𝑃𝑃, 
NLL approaches 𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  as 𝑁𝑁 → ∞

= Negative Log Likelihood (NLL)
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Quantifying the approximation

• How well does cross-entropy approximate entropy?
• Well if 𝑃𝑃 and 𝑄𝑄 are close
• Poorly if 𝑃𝑃 and 𝑄𝑄 are far apart

• If we can quantify the “closeness” of 𝑃𝑃 and 𝑄𝑄, we 
can quantify how good/bad our NLL estimate is
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Relatedness of two distributions
• How similar are two probability distributions?

• e.g., Distribution P learned from Kylo Ren
  Distribution Q learned from Darth Vader

P Q

Words Words

Pr
ob

ab
ili

ty

Pr
ob

ab
ili

ty
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Relatedness of two distributions
• An optimal code based on Vader (Q) instead of Kylo (P) will 

be less efficient at coding symbols that Kylo will say.
• What is the average number of extra bits required to code 

symbols from P when using a code based on Q?

P Q

Words Words

Pr
ob

ab
ili

ty

Pr
ob

ab
ili

ty



CSC401/2511 – Winter 2024 36

Kullback-Leibler divergence
• KL divergence: n. the average log difference between the 

   distributions P and Q, relative to Q.
   a.k.a. relative entropy.
   caveat: we assume 0 log 0 = 0

P Q

Words Words

Pr
ob

ab
ili

ty

Pr
ob

ab
ili

ty
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Kullback-Leibler divergence

𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃||𝑄𝑄) = �
𝑥𝑥

𝑃𝑃 𝑥𝑥 log2
𝑃𝑃(𝑥𝑥)
𝑄𝑄(𝑥𝑥)

• It is somewhat like a ‘distance’ :
• 𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃||𝑄𝑄) ≥ 0 ∀𝑃𝑃,𝑄𝑄
• 𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃||𝑄𝑄) = 0 iff 𝑃𝑃 and 𝑄𝑄 are identical.  

• It is not symmetric, 𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃||𝑄𝑄) ≠ 𝐷𝐷𝐾𝐾𝐾𝐾(𝑄𝑄||𝑃𝑃)
• Aside: normally computed in base 𝑤𝑤
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KL and cross-entropy

• Manipulating KL, we get
𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃||𝑄𝑄)

= �
𝑥𝑥
𝑃𝑃 𝑥𝑥 log2

1
𝑄𝑄 𝑥𝑥

−�
𝑥𝑥
𝑃𝑃 𝑥𝑥 log2

1
𝑃𝑃 𝑥𝑥

= 𝐻𝐻 𝑋𝑋;𝑄𝑄 −𝐻𝐻 𝑋𝑋 ≥ 0
• Therefore,

 Hrate X ≈ 1
𝑁𝑁
𝐻𝐻 𝑋𝑋1, …𝑋𝑋𝑁𝑁

         ≤ 1
𝑁𝑁
𝐻𝐻 𝑋𝑋1, …𝑋𝑋𝑁𝑁;𝑄𝑄 ≈ 𝑁𝑁𝑁𝑁𝑁𝑁(𝑐𝑐;𝑄𝑄)

• The NLL is an approximate upper bound on Hrate X
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Perplexity
• The intrinsic quality of an LM is often quantified by its 

perplexity on held-out data 𝑐𝑐 by exponentiating its NLL

𝑃𝑃𝑃𝑃 𝑐𝑐;𝑄𝑄 = 2
1
𝑁𝑁 ∑𝑚𝑚=1

𝑀𝑀 log2
1

𝑄𝑄 𝑠𝑠𝑚𝑚 = �
𝑚𝑚=1

𝑀𝑀
1

𝑄𝑄 𝑏𝑏𝑚𝑚

1/𝑁𝑁

• A uniform 𝑄𝑄 over a vocabulary of size 𝑉𝑉 gives 𝑃𝑃𝑃𝑃 𝑐𝑐;𝑄𝑄 = 𝑉𝑉
• PP is sort of like an “effective” vocabulary size

• If an LM 𝑄𝑄 has a lower PP than 𝑄𝑄′ (for large 𝑁𝑁), then
• 𝑄𝑄 better predicts 𝑐𝑐
• 𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃| 𝑄𝑄 < 𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃||𝑄𝑄′)
• 𝑃𝑃𝑃𝑃(𝑐𝑐;𝑄𝑄) is a tighter bound on 2𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑋𝑋)
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Deciding what we know
• (Cross-)entropy, KL divergence, and perplexity can all be 

used to justify a preference for one method/idea over 
another
• “𝑄𝑄 is a better language model than 𝑄𝑄𝑄”

• Shallow statistics are often not enough to be truly 
meaningful.
• “My ASR system is 95% accurate on my test data. Yours is 

only 94.5% accurate! Heh heh heh”
• What if the test data was biased somehow?
• What if our estimates were inaccurate due to simple 

randomness?
• We need tests to increase our confidence in our results.
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(Alleged) procedure of a statistical 
test
Step 1: State a hypothesis (and choose a test)

• Decide on the null hypothesis 𝐻𝐻0
Step 2: Compute some test statistics and associated p-value

• Such as the 𝑏𝑏-statistic
Step 3: Reject 𝐻𝐻0 if 𝑝𝑝 ≤ 𝛼𝛼, otherwise do not reject it

• Significance level 𝛼𝛼 usually ≤ 0.05
• If you can reject 𝐻𝐻0, then the result is significant
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Null hypothesis and p-value
• Null hypothesis 𝐻𝐻0 usually states that “there is no effect”.

• It is the negation of what you hope for
• The phrasing of “there is no effect” dictates the 

appropriate test (and its negation)
• “The sample is drawn from a normal distribution with 

some fixed mean”
• You want to cast doubt on the plausibility of 𝐻𝐻0 

• It’s very unlikely that this measurement would be 
observed randomly under the 𝐻𝐻0

• The 𝒑𝒑-value of is the probability that the measured effect 
occurs under 𝐻𝐻0 by chance
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Statistical tests
• Here are some popular tests (no need to memorize)

• �𝑋𝑋 = 1
𝑁𝑁
∑𝑛𝑛 𝑋𝑋𝑛𝑛 is the sample mean

Test 𝑯𝑯𝟎𝟎 Example use case

Two-sided, one-
sample 𝑏𝑏 test

�𝑋𝑋 ∼ 𝒩𝒩 𝜇𝜇,𝜎𝜎 for known 𝜇𝜇, 
unknown 𝜎𝜎

Whether Elon’s average tweet 
length is different from the 
average user’s (𝜇𝜇 = 100)

One-sided, two-
sample 𝑏𝑏 test

�̅�𝐴 ∼ 𝒩𝒩 𝜇𝜇𝐴𝐴,𝜎𝜎 , �𝐵𝐵 ∼ 𝒩𝒩 𝜇𝜇𝐵𝐵 ,𝜎𝜎
for unknown 𝜇𝜇𝐴𝐴, 𝜇𝜇𝐵𝐵,𝜎𝜎 where
𝜇𝜇𝐴𝐴 ≤ 𝜇𝜇𝐵𝐵 (or 𝜇𝜇𝐴𝐴 ≥ 𝜇𝜇𝐵𝐵)

Whether ASR system A (trained 
𝑁𝑁 times) makes fewer mistakes 
than B (trained 𝑁𝑁 times)

One-way ANOVA �𝑋𝑋1 , �𝑋𝑋2 , … ∼ 𝒩𝒩 𝜇𝜇,𝜎𝜎 for 
unknown 𝜇𝜇,𝜎𝜎

Whether network architecture 
predicts accuracy

One-sided Mann 
Whitney U test

𝑃𝑃 𝐴𝐴𝑛𝑛 > 𝐵𝐵𝑛𝑛′ ≤ 0.5 (or ≥ 0.5) Whether ASR system A (trained 
𝑁𝑁 times) makes fewer mistakes 
than B (trained 𝑁𝑁 times)
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Pitfall 1: parametric assumptions
• Parametric tests make assumptions about the parameters 

and distribution of RVs
• Often normally distributed with some fixed variance

• If untrue, 𝐻𝐻0 could be rejected for spurious reasons
• For smaller 𝑁𝑁, must first pass tests of normality
• If non-normal, must use non-parametric tests

• Tend to be less powerful (𝑝𝑝-values are higher)
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Pitfall 2: multiple comparisons
• Imagine you’re flipping a coin to see if it’s fair. You claim 

that if you get ‘heads’ in 9/10 flips, it’s biased.
• Assuming 𝐻𝐻0, the coin is fair, the probability that one fair 

coin would come up heads ≥ 9 out of 10 times is
𝑝𝑝1 = 11 × 0.510 ≈ 0.01

• But the probability that any of 173 coins hits ≥ 9
10

 is
𝑝𝑝173 = 1 − 1 − 𝑝𝑝1 173 ≈ 0.84

• The more tests you conduct with a statistical test, the more 
likely you are to accidentally find spurious (incorrect) 
significance accidentally.
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Pitfall 3: effect size
• Just because an effect is reliably measured doesn’t make it 

important
• Even 𝜇𝜇1 = 1 and 𝜇𝜇2 = 1.00000000000001 can be 

significantly different
• One must decide whether the purported difference is worth 

the extra attention
• There are various measures of effect size to support this



CSC401/2511 – Winter 2024 48

More information
• This is a cursory introduction to experimental statistics and 

hypothesis testing
• You should be aware of their key concepts and some of 

their pitfalls
• Before you run your own experiments, you should do one 

or more of:
• Take STA248 “Statistics for computer scientists”
• Look up stats packages for R, Python
• Read a book
• Beg a statistician for help
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Appendix

Everything beyond this slide is not on the exam.
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Samples, events, and probabilities
• Samples are the unique outcomes of an experiment

• The set of all samples is the sample space
• Examples:

• What DV could say (“yes” or “no”)
• The face-up side of a die (1..6)

• Events are subsets of the sample space assigned a probability
• This is usually any subset of the sample space
• Examples:

• {“yes”}, {“no”}, {“yes”, “no”}, ∅
• The face-up side is even

• The function assigning probabilities to events is the probability 
function



CSC401/2511 – Winter 2024 51

Random variables
• Random variables (RVs) are real-valued functions on 

samples/outcomes of a probability space
• The RV is usually upper-case 𝑋𝑋 while its value is lower 𝑥𝑥
• Examples:

• A function returning the sum of face-up sides of 𝑁𝑁 dice
• A function counting a discrete sample space

• E.g. “Yes” = 1, “No” = 2
• Like a programming variable, but with uncertainty

• Let 𝑋𝑋 be defined over samples 𝜔𝜔 and 𝑎𝑎, 𝑏𝑏 real
• 𝑍𝑍 = 𝑎𝑎𝑋𝑋 + 𝑏𝑏 means ∀𝜔𝜔:𝑍𝑍 𝜔𝜔 = 𝑎𝑎𝑋𝑋 𝜔𝜔 + 𝑏𝑏
• 𝑋𝑋 = 𝑥𝑥 occurs with some probability 𝑃𝑃 𝑥𝑥
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PMFs and laziness
• A probability mass function (pmf) sums the probabilities of 

samples mapped to a given RV value

𝑃𝑃 𝑋𝑋 = 𝑥𝑥 = �
𝜔𝜔∈Ω𝑥𝑥

𝑃𝑃( 𝜔𝜔 ) ,Ω𝑥𝑥 = 𝜔𝜔:𝑋𝑋 𝜔𝜔 = 𝑥𝑥

• It is often expressed as 𝑃𝑃(𝑥𝑥) or 𝑝𝑝(𝑥𝑥)
• If the values of 𝑋𝑋 are 1-to-1 with samples, the pmf is easily 

confused with the probability function
• 𝑃𝑃(𝑥𝑥) could be either
• 𝑃𝑃(𝑋𝑋 = 𝑥𝑥) is the pmf
• 𝑃𝑃 𝑋𝑋 = yes  is an abuse of notation
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Expected value
• The expected value of an RV is its average (or mean) value 

over the distribution
• More formally, the expected value of 𝑋𝑋 is the arithmetic mean 

of its values weighted by the pmf

𝐸𝐸𝑋𝑋 𝑋𝑋 = �
𝑥𝑥
𝑃𝑃 𝑋𝑋 = 𝑥𝑥  𝑥𝑥

• 𝐸𝐸⋅ ⋅  is a linear operator
• 𝐸𝐸𝑋𝑋,𝑌𝑌 𝑎𝑎𝑋𝑋 + 𝑌𝑌 + 𝑏𝑏 = 𝑎𝑎𝐸𝐸𝑋𝑋 𝑋𝑋 + 𝐸𝐸𝑌𝑌 𝑌𝑌 + 𝑏𝑏
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Expected value - examples
• What is the average sum of face-up values of 2 fair, 6-sided 

dice?
• Let 𝑋𝑋2 be the sum

• 𝐸𝐸 𝑋𝑋2 = ∑𝑥𝑥=212 𝑃𝑃 𝑋𝑋2 = 𝑥𝑥 𝑥𝑥 = 1
36

2 + 2
36

3 + ⋯ = 7
• Alternatively, let 𝑋𝑋2 = 2𝑋𝑋1

• 𝐸𝐸 2𝑋𝑋1 = 2𝐸𝐸 𝑋𝑋1 = 2 × 3.5 = 7

2 3 4 5 6 7 8 9 10 11 12

{1,1} {2,1}
{1,2}

{3,1}
{2,2}
{1,3}

{4,1}
{3,2}
{2,3}
{1,4}

{5,1}
{4,2}
{3,3}
{2,4}
{1,5}

{6,1}
{5,2}
{4,3}
{3,4}
{2,5}
{1,6}

{6,2}
{5,3}
{4,4}
{3,5}
{2,6}

{6,3}
{5,4}
{4,5}
{3,6}

{6,4}
{5,5}
{4,6}

{6,5}
{5,6}

{6,6}
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