What is natural language computing?

Getting computers to understand everything we say and write.

In this class (and in the field generally), we are interested in learning the statistics of language.

Increasingly, computers give insight into how humans process language, or generate language themselves.
What is Natural Language Computing?

• The computer science (and statistics) behind natural language processing (NLP), also known as computational linguistics (CL).

• Applications
 • Text Classification
 • Automatic translation between languages
 • Automatic speech transcription
 • Spoken language understanding
 • Information Retrieval
 • Text/speech Summarization
What can natural language do?

A key component of **human-computer interaction**.

"translate Also Sprach Zarathustra"

"take a memo…"

"open the pod bay doors"

"how far until Jupiter?"

"Can you summarize 2001: A Space Odyssey?"

We’ve made progress, but why are these things still hard to do?
A little deeper

- Language has *hidden structures*, e.g.,
 - How are *sounds* and *text* related?
 - e.g., why is this: not a ‘ghoti’ (*enough*, *women*, *nation*)?

- How are words *combined* to make sentences?
 - e.g., what makes ‘*colourless green ideas sleep furiously*’ *correct* in a way unlike ‘*furiously sleep ideas green colourless*’?

- How are words and phrases used to produce *meaning*?
 - e.g., if someone asks ‘*do you know what time it is?*’, why is it *inappropriate* to answer ‘*yes*’?

- We need to organize the way we think about language...
Categories of linguistic knowledge

- **Phonology**: the study of patterns of speech sounds.

 e.g., “read” → /r iy d/

- **Morphology**: how words can be changed by inflection or derivation.

 e.g., “read”, “reads”, “reader”, “reading”, ...

- **Syntax**: the ordering and structure between words and phrases (i.e., grammar).

 e.g., NounPhrase → article adjective noun

- **Semantics**: the study of how meaning is created by words and phrases.

 e.g., “book” →

- **Pragmatics**: the study of meaning in contexts.

 e.g., explanation span, refutation span
Ambiguity – Phonological

• **Phonology**: the study of patterns of speech sounds.

 “read” → /r iy d/ as in ‘I like to read’
 “read” → /r eh d/ as in ‘She read a book’

 “object” → /aa¹ b jh eh⁰ k t / as in ‘That is an object’
 “object” → /ah⁰ b jh eh¹ k t / as in ‘I object!’

 “too” ← /t uw/ as in ‘too much’
 “two” ← /t uw/ as in ‘two beers’

• Ambiguities can often be **resolved** in context, but not always.
 • e.g., /h aw t uw r eh¹ k ah ?? n ay² z s (b|p) iy ch/ → ‘how to recognize speech’
 → ‘how to wreck a nice beach’
Resolution with syntax

• If you hear the sequence of speech sounds
 \[/b\ ah\ f\ ae\ l\ ow\ b\ ah\ f\ ae\ l\ ow\ b\ ah\ f\ ae\ l\ ow\ b\ ah\ f\ ae\ l\ ow\ ...\]
 \[b\ ah\ f\ ae\ l\ ow\ b\ ah\ f\ ae\ l\ ow\ b\ ah\ f\ ae\ l\ ow\ b\ ah\ f\ ae\ l\ ow/\]

which word sequence is being spoken?
 → “Buff a low buff a lobe a fellow Buff a low buff a lobe a fellow...”
 → “Buffalo buff aloe buff aloe buff aloe buff aloe buff aloe buff aloe ...”
 → “Buff aloe buff all owe Buffalo buffalo buff a lobe ...”
 → “Buff aloe buff all owe Buffalo buff aloe buff a lobe ...”
 → “Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo”

• It’s obvious (to us) that the last option is most likely because
 we have knowledge of syntax, i.e., grammar.
NLP as artificial intelligence

NLP involves resolving ambiguity at all levels.
- Reasoning with linguistic knowledge
- Reasoning with world knowledge
- We sometimes represent the former with grammars

We tend to use numerical parameters (probabilities?) to distinguish competing hypotheses.
- E.g., is Google a noun or a verb?
- Examples where Google is a noun ("Google makes Android") does not mean Google is never a verb ("Google his name").
- \(P(\text{noun} | \text{Google}) > P(\text{verb} | \text{Google}) > 0. \)
Aside – Chatbots

• ELIZA (Weizenbaum, 1966): simple pattern matching to imitate a psychiatrist.
• Surprisingly effective despite unsophisticated methods.
• e.g.,

 User: Men are all alike.
 ELIZA: In what way?
 User: They’re always bugging us about something or other.
 ELIZA: Can you think of a specific example?
 User: My boyfriend made me come here.
 ELIZA: Your boyfriend made you come here.

 (Jurafsky and Martin, 2009)
Course outline (approximate)

• Introduction, lexical distributions, language modelling, lexical embeddings (3 lectures)
• Features and classification (2 lecture) *
• Entropy and information theory (2 lectures) *
• Neural language models (2 lectures) *
• Machine translation (3 lectures) **
• Large language models (3 lectures) *
• Acoustics and signal processing (3 lectures) *
• Automatic speech recognition (2 lectures) **
• Speech Synthesis (1 lecture) **
• Information retrieval (1 lecture) **
• Summarization (1 lecture) **
• Ethics for NLP (2 lectures)

* techniques
** applications
What we will not cover

- Interpretability of language models...
- Advanced lexical semantics
- Question answering (including ChatGPT 😭)
- Information extraction
- Parsing/generation of natural language
- Advanced speech recognition and synthesis
- Cognitively based methods
- Semantic inference, semantic change/drift
- Understanding dialogues and conversations
- Advanced ethics for NLP

* csc 485 / 2501. % csc 2517. ¶ csc 2518. § csc 2540. ^ csc 2611. $csc 2528.
Preview: Machine translation

- For years, the holy grail of NLP.
- Requires both interpretation and generation.
- Over $60B spent annually on human translation in 2022 – projected to reach $96B by 2032
- Machine translation: $1.1B. $3B by 2027.
- 1 in every 4M words of content is translated into at least one other language.
Preview: Speech recognition

Buy ticket...
AC490...
yes
Preview: Information retrieval

Google

WolframAlpha

which woman has won more than 1 Nobel prize?

Using closest WolframAlpha interpretation: nobel prize

what woman won more than one Nobel prize?

Using closest WolframAlpha interpretation: won more than one

People also ask

Who has won Nobel Prize twice?
What women won the Nobel Prize?
How many women have won the Nobel Prize?
How many women have been awarded the Nobel Peace Prize?

2010 Richard F. Heck chemistry United States United States
2010 Christopher A. Pissarides economics United Kingdom Cyprus
2010 Dale T. Mortensen economics United States United States
2010 Peter A. Diamond economics United States United States
2010 Mario Vargas Llosa literature Peru Peru
Aside – Spoken Information Retrieval

“ I have a gambling problem who should I call ”

I found 6 casinos.

Tap the one you want to call:

Auburn Way South
Muckleshoot Indian... 9.0 miles
★★★★☆ 52 reviews

Auburn Wy South
Muckleshoot Indian Bi... 9.1 miles
★★★★★☆ 8 reviews
Overview: NLP

• Is natural language processing (the discipline) hard?
 • **Yes**, because **natural language**
 • is highly ambiguous at all levels,
 • is complex and subtle,
 • is fuzzy and probabilistic,
 • involves real-world reasoning.
 • **No**, because **computer science**
 • gives us many powerful statistical techniques,
 • allows us to break the challenges down into more manageable features.

• Is Natural Language Computing (the course) hard?
 • More on this soon...
NLP in Industry

Google

Wattpad

Maluuba

Receptiviti

Nielsen

BuzzMetrics

Umbria

Collective Intellect

Yahoo!

Hakia

OpenAI

Microsoft

Winterlight Labs

Nuance

IBM

Amazon

Att&

WolframAlpha

Thomson Reuters®
Natural language computing

- **Instructors**: Gerald Penn, Sean Robertson, Raeid Saqur (csc401-2024-01@cs)
- **Meetings**: MW (lecture), F (tutorial) at 10h and 11h
- **Languages**: English, Python.
- **Website**: Quercus, www.cs.toronto.edu/~raeidsaqur/csc401/
- **You**: Understand basic **probability**, can **program**, or (grads) can pick these up as we go.
- **Syllabus**: Key **theory** and **methods** in statistical natural language computing. Focus will be on **neural models, language models**, and their **applications**.
Office hours

<table>
<thead>
<tr>
<th>Name</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerald Penn</td>
<td>F 12-2</td>
<td>PT 283</td>
</tr>
<tr>
<td>Sean Robertson</td>
<td>TBA</td>
<td>TBA</td>
</tr>
<tr>
<td>Raeid Saqur</td>
<td>TBA</td>
<td>TBA</td>
</tr>
</tbody>
</table>
Evaluation policies

● **General:** Three assignments: 20% (each)
 Final ‘assessment’: 39%
 Two ethics surveys: 0.5% (each)

● **Lateness:** 10% deduction applied to electronic submissions that are 1 minute late.
 Additional 10% applied every 24 hours up to 72 hours total, at which point grade is zero.

● **Final:** If you fail the final ‘assessment’, then you fail the course.

● **Ethics:** Plagiarism and unauthorized collaboration can result in a grade of zero on the homework, failure of the course, or suspension from the University.
Assignments

● Assignment 1: Corpus statistics, sentiment analysis
 task: analyze political bias on Reddit
 learn: statistical techniques, features, classification.

● Assignment 2: Neural machine translation
 task: translate between languages
 learn: neural seq2seq and neural language models.

● Assignment 3: Automatic speech recognition
 task: detect lies in speech
 learn: signal processing, phonetics, dynamic algo’s.
Reading

http://tinyurl.com/shshhcvm
Assignment 1 – Bias in social media

• Involves:
 • Working with social media data (i.e., gathering statistics on some data from Reddit),
 • Part-of-speech tagging (more on this later),
 • Classification.

• **Announcements**: Piazza forum, email.
• Start early.
Assignment 1 and reading

- **Assignment 1** available soon (on course webpage)!
 - Due 9 February
 - TA: Mahya Mirbagheri <mahya.mirbagheri@mail.utoronto.ca>

- **Reading:**
 - Manning & Schütze: Sections 1.3—1.4.2, Sections 6.0—6.2.1.