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What I1s Information Retrieval?

Given a query, search for the most relevant
document among a
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Search Engines are (mainly) IR systems
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Information Retrieval—Information Extraction

~ \

Question Answering — Text Summarization
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Information Retrieval system

Given a query, search for the most relevant
document among a knowledge base.

* Three key problems here:
* How to represent the query?
* How to store a knowledge base?
* How to search efficiently and accurately?

°* The problems are closely related. We will look at some popular
approaches.
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Scenario 1: SQL

e Structured Query Language (SQL) query

How to represent the query?

SQL queries.

How to store a knowledge base?
Tabular entries with predefined schemas.

How to search efficiently and accurately?
Compile and execute the SQL queries.
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Scenario 2: Max-similarity search

* Find the document that is the most similar to the query.

* How to represent the query?
Query Is just another text-based document.

°* How to store a knowledge base?
Vectorized documents.

* How to search efficiently and accurately?

Compute the similarity score between the query and each
document. Return the document with the highest similarity
score.
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Similarity score

* |f the query and the available documents can be represented by
vectors, we can determine similarity according to their cosine
distance.

* Vectors that are near each other (within a certain angular
radius) are considered relevant.
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Vectorization: tf.idf

* tf.idf Is a traditional method to vectorize the documents.
* |t starts by weighting words in the documents.

* Term frequency, tf;;: number of occurrences of
word w; In document d;.

* Document frequency, df;: number of documents In
which w; appears.

* Collection frequency, cf;: total occurrences of w; In
the collection.
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Term frequency

* Higher values of tf; (for contentful words) suggest that word . Is a
good indicator of the content of document

* When considering the relevance of a document d; to a keyword 1,
tf . should be maximized.

* We often dampen tf;; to temper these comparisons.
* tfaampen = 1 +log(tf), if tf > 0.
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Document frequency

°* The document frequency, df;, iIs the number of documents in which w;
appears.

° Meaningful words may occur repeatedly in a related document, but
functional (or less meaningful) words may be distributed evenly over
all documents.

m Collection frequency | Document frequency
kernel 10,440 3997
try 10,422 8760

° E.g., kernel occurs about as often as try in total, but it occurs in fewer
documents — it is a more specific concept.
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Inverse document frequency

* Very specific words, v, would give smaller values of df .

* To maximize specificity, the inverse document frequency is

idf =log <E)

where D is the total number of documents
and we scale with log (why? next slide)

* This measure gives full weight to words that occur in 1 document, and
zero weight to words that occur in all documents.
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Inverse document frequency

* The probability of a document containing word i Is:
dfi
D
“A document containing word i” is an event.

Small p: this event is more surprising.
Therefore, more information

* idf; Is the amount of information provided by observing the
event.

E

% TORONTO

13



tf.1df vectorization of a document

°* We combine the term frequency and the inverse document
frequency to give us a joint measure of relatedness between words
and documents: .

D
(1+ log(tfl-j))logﬁ iftf;; =1
L

tf.idf(w;, d;) =5

\

* The jt"document is therefore represented by a vector:

[tf.idf (w1, d;),
tf.idf (ws, d;),

tf . idf (Wi, d))]
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Aside: BM25

« BM25 Is a baseline algorithm of IR.

* Given query Q = [q4, 9>, ---,q, ]|, BM25 computes a similarity
score for document d; as:

D
Score(Q) = ) log = X 9(t/ (41 d)); . b)
i=1 l

g(+) Iis an engineered function that has hyperparameters k; and b
The details of g(-) are unimportant to our discussion.
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Scenario 3: Semantic Doc2Vec

* IR setting: Also using max-similarity search.
* The idea of word2vec can be applied as well.
» Goal: train a document encoder E.

« Design optimization goals for E so that:

* If d, and dy are close to each other, then sim{(E(d,), E(dg)) should be
large.

 If d, and dg are far from each other, then sim(E(d,), E(dg)) should be
small.

* The definitions of closeness vary from algorithm to algorithm.
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Semantic Doc2Vec

« Example: How does the Contriever paper define the closeness?

» Positive samples d, for a document are augmented following some
heuristics.

* Negative samples d_ are randomly sampled from within the batches.

A contrastive loss objective Is:
o SIM(E(q),E(d1))/T
L(g,dy,d-) =

eSIM(E(q),E(d4))/T 4 > eSIM(E(q),E(d-))/T

where 7 Is the temperature of the softmax.
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https://arxiv.org/pdf/2112.09118.pdf

Evaluating the retrieval systems

Some commonly used metrics include:

Precision
Recall
F-score
Precision @ k
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Precision and Recall

e Precision: Nrelevant & retrieved
retrieved

°* Among all retrieved documents, how many are relevant?
e : : . TP
° Precision in machine learning: 3

S ReCaI |: Nrelevant & retrieved

Nrelevant

°* Among all relevant documents, how many are retrieved?
: : . TP
* Recall in machine learning: —

* Note: Precision and recall has some tradeoft.
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F-measure

°* F-measure is the weighted harmonic mean of precision and
recall:

0F= 1

1 1
Clg'l' (1 —Of);

°* Where p Is precision, r is recall, and a € [0,1].
* Notes:
2pr

1
< Whena=5,wehaveF1=m

* |f either of precision or recall is O (i.e., true positive count
TP = 0), then F is arbitrarily set to O.
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Precision at k

°* Modern IR systems usually do not just give one result.
* Even if the 15t result is not relevant, the 279, etc. results could
be relevant too.
* People sometimes measure the precision at k (P@k):
°  Among the top k results, how many of them are relevant?

°* P@k has some potential problems:
* The 15, 24 .| k™ |ocations have no differences.

* |f there are less than k relevant results, then even the best
system can’t get P@k=1.
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Lecture review questions

By the end of this lecture, you should be able to:
» Describe the procedure of max-similarity search.

 Describe the tf.idf vectorization.
» Describe a contrastive objective function of a semantic doc2vec
method.

* |dentify some evaluation metrics for IR systems and describe
the trade-offs between these metrics.
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Appendix: Recent challenges of IR

e Structured, relational data
 Multi-modal data
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Structured relational data

* Plain texts are unstructured.

* Many modern IR systems use structured data.
°* E.g., docs vectorized to the same dimensions.
° E.g., relational data.

* Benefits & challenges of structured data.

{“name”: “Toy Story”,
“director”: “John Lasseter”,

e}

e
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Storing structured data

* Saving each complex object as a database entry is one option.

* We can also store (or embed) the {R, S, T} triplets.
° R Is the relation (e.qg., “has-director”) between:

° the source S (e.g., “Toy Story”) and
°the target 7" (e.g., ” ")

e
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Multimodal data

Most modern IR systems are multimodal.

The objects contain more than texts.
Images, sounds, even videos are stored too.

Choosing the right schemas is very im
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