

Overview

- (Statistical) language models (n-gram models)
- Counting
- Data
- Definitions
- Evaluations
- Distributions
- Smoothing
- Some slides are based on content from Bob Carpenter, Dan Klein, Roger Levy, Josh Goodman, Dan Jurafsky, Christopher Manning, Gerald Penn, and Bill MacCartney.

Statistics: what are we counting?

- Statistical language models are based on simple counting.
- What are we counting?

First, we shape our tools and thereafter our tools shape us.

- Tokens: n.pl. instances of words or punctuation (13).
- Types: n.pl. 'kinds’ of words or punctuation (10).

Confounding factors

- Are the following pairs one type or two?
- (run, runs)
(verb conjugation)
- (happy, happily) (adjective vs. adverb)
- (fra ${ }^{(1)}$ gment, fragme $\left.{ }^{(1)} n t\right) \quad$ (spoken stress)
- (realize, realise) (spelling)
- (We,we) (capitalization)
- How do we count speech disfluencies?
- e.g., I uh main-mainly do data processing
- Answer: It depends on your task.
- e.g., if you're doing summarization, you usually don't care about 'uh'.

Does it matter how we count things?

- Answer: See lecture on feature extraction.
- Preview: yes, it matters...(sometimes)
- E.g., to diagnose Alzheimer's disease from a patient's speech, you may want to measure:
- Excessive pauses (disfluencies),
- Excessive word type repetition, and
- Simplistic or short sentences.
- Where do we count things?

Corpora

- Corpus: n. A body of language data of a particular sort ($p l$. corpora).
- Most useful corpora occur naturally.
- e.g., newspaper articles, telephone conversations, multilingual transcripts of the United Nations, tweets.
- We use corpora to gather statistics.
- More is better (typically between 10 M and 1 T words).
- Be aware of bias.
- Examples: Canadian Hansards, Project Gutenberg (ebooks), web crawls (Google N-Gram, Common Crawl)

Statistical modelling

- Insofar as language can be modelled statistically, it might help to think of it in terms of dice.

Fair die

- Vocabulary:
- Vocabulary size:
numbers
6

Language

- Vocabulary:
words
- Vocabulary size:
2-200,000

Learning probabilities

- What if the symbols are not equally likely?
- We have to estimate the bias using training data.

Loaded die

- Observe many rolls of the die.
- e.g.,
$1,6,5,4,1,3,2,2, \ldots$.

Language

- Observe many words.
- e.g.,

Training data

Training vs testing

Loaded die

Language

- So you've learned your probabilities.
- Do they model unseen data from the same source well?
- Keep rolling the same dice.
- Do sides keep appearing in the same proportion as we expect?
- Keep reading words.
- Do words keep appearing in the same proportion as we expect?

Sequences with no dependencies

- If you ignore the past entirely, the probability of a sequence is the product of prior probabilities.

- Language involves context. Ignoring that gives weird results, e.g.,

$$
\begin{aligned}
\qquad P(2,1,4)=P(2) P(1) P(4) \\
=P(2) P(4) P(1)=P(2,4,1)
\end{aligned} \quad \begin{aligned}
P(\text { the old car }) & =P(\text { the }) P(\text { old }) P(\text { car }) \\
& =P(\text { the }) P(\text { car }) P(\text { old }) \\
& =P(\text { the car old })
\end{aligned}
$$

Sequences with full dependencies

- If you consider all of the past, you will never gather enough data in order to be useful in practice.
- Imagine you've only seen the Brown corpus.
- The sequence 'the old car' never appears therein
- $P($ carlthe old $)=0 \therefore P($ the old car $)=0$

Sequences with fewer dependencies?

- Only consider two words at a time...
- Imagine you've only seen the Brown corpus.
- The seauences 'the old' \& old car' do appear therein!
- $P($ old \mid the $)>0, P($ car \mid old $)>0 \therefore P($ the old car $)>0$
- Also, $P($ the old car $)>P($ the car old $)$

LANGUAGE MODELS

Word prediction

- Guess the next word...
- *Spoilers* You can do quite well by counting how often certain tokens occur given their contexts.
- E.g., estimate
$P\left(w_{t} \mid w_{t-1}\right)$ from count of $\left(w_{t-1}, w_{t}\right)$ in corpus

Word prediction with N-grams

- N-grams: n.pl. token sequences of length N.
- The fragment 'in this sentence is' contains the following 2-grams (i.e., 'bigrams'):
- (in this), (this sentence), (sentence is)
- The next bigram must start with 'is'.
- What word is most likely to follow 'is'?
- Derived from bigrams (is,.)

Use of \mathbf{N}-gram models

- Given the probabilities of N -grams, we can compute the conditional probabilities of possible subsequent words.
- E.g., $P($ is the $)>P($ is $a) \therefore$ $P($ the \mid is $)>P(a \mid i s)$

Then we would predict:
'the last word in this sentence is the.'
(The last word in this sentence is missing.)

Language models

- Language model: n. The statistical model of a language (obviousy).
- e.g., probabilities of words in an ordered sequence.

$$
\text { i.e., } P\left(w_{1}, w_{2}, \ldots, w_{n}\right)
$$

- Word prediction is at the heart of language modelling.
- What do we do with a language model?

Language model usage

- Language models can score and sort sentences.
- e.g., P(I like apples) >>P(I lick apples)
- Commonly used to (re-)rank hypotheses in other tasks
- Infer properties of natural language
- e.g., $P($ les pommes rouges $)>P($ les rouges pommes $)$
- Embedding spaces
- Efficiently compress text
- How do we calculate $P(. .$.$) ?$

Frequency statistics

- Term count (Count) of term w in corpus C is the number of tokens of term w in C.

$$
\operatorname{Count}(w, C)
$$

- Relative frequency $\left(F_{C}\right)$ is defined relative to the total number of tokens in the corpus, $\|C\|$.

$$
F_{C}(w)=\frac{\operatorname{Count}(w, C)}{\|C\|}
$$

- In theory, $\lim _{\|C\| \rightarrow \infty} F_{C}(w)=P(w)$. (the "frequentistview")

The chain rule

- Recall,

$$
\begin{aligned}
P(A, B)= & P(B \mid A) P(A)=P(A \mid B) P(B) \\
& P(B \mid A)=\frac{P(A, B)}{P(A)}
\end{aligned}
$$

- This extends to longer sequences, e.g.,

$$
P(A, B, C, D)=P(A) P(B \mid A) P(C \mid A, B) P(D \mid A, B, C)
$$

- Or, in general,

$$
P\left(w_{1}, w_{2}, \ldots, w_{n}\right)=P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) \cdots P\left(w_{n} \mid w_{1}, w_{2}, \ldots, w_{n-1}\right)
$$

Very simple predictions

- Let's return to word prediction.
- We want to know the probability of the next word given the previous words in a sequence.
- We can approximate conditional probabilities by counting occurrences in large corpora of data.
- E.g., P(food | I like Chinese) $=$ P(I like Chinese food) P(I like Chinese •)

$$
\approx \frac{\text { Count(I like Chinese food) }}{\text { Count(I like Chinese) }}
$$

Problem with the chain rule

- There are many (∞ ?) possible sentences.
- In general, we won't have enough data to compute reliable statistics for long prefixes
- E.g.,
$P($ pretty $\mid I$ heard this guy talks too fast but at least his slides are) $=$
$\frac{P(I \text { heard } \ldots \text { are pretty })}{P(I \text { heard } \ldots \text { are })}=\frac{0}{0}$
- How can we avoid $\{0, \infty\}$-probabilities?

Independence!

- We can simplify things if we're willing to break from the distant past and focus on recent history.
- e.g.,

P(pretty)I heard this guy talks too fast but at least his slides are) $\approx P($ pretty \mid slides are $)$ $\approx P($ pretty \mid are $)$

- I.e., we assume statistical independence.

Markov assumption

- Assume each observation only depends on a short linear history of length L.

$$
P\left(w_{n} \mid w_{1:(n-1)}\right) \approx P\left(w_{n} \mid w_{(n-L+1):(n-1)}\right)
$$

- Bigram version:

$$
P\left(w_{n} \mid w_{1:(n-1)}\right) \approx P\left(w_{n} \mid w_{n-1}\right)
$$

Berkeley Restaurant Project corpus

- Let's compute simple N-gram models of speech queries about restaurants in Berkeley California.
- E.g.,
- can you tell me about any good cantonese restaurants close by
- mid priced thai food is what i'm looking for
- tell me about chez panisse
- can you give me a listing of the kinds of food that are available
- i'm looking for a good place to eat breakfast
- when is caffe venezia open during the day

Example bigram counts

- Out of 9222 sentences,
- e.g., "I want" occurred 827 times

$\operatorname{Count}\left(w_{t-1}, w_{t}\right)$		w_{t}							
		I	want	to	eat	Chinese	food	lunch	spend
w_{t-1}	1	5	827	0	9	0	0	0	2
	want to	2	0	608	1	6	6	5	1
		2	0	4	686	2	0	6	211
		0	0	2	0	16	2	42	0
	Chinese food lunch spend	1	0	0	0	0	82	1	0
		15	0	15	0	1	4	0	0
		2	0	0	0	0	1	0	0
		1	0	1	0	0	0	0	0

Example bigram probabilities

- Obtain likelihoods by dividing bigram counts by unigram counts.

counts.	I	want	to	eat	Chinese	food	lunch	spend
Unigram counts:	2533	927	2417	746	158	1093	341	278

$P\left(w_{t} \mid w_{t-1}\right)$	1	want	to	eat	Chinese	food	lunc	spend
I	0.002	0.33	0	0.0036	0	0	0	0.00079
$P(\text { want } \mid I) \approx \frac{\operatorname{Count}(I \text { want })}{\operatorname{Count}(I)}=\frac{827}{2533} \approx 0.33$								
$P(\text { spend } \mid I) \approx \frac{\operatorname{Count}(I \text { spend })}{\operatorname{Count}(I)}=\frac{2}{2533} \approx 7.9 \times 10^{-4}$								

Example bigram probabilities

- Obtain likelihoods by dividing bigram counts by unigram counts.

C	1	want	to	eat	Chinese	food	lunch	spend
Unigram counts:	2533	927	2417	746	158	1093	341	278

| $P\left(w_{t} \mid w_{t-1}\right)$ | l | want | to | eat | Chinese | food | lunch | spend |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I | 0.002 | 0.33 | 0 | 0.0036 | 0 | 0 | 0 | 0.00079 |
| want | 0.0022 | 0 | 0.66 | 0.0011 | 0.0065 | 0.0065 | 0.0054 | 0.0011 |
| to | 0.00083 | 0 | 0.0017 | 0.28 | 0.00083 | 0 | 0.0025 | 0.087 |
| eat | 0 | 0 | 0.0027 | 0 | 0.021 | 0.0027 | 0.056 | 0 |
| Chinese | 0.0063 | 0 | 0 | 0 | 0 | 0.52 | 0.0063 | 0 |
| food | 0.014 | 0 | 0.014 | 0 | 0.00092 | 0.0037 | 0 | 0 |
| lunch | 0.0059 | 0 | 0 | 0 | 0 | 0.0029 | 0 | 0 |
| spend | 0.0036 | 0 | 0.0036 | 0 | 0 | 0 | 0 | 0 |

Bigram estimate of an unseen phrase

- We can string bigram probabilities together to estimate the probability of whole sentences.
- We use the start (<s>) and end (</s>) tags here.
- E.g.,

$$
\begin{aligned}
& P(<s>I \text { want english food }</ s>) \approx \\
& P(I \mid<s>) P(\text { want } \mid I) \cdot \\
& P(\text { english } \mid \text { want }) \mathrm{P}(\text { food } \mid \text { english }) \\
& \mathrm{P}(</ s>\mid \text { food }) \\
& \approx 0.000031
\end{aligned}
$$

\mathbf{N}-grams as linguistic knowledge

- Despite their simplicity, N -gram probabilities can crudely capture interesting facts about language and the world.
- E.g., $\quad P($ english \mid want $)=0.0011$ $P($ chinese \mid want $)=0.0065$
$P($ to \mid want $)=0.66$ $P($ eat \mid to $)=0.28$ $P($ food \mid to $)=0$

$$
P(i \mid<s>)=0.25
$$

World knowledge

Syntax

Discourse
\qquad

Probabilities of sentences

- The probability of a sentence s is defined as the product of the conditional probabilities of its N -grams:

$$
\begin{array}{cc}
P(s)=\prod_{i=2}^{t} P\left(w_{i} \mid w_{i-2} w_{i-1}\right) & \text { trigram } \\
P(s)=\prod_{i=1} P\left(w_{i} \mid w_{i-1}\right) & \text { bigram }
\end{array}
$$

- Which of these two models is better?

Aside - are N-grams still relevant?

- Appropriately smoothed N-gram LMs:
(Shareghi et al. 2019):
- Are often cheaper to train/query than neural LMs
- Are interpolated with neural LMs to often achieve state-of-the-art performance
- Occasionally outperform neural LMs
- At least are a good baseline
- Usually handle previously unseen tokens in a more principled (and fairer) way than neural LMs
- N-gram probabilities are interpretable
- Convenient

EVALUATING LANGUAGE MODELS

Shannon's method

- We can use a language model to generate random sequences.
- We ought to see sequences that are similar to those we used for training.
- This approach is attributed to Claude Shannon.

Shannon's method - unigrams

- Sample a model according to its probability.
- For unigrams, keep picking tokens.
- e.g., imagine throwing darts at this:

- the

■ Cat
\square in

- Hat
- </s>

Problem with unigrams

- Unigrams give high probability to odd phrases.
e.g., $P($ the the the the the $\langle/ \mathrm{s}\rangle)=P(\text { the })^{5} \cdot P(\langle/ \mathrm{s}\rangle)$

$$
>P(\text { the Cat in the Hat </s>) }
$$

Shannon's method - bigrams

- Bigrams have fixed context once that context has been sampled.
- e.g.,

Time Step 1

$$
P(\cdot \mid \text { the })
$$

Time Step 2

Shannon and the Wall Street Journal

Unig ram

- Months the my and issue of year foreign new exchange's September were recession exchange new endorsed a acquire to six executives.
- Last December through the way to preserve the Hudson corporation N.B.E.C.

Bigr Taylor would seem to complete the major central planners one point five percent of U.S.E. has already old M.X. corporation of living on information such as more frequently fishing to keep her.

- They also point to ninety nine point six billion dollars from two hundred four oh six three percent of the rates of interest stores as Mexico and Brazil on market conditions.

Shannon's method on Shakespeare

Unig ram	- To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have - Hill he late speaks; or! A more to leg less first you enter - Are where exeunt and sighs have rise excellency took of.. Sleep knave we. Near; vile like.
Bigr am	- What means, sir. I confess she? Then all sorts, he is trim, captain. - Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow. - What we, hat got so she that I rest and sent to scold and nature bankrupt nor the first gentleman?
Trigr am	- Sweet prince, Falstaff shall die. Harry of Monmouth's grave. - This shall forbid it should be branded, if renown made it empty. - Indeed the duke; and had a very good friend.
Qua drigr am	- King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. - Will you not tell me who lam? - It cannot be but so. - Indeed the short and the long. Marry. 'tis a noble Lepidus.

Shakespeare as a corpus

- 884,647 tokens, vocabulary of $V=29,066$ types.
- Shakespeare produced about 300,000 bigram types out of $V^{2} \approx 845 M$ possible bigram types.
- $\therefore 99.96 \%$ of possible bigrams were never seen (i.e., they have 0 probability in the bigram table).
- Quadrigrams appear more similar to Shakespeare because, for increasing context, there are fewer possible next words, given the training data.
- E.g., $P($ Gloucester \mid seek the traitor $)=1$

Evaluating a language model

- How can we quantify the goodness of a model?
- How do we know whether one model is better than another?
- There are 2 general ways of evaluating LMs:
- Extrinsic: in terms of some external measure (this depends on some task or application).
- Intrinsic: in terms of properties of the LM itself.

Extrinsic evaluation

- The utility of a language model is often determined in situ (i.e., in practice).
- e.g.,

1. Alternately embed $\mathrm{LMs} A$ and B into a speech recognizer.
2. Run speech recognition using each model.
3. Compare recognition rates between the system that uses LM A and the system that uses LM B.

Intrinsic evaluation

- To measure the intrinsic value of a language model, we first need to estimate the probability of a corpus, $P(C)$.
- This will also let us adjust/estimate model parameters (e.g., $P($ to \mid want $)$) to maximize $P($ Corpus $)$.
- For a corpus of sentences, C, we sometimes make the assumption that the sentences are conditionally independent: $P(C)=\prod_{i} P\left(s_{i}\right)$

Intrinsic evaluation

- We estimate $P(\cdot)$ given a particular corpus, e.g., Brown.
- A good model of the Brown corpus is one that makes Brown very likely (even if that model is bad for other corpora).

Maximum likelihood estimate

- Maximum likelihood estimate (MLE) of parameters θ in a model M, given training data T is

$$
\theta^{*}=\operatorname{argmax}_{\theta} L_{M}(\theta \mid T), \quad L_{M}(\theta \mid T)=P_{M(\theta)}(T)
$$

- e.g., \boldsymbol{T} is the Brown corpus,
\boldsymbol{M} is the bigram and unigram tables
$\boldsymbol{\theta}_{\text {(to|want) }}$ is $P($ to|want $)$.
- In fact, we have been doing MLE, within the N-gram context, all along with our simple counting*

Perplexity

- Perplexity corp. $C, P P(C)=2^{-\left(\frac{\log _{2} P(C)}{\|C\|}\right)}=P(C)^{-1 /\|C\|}$
- If you have a vocabulary \mathcal{V} with $\|\mathcal{V}\|$ word types, and your LM is uniform (i.e., $P(w)=1 /\|\nu\| \forall w \in \mathcal{V}$),
- Then

$$
\begin{aligned}
& P P(C)=2^{-\left(\frac{\log _{2} P(C)}{\|C\|}\right)}=2^{-\left(\frac{\left(\log _{2}[(1 / / / \|)\| \| \|\right.}{\|c\|}\right)}=2^{-\log _{2}(1 /\| \|\| \|)}=2^{\log _{2}\| \| \|} \\
& =\|\mathcal{\nu}\|
\end{aligned}
$$

- Perplexity is sort of like a 'branching factor'.
- Minimizing perplexity \equiv maximizing probability of corpus

Perplexity as an evaluation metric

- Lower perplexity \rightarrow a better model.
- (more on this in the section on information theory)
- e.g., splitting WSJ corpus into a 38 M word training set and a 1.5 M word test set gives:

N-gram order	Unigram	Bigram	Trigram
Perplexity	962	170	109

Modelling language

- So far, we've modelled language as a surface phenomenon using only our observations (i.e., words).
- Language is hugely complex and involves hidden structure (recall: syntax, semantics, pragmatics).
- A 'true' model of language would take into account all those things and the proper relations between them.
- Our first hint of modelling hidden structure will come with uncovering grammatical roles (i.e., parts-of-speech)

ZIPF AND THE NATURAL DISTRIBUTIONS IN LANGUAGE

Sparseness

- Problem with N-gram models:
- New words appear often as we read new data.
- e.g., interfrastic, espepsia, \$182,321.09
- New bigrams occur even more often.
- Recall that Shakespeare only wrote ${ }^{\sim} 0.04 \%$ of all the bigrams he could have, given his vocabulary.
- Because there are so many possible bigrams, we encounter new ones more frequently as we read.
- New trigrams occur even more even-more-often.

Sparseness of unigrams vs. bigrams

- Conversely, we can see lots of every unigram, but still miss many bigrams:

| | I | want | to | eat | Chinese | food | lunch | spend |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Unigram counts: | 2533 | 927 | 2417 | 746 | 158 | 1093 | 341 | 278 |

$\operatorname{Count}\left(w_{t-1}, w_{t}\right)$		w_{t}							
		1	want	to	eat	Chinese	food	lunch	spend
w_{t-1}	I	5	827	0	9	0	0	0	2
	want	2	0	608	1	6	6	5	1
	to	2	0	4	686	2	0	6	211
	eat	0	0	2	0	16	2	42	0
	Chinese	1	0	0	0	0	82	1	0
	food	15	0	15	0	1	4	0	0
	lunch	2	0	0	0	0	1	0	0
	spend	1	0	1	0	0	0	0	0

Why does sparseness happen?

- The bigram table appears to be filled in non-uniformly.
- Clearly, some words (e.g., want) are very popular and will occur in many bigrams just from random chance.
- Other words are not-so-popular (e.g., hippopootomonstrosesquipedalian). They will occur infrequently, and when they do their partner word will have its own $P(w)$.
- Is there some phenomenon that describes $P(w)$ in real language?

Patterns of unigrams

- Words in Tom Sawyer by Mark Twain:

Word	Frequency
the	3332
and	2972
a	1775
to	1725
of	1440
was	1161
it	1027
in	906
that	877
he	877
...	\ldots

- A few words occur very frequently.
- Aside: the most frequent 256 English word types account for 50\% of English tokens.
- Aside: for Hungarian, we need the top 4096 to account for 50%.
- Many words occur very infrequently.

Frequency of frequencies

- How many words occur X number of times in Tom Sawyer?

Hapax legomena: n.pl. words that occur once in a corpus.

Word frequency	\# of word types with that frequency
1	3993
2	1292
3	664
4	410
5	243
6	199
7	172
8	131
9	82
10	91
11-50	540
51-100	99
>100	102
54	

Ranking words in Tom Sawyer

- Rank word types in order of decreasing frequency.

Word	Freq. (f)	Rank (r)	$f \cdot r$
the	3332	1	3332
and	2972	2	5944
a	1775	3	5235
he	877	10	8770
but	410	20	8400
be	294	30	8820
there	222	40	8880
one	172	50	8600
about	158	60	9480
more	138	70	9660
never	124	80	9920

Word	Freq. (f)	Rank (r)	$f \cdot r$
name	21	400	8400
comes	16	500	8000
group	13	600	7800
lead	11	700	7700
friends	10	800	8000
begin	9	900	8100
family	8	1000	8000
brushed	4	2000	8000
sins	2	3000	6000
Could	2	4000	8000
Applausive	1	8000	8000

With some (relatively minor) exceptions, $f \cdot r$ is very consistent!

Zipf's Law

- In Human Behavior and the Principle of Least Effort, Zipf argues ${ }^{(*)}$ that all human endeavour depends on laziness.
- Speaker minimizes effort by having a small vocabulary of common words.
- Hearer minimizes effort by having a large vocabulary of less ambiguous words.
- Compromise: frequency and rank are inversely proportional.

$$
f \propto \frac{1}{r} \quad \text { i.e., for some } k \quad f \cdot r=k
$$

Zipf's Law on the Brown corpus

From Manning \& Schütze

Zipf's Law on the novel Moby Dick

Zipf's Law in perspective

- Zipf's explanation of the phenomenon involved human laziness.
- Simon's discourse model (1956) argued that the phenomenon could equally be explained by two processes:
- People imitate relative frequencies of words they hear
- People innovate new words with small, constant probability
- There are other explanations.

Aside - Zipf's Law in perspective

- Zipf also observed that frequency correlates with several other properties of words, e.g.:
- Age
- Polysemy
- Length
(frequent words are old)
(frequent words often have many meanings or higher-order functions of meaning, e.g., chair) (frequent words are spelled with few letters)
- He also showed that there are hyperbolic distributions in the world (crucially, they're not Gaussian), just like:
- Yule's Law: B = $1+\frac{g}{s}$
- s: probability of mutation becoming dominant in species
- g : probability of mutation that expels species from genus
- Pareto distributions (wealth distribution)

SMOOTHING

Zero probability in Shakespeare

- Shakespeare's collected writings account for about 300,000 bigrams out of a possible $V^{2} \approx 845 M$ bigrams, given his lexicon.
- So 99.96% of the possible bigrams were never seen.
- Now imagine that someone finds a new play and wants to know whether it is Shakespearean...
- Shakespeare isn't very predictable! Every time the play uses one of those 99.96% bigrams, the sentence that contains it (and the play!) gets 0 probability.
- This is bad.

Zero probability in general

- Some N-grams are just really rare.
- e.g., perhaps 'negative press covfefe'
- If we had more data, perhaps we'd see them.
- If we have no way to determine the distribution of unseen N -grams, how can we estimate them?

Smoothing mechanisms

- Smoothing methods we will cover:

1. Add- δ smoothing (Laplace)
2. Good-Turing
3. Simple interpolation (Jelinek-Mercer)
4. Absolute discounting
5. Kneser-Ney smoothing
6. Modified Kneser-Ney smoothing

Smoothing as redistribution

- Make the distribution more uniform.
- This moves the probability mass from 'the rich' towards 'the poor'.

1. Add-1 smoothing ("Laplace discounting")

- Given vocab size $\|\mathcal{V}\|$ and corpus size $N=\|C\|$.
- Just add 1 to all the counts! No more zeros!
- MLE

$$
: P(w)=\operatorname{Count}(w) / N
$$

- Laplace estimate

$$
: P_{\text {Lap }}(w)=\frac{\operatorname{Count}(w)+1}{N+\|v\|}
$$

- Does this give a proper probability distribution? Yes:

$$
\sum_{w} P_{L a p}(w)=\sum_{w} \frac{\operatorname{Count}(w)+1}{N+\|\mathcal{v}\|}=\frac{\sum_{w} \operatorname{Count}(w)+\sum_{w} 1}{N+\|\mathcal{V}\|}=\frac{N+\|\mathcal{V}\|}{N+\|\mathcal{V}\|}=1
$$

1. Add-1 smoothing for bigrams

- Same principle for bigrams:

$$
P_{\text {Lap }}\left(w_{t} \mid w_{t-1}\right)=\frac{\operatorname{Count}\left(w_{t-1} w_{t}\right)+1}{\operatorname{Count}\left(w_{t-1}\right)+\|\mathcal{V}\|}
$$

- We are essentially holding out and spreading $\|\mathcal{V}\| /(N+\|\mathcal{V}\|)$ uniformly over "imaginary" events.
- Does this work?

1. Laplace smoothed bigram counts

- Out of 9222 sentences in Berkeley restaurant corpus, - e.g., "I want" occurred 827 times so Laplace gives 828

$\operatorname{Count}\left(w_{t-1}, w_{t}\right)$		w_{t}							
		I	want	to	eat	Chinese	food	lunch	spend
w_{t-1}	I	5+1	827+1	1	9+1	1	1	1	2+1
	want	2+1	1	608+1	1+1	6+1	6+1	5+1	1+1
	to	2+1	1	4+1	686+1	2+1	1	6+1	211+1
	eat	1	1	2+1	1	16+1	2+1	42+1	1
	Chinese	1+1	1	1	1	1	82+1	1+1	1
	food	15+1	1	15+1	1	1+1	4+1	1	1
	lunch	2+1	1	1	1	1	1+1	1	1
	spend	1+1	1	1+1	1	1	1	1	1

1. Laplace smoothed probabilities

$$
P_{L a p}\left(w_{t} \mid w_{t-1}\right)=\frac{C\left(w_{t-1} w_{t}\right)+1}{C\left(w_{t-1}\right)+\|\mathcal{V}\|}
$$

| $P\left(w_{t} \mid w_{t-1}\right)$ | I | want | to | eat | Chinese | food | lunch | spend |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I | 0.0015 | 0.21 | 0.00025 | 0.0025 | 0.00025 | 0.00025 | 0.00025 | 0.00075 |
| want | 0.0013 | 0.00042 | 0.26 | 0.00084 | 0.0029 | 0.0029 | 0.0025 | 0.00084 |
| to | 0.00083 | 0.00026 | 0.0013 | 0.18 | 0.00078 | 0.00026 | 0.0018 | 0.055 |
| eat | 0.00046 | 0.00046 | 0.0014 | 0.00046 | 0.0078 | 0.0014 | 0.02 | 0.00046 |
| Chinese | 0.0012 | 0.00062 | 0.00062 | 0.00062 | 0.00062 | 0.052 | 0.0012 | 0.00062 |
| food | 0.0063 | 0.00039 | 0.0063 | 0.00039 | 0.00079 | 0.002 | 0.00039 | 0.00039 |
| lunch | 0.0017 | 0.00056 | 0.00056 | 0.00056 | 0.00056 | 0.0011 | 0.00056 | 0.00056 |
| spend | 0.0012 | 0.00058 | 0.0012 | 0.00058 | 0.00058 | 0.00058 | 0.00058 | 0.00058 |

1. Add-1 smoothing

- According to this method, $P($ to \mid want $)$ went from 0.66 to 0.26 .
- That's a huge change!
- In extrinsic evaluations, the results are not great.
- Sometimes $\sim 90 \%$ of the probability mass is spread across unseen events.
- It only works if we know \mathcal{V} beforehand.

1. Add- δ smoothing

- Generalize Laplace: Add $\delta<1$ to be a bit less generous.
- MLE $: P(w)=\operatorname{Count}(w) / N$
- Add- δ estimate
$: P_{\text {add- } \delta}(w)=\frac{\operatorname{Count}(w)+\delta}{N+\delta\|\nu\|}$
- Does this give a proper probability distribution? Yes:

$$
\sum_{w} P_{\text {add }-\delta}(w)=\sum_{w} \frac{\operatorname{Count}(w)+\delta}{N+\delta\|\mathcal{V}\|}=\frac{\sum_{w} \operatorname{Count}(w)+\sum_{w} \delta}{N+\delta\|\mathcal{V}\|}
$$

$$
=\frac{N+\delta\|\mathcal{V}\|}{N+\delta\|\mathcal{V}\|}=1
$$

Is there another way?

- Choice of δ is ad-hoc
- Has Zipf taught us nothing?
- Unseen words should behave more like hapax legomena.
- Words that occur a lot should behave like other words that occur a lot.
- If I keep reading from a corpus, by the time I see a new word like 'zenzizenzizenzic', I will have seen 'the' a lot more than once more.

2. Good-Turing

- Define N_{c} as the number of N-grams that occur c times.
- "Count of counts"

Word frequency	\# of words (i.e., unigrams) with that frequency
1	
2	
3	\ldots
\ldots	

- For some word in 'bin' N_{c}, the MLE is that I saw that word c times.
- Idea: get rid of zeros by re-estimating c using the MLE of words that occur $c+1$ times.

2. Good-Turing intuition/example

- Imagine you have this toy scenario:

Word	ship	pass	camp	frock	soccer	mother	tops
Frequency	8	7	3	2	1	1	1

= 23 words total

- What is the MLE prior probability of hearing 'soccer'?
- $P($ soccer $)=1 / 23$
- What is the probability of seeing something new?
- No way to tell, but $3 / 23$ words are hapax legomena ($N_{1}=3$).
- If we use $3 / 23$ to approximate things we've never seen, then we have to also adjust other probabilities (e.g., $P_{G T}$ (soccer) $<1 / 23$).

2. Good-Turing adjustments

- $P_{G T}^{*}([$ unseen $])=N_{1} / N$
- Re-estimate count $c^{*}=\frac{(c+1) N_{c+1}}{N_{c}}$
- Unseen words
- $c=0$
- MLE: $p=0 / 23$
- $P_{G T}^{*}([$ unseen $])=\frac{N_{1}}{N}$
$=3 / 23$
- Seen once (e.g., soccer)
- $c=1$
- MLE: $p=1 / 23$
- $c^{*}($ soccer $)=2 \cdot \frac{N_{2}}{N_{1}}$
$=2 \cdot 1 / 3$
- $P_{G T}^{*}(\operatorname{soccer})=\left(\frac{2}{3}\right) / 23$

2. Good-Turing limitations

- Q: What happens when you want to estimate $P(w)$ when w occurs c times, but no word occurs $c+1$ times?
- E.g., what is $P_{G T}^{*}(c a m p)$ since $N_{4}=0$?

Word	ship	pass	camp	frock	soccer	mother	tops
Frequency	8	7	3	2	1	1	1

- A1: We can re-estimate count $c^{*}=\frac{(c+1) E\left[N_{c+1}\right]}{E\left[N_{c}\right]}$.
- Uses Expectation-Maximization (method used later)
- A2: We can interpolate linearly, in log-log, between values of c that we do have.

2. Good-Turing limitations

- Q: What happens when Count (McGill genius) $=0$ and Count (McGill brainbox) $=0$, and we smooth bigrams?
- A: $P($ genius \mid McGill $)=P($ brainbox \mid McGill $)$
- But we'd expect $P($ genius \mid McGill $)>P($ brainbox $\mid M c G i l l)$ (context notwithstanding) because 'genius' is a more common word than 'brainbox').
- The solution may be to combine bigram and unigram models...

BONUS: Extra

3. Simple interpolation (Jelinek-Mercer)

- Combine trigram, bigram, and unigram probabilities.
- $\hat{P}\left(w_{t} \mid w_{t-2} w_{t-1}\right)=\lambda_{1} P\left(w_{t} \mid w_{t-2} w_{t-1}\right)$

$$
\begin{aligned}
& +\lambda_{2} P\left(w_{t} \mid w_{t-1}\right) \\
& +\lambda_{3} P\left(w_{t}\right)
\end{aligned}
$$

- With $\sum_{i} \lambda_{i}=1$, this constitutes a real distribution.
- λ_{i} determined from held-out (aka development) data
- Expectation maximization

4. Absolute discounting

- Instead of multiplying highest N-gram by a λ_{i}, just subtract a fixed discount $0 \leq \delta \leq 1$ from each non-zero count.

$$
\begin{array}{cc}
P_{a b s}\left(w_{t} \mid w_{t-n+1: t-1}\right)
\end{array}=\frac{\max \left(C\left(w_{t-n+1: t}\right)-\delta, 0\right)}{C\left(w_{t-n+1: t-1}\right)}+\left(1-\lambda_{w_{t-n+1: t-1}}\right) P_{a b s}\left(w_{t} \mid w_{t-n+2: t-1}\right)
$$

- $\lambda_{w_{t-n+1: t-1}}$ are chosen s.t. $\sum_{w_{t}} P_{a b s}\left(w_{t} \mid \ldots\right)=1$
- You can learn δ using held-out data.

4. Why absolute discounting?

- Both simple interpolation and absolute discounting redistribute probability mass, why absolute discounting?
- Compare GT counts to observed counts on this database:

	0	1	2	3	4	5	6	7	8	9
0.0000270	0.446	1.26	2.24	3.24	4.22	5.19	6.21	7.24	8.25	

- As c increases, $\left(c-c^{*}\right) \rightarrow 0.75$. Good δ !
- Similar trend observed when comparing counts of training set (c) vs. held-out set ($\approx c^{*}$)

5. Kneser-Ney smoothing

- In interpolation, lower-order (e.g., $N-1$) models should only be useful if the N-gram counts are close to 0 .
- E.g., unigram models should be optimized for when bigrams are not sufficient.
- Imagine the bigram 'San Francisco' is common : 'Francisco' has a very high unigram probability because it occurs a lot.
- But 'Francisco' only occurs after 'San'.
- Idea: We should give 'Francisco' a low unigram probability, because it only occurs within the well-modeled 'San Francisco'.

5. Kneser-Ney smoothing

- Let the unigram count be the number of different words that it follows. I.e.:

$$
\begin{aligned}
& N_{1+}\left(\bullet w_{t}\right)=\left|w_{t-1}: C\left(w_{t-1} w_{t}\right)>0\right| \\
& N_{1+}(\bullet \bullet)=\sum_{w_{i}} N_{1+}\left(\bullet w_{i}\right) \leftarrow \text { The total numb }
\end{aligned}
$$

- So, the unigram probability is $P_{K N}\left(w_{t}\right)=\frac{N_{1+}\left(\cdot w_{t}\right)}{N_{1+}(\cdot \bullet)}$, and:

$$
\begin{aligned}
& P_{K N}\left(w_{t} \mid w_{t-n+1: t-1}\right)= \\
& \frac{\max \left(C\left(w_{t-n+1: t}\right)-\delta, 0\right)}{\sum_{w_{t}} C\left(w_{t-n+1: t}\right)}+\frac{\delta N_{1+}\left(w_{t-n+1: w-1} \bullet\right)}{\sum_{w_{t}} C\left(w_{t-n+1: t}\right)} P_{K N}\left(w_{t} \mid w_{t-n+2: t-1}\right)
\end{aligned}
$$

Where $N_{1+}\left(w_{t-n+1: w-1} \bullet\right)$ is the number of possible words that follow the context.

5. Modified Kneser-Ney smoothing

- Use different absolute discounts δ depending on the n -gram count s.t. $C\left(w_{t-n+1: t}\right) \geq \delta_{C\left(w_{t-n+1: t}\right)} \geq 0$

$$
P_{M K N}\left(w_{t} \mid w_{t-n+1: t-1}\right) \underset{ }{\underset{C\left(w_{t-n+1: t}\right)-\delta_{C\left(w_{t-n+1: t)}\right.}}{\sum_{w_{t}} C\left(w_{t-n+1: t}\right)}+\left(1-\lambda_{w_{t-n+1: t-1}}\right) P_{M K N}\left(w_{t} \mid w_{t-n+2: t-1}\right)}
$$

- $\delta_{C\left(w_{t-n+1: t}\right)}$ could be learned or approximated, usually aggregated for counts above 3
- λ chosen to sum to one

	0	1	2	3
0.0000270	0.446	1.26	2.24	

Smoothing over smoothing

- Modified Kneser-Ney is arguably the most popular choice for n-gram language modelling
- Popular open-source toolkits like KenLM, SRILM, and IRSTLM all implement it
- New smoothing methods are occasionally published
- Huang et al., Interspeech 2020
- While n-gram LMs are still around, most interest in language modelling research has shifted to neural networks
- We will discuss neural language modelling a few weeks from now

Readings

- Chen \& Goodman (1998) "An Empirical Study of Smoothing Techniques for Language Modeling," Harvard Computer Science Technical Report
- Jurafsky \& Martin (2 $2^{\text {nd }}$ ed): 4.1-4.7
- Manning \& Schütze: 6.1-6.2.2, 6.2.5, 6.3
- Shareghi et al (2019): https://www.aclweb.org/anthology/N19-1417.pdf (From the aside - completely optional)

