A3 Clarifications

- Where to apply softmax at the classifier head?
 - After the classifier head.
- Model saving / loading:
 - torch.save(model.state_dict(), f)
 - model.load_state_dict(state_dict)
- What is AutoModelForCausalLM?
 - It is still a sequential classification model, but it predicts the probability of the next token.
 - I.e., the classifier is Linear(D, vocab_size) instead of Linear(D, 2)

A3: AutoModelForCausalLM

Aside: A language model $P(w_t|w_{< t})$ can be used to generate a sequence.

Image source: AutoModelForCausalLM tutorial: <u>https://huggingface.co/course/chapter7/6</u>

Automatic Speech Recognition

CSC401/2511 – Natural Language Computing – Winter 2023 University of Toronto

Contents

- Today's lecture:
 - What is ASR?
 - A noisy-channel ASR model.
- Next lecture:
 - An end-to-end ASR model.
 - Evaluation

Applications of speech technology

"Hi, I'm calling to book a women's haircut for a client."

A use case

What is ASR?

Automatic Speech Recognition (ASR) systems converts **speech** into **text**.

- Input: speech data X
- Output: text W
- Other names for the system: speech recognition, speech-to-text.

Previous lectures described texts.

Next slide: the formats of speech data *X*.

In 20 mins: what speech actually is.

Formats of speech data X

- Raw speech data are 1-d arrays of shape (T_1)
 - $T_1 = f \times t$
 - *f* is **sample rate** (e.g., 16kHz)
 - *t* is **time length**, in seconds.

- We can also **extract** speech features.
 - The speech features are 2-d arrays of shape (T_2, D)
 - $T_2 \ll T_1$
 - D: Number of features
 - Lecture: spectrum. Tutorial: MFCC feature.

A simplified system

Two assumptions:

[A1] Each word W has one and only one sound X_W .

[A2] Each speech sample X contains exactly one word.

Then ASR can be addressed by **maximum similarity search**: $W = \max_{w} \operatorname{sim}(X, X_{w})$

Let's relax one assumption

[A1'] Each word w might have different sounds X. We can use an **acoustic model** P(X|w) to model.

[A2] Each speech sample *X* still contains exactly one word.

This ASR system then becomes:

 $W = \max_{w} P(w|X)$

Recall: Bayes' Theorem

$$P(w|X) = \frac{P(X|w)P(w)}{P(X)}$$

• P(w): prior probability

Language model

• *P(X|w)*: likelihood

Acoustic model

• P(w|X): posterior probability

Putting them together

$$W = \max_{w} P(w|X) = \max_{w} \frac{P(X|w)P(w)}{P(X)}$$

Since P(X) is constant wrt w, it doesn't matter here.

$$W = \max_{w} P(X|w)P(w)$$

Noisy channel ASR

- Recall the assumption [A1']: Each word has multiple sounds.
- Consider speaking as a communication channel:
 - Pitch
 - Tone
 - Speed
 - ... there are many factors that make this channel noisy.
- W to X goes through a **noisy channel**.
- The ASR model recognizes speech from this noisy channel.
- This is therefore a noisy channel ASR model.

Historical notes on noisy channels

- Noisy channel are very popular.
- In machine translation, we also discussed noisy channel models.
- Since 2010+, these problems are frequently addressed by sequence-to-sequence models.
- Since 2020+, these problems are frequently addressed by Transformer-based models.

More on the speech

Is one-dimensional X the best input for our ASR systems?

Speech constitutes of sounds

- **Sound** is a time-variant pressure wave created by a **vibration**.
 - Air particles hit each other, setting others in motion.
 - High pressure \equiv **compressions** in the air (C).
 - Low pressure \equiv **rarefactions** within the air (R).

Amplitude and frequency of sound

- A single tone is a sinusoidal function of pressure and time.
 - Amplitude: n. The degree of the displacement in the air. This is similar to 'loudness'. Often measured in Decibels (dB).
 - Frequency: *n*. The number of cycles within a unit of time. e.g., 1 Hertz (Hz) = 1 oscillation/second

17

Extract features from *X*

Aside: Fourier Transform

- Input: Continuous signal x(t).
- **Output**: Spectrum X(F)

$$X(F) = \int_{-\infty}^{\infty} x(t) e^{-i2\pi Ft} dt$$

- It's invertible, i.e., $x(t) = \int_{-\infty}^{\infty} X(F) e^{i2\pi Ft} dF$.
- It's linear, i.e., for a, b ∈ C,
 if h(t) = ax(t) + by(t)
 then H(F) = aX(F) + bY(F)
 It needs continuous input x(t)...
 Use Discrete Fourier Transform.

Fun fact: Fourier instructed Champollion.

Aside: implementing P(X|W)

P(X|W) can be implemented by:

- A nonparametric model based on training data.
- A Gaussian model.
- A neural network predicting P given X and W.
- ... (whichever works well)

Lecture review questions

By the end of this lecture, you should be able to answer:

- What is ASR?
- What is speech?
- Describe some speech features:
 - Amplitude, frequency, spectrum
- Describe a noisy channel model for ASR.
 - What are its assumptions?
 - What are its inputs and outputs?

Anonymous feedback form: https://forms.gle/W3i6AHaE4uRx2FAJA

Limitations of last lecture's models

- We need a lot of data to model P(X|W)
- The $\max(\cdot)$ step takes a lot of time.
 - Nonstandard spelling increases the data requirements.
- The <u>Bitter Lesson</u> by Richard Sutton:
 - It's better to rely on DNN to learn by itself.
- This lecture: let's look at an end-to-end model, LAS.

Listen, Attend, Spell

- This is an **end-to-end** model.
- Many papers claimed their methods are end-to-end.
- Our definition for end-to-end is (loosely):
 - You only train one model.
 - Features (or sound waves) in, texts out.
 - There is no assembling of components.
- Sequence-to-sequence models are typically end-to-end models.

A schematic architecture

Figure source: Speech and Language Processing, Jurafsky & Martin, 3rd Edition

Model structure

- Encoder ("listener"): a pyramidial bidirectional LSTM.
- Decoder: RNN with attentions.
- Learning: teacher forcing. $\max_{\theta} \sum_{i} \log P(y_i | x, y_{< i}^*; \theta)$
- x: sound features
- *y**: ground truth
- *i*: index of the word
- θ : model parameters

Figure 1: Listen, Attend and Spell (LAS) model: the listener is a pyramidal BLSTM encoding our input sequence x into high level features h, the speller is an attention-based decoder generating the y characters from h.

Model performance

• We'll talk about WER ("word error rates") later.

Table 1: WER comparison on the clean and noisy Google voice search task. The CLDNN-HMM system is the state-of-the-art system, the Listen, Attend and Spell (LAS) models are decoded with a beam size of 32. Language Model (LM) rescoring was applied to our beams, and a sampling trick was applied to bridge the gap between training and inference.

Model	Clean WER	Noisy WER
CLDNN-HMM [20]	8.0	8.9
LAS	16.2	19.0
LAS + LM Rescoring	12.6	14.7
LAS + Sampling	14.1	16.5
LAS + Sampling + LM Rescoring	10.3	12.0

Source: Listen, Attend and Spell https://arxiv.org/pdf/1508.01211.pdf

Aside: SOTAs in ASR

• LAS achieved SOTA in 2018, with new data and engineering.

Exp-ID	Model	WER
E7	WPM + MHA + Sync + SS + LS + MWER	5.8
E8	+ LM	5.6

Table 3: In second pass rescoring, the log-linear combination with a

larger LM results in a 0.2% WER improvement.

Exp-ID	Model	VS/D	1st pass Model Size
E8	Proposed	5.6/4.1	0.4 GB
E9	Conventional	6.7/5.0	0.1 GB (AM) + 2.2 GB (PM)
	LFR system		+ 4.9 GB (LM) = 7.2 GB

Table 5: Resulting WER on voice search (VS)/dictation (D). The improved LAS outperforms the conventional LFR system while being more compact. Both models use second-pass rescoring.

State-of-the-art Speech Recognition with S2S models. Chiu et al., (ICASSP 2018)

Aside: Recent topics in ASR

- Robustness towards types of noise
 - Differences in recording device.
 - Multiple speakers (where you need to do speaker diarisation too).
 - Background noise.
 - Dialects.
 - Slurred speech (e.g., when you speak faster than you think)
 - Code switching (-> this is very hard)
- VoicePrivacy: protect user identity without sacrificing the ASR performance.
 - To protect user identity, you add some noise.
 - But larger noise reduces the ASR performance!

Evaluating ASR System Performance

if somebody said
 Reference: <u>how to</u>

how to recognize speech

- but an ASR system reports
 Hypothesis: <u>how to</u> wreck a nice beach
- how do we quantify the error?

How to not measure ASR performance

- One measure is word accuracy: $\frac{N_{correct_words}}{N_{reference_words}}$
 - E.g., 2/4, above
 - This runs into problems similar to those we saw with SMT.
 - E.g., the hypothesis 'how to recognize speech boing boing boing boing boing' has 100% accuracy by this measure.
 - Normalizing by #HypothesisWords also has problems...

Word-error rate (WER)

- Word-error rate (WER) counts different kinds of errors that can be made by ASR at the word-level:
 - Substitution error: One word being mistook for another e.g., 'shift' given 'ship'
 - Deletion error:
 - Insertion error:

An input word that is 'skipped' e.g. '*I Torgo*' given '*I am Torgo*' A 'hallucinated' word that was not in the input. e.g., 'This Norwegian parrot is no more'

given 'This parrot is no more'

Word-error rate (WER)

- Putting them together: $WER = 100 \times \frac{N_{sub} + N_{ins} + N_{del}}{N_{words in \, reference}}$
- Sometimes the types of errors can be weighed.
 - Because a substitution error is essentially a deletion followed by an insertion.
 - E.g., A substitution error weighs 5x as much as insertion or deletion error.

Computing WER

- $N = N_{sub} + N_{ins} + N_{del}$ can be computed by dynamic programming.
 - N is also called edit distance, or Levenshtein distance.
 - *N* is the **minimum** number of $N_{sub} + N_{ins} + N_{del}$ to edit the hypothesis *H* into the reference *R*.
- A dynamic programming algorithm contains:
 - An induction step, converting a "big problem" to a "smaller problem".
 - An assumption that holds before and after the induction step.
 - A "base case", where you know the answer easily.

Computing WER: induction

Big problem and the assumption:

 $N^{(n,m)}$ is the edit distance between the reference $R_{1..n}$ and the hypothesis $H_{1..m}$.

• Smaller problem and the assumption:

 $N^{(n-1,m-1)}$ is the edit distance between the reference $R_{1..n-1}$ and the hypothesis $H_{1..m-1}$.

Computing WER: induction

• Given $N^{(n-1,m-1)}$ for the $R_{1..n-1}$, $H_{1..m-1}$ problem, how to compute $N^{(n,m)}$?

• If
$$R_n == H_m$$
: $N^{(n,m)} = N^{(n-1,m-1)}$

• Else: $N^{(n,m)} = 1 + \min\{N^{(n-1,m-1)}, N^{(n,m-1)}, N^{(n-1,m)}\}$

Computing WER: initialization

- $N^{(0,m)} = m$
 - All of the hypotheses are hallucinated.
- $N^{(n,0)} = n$
 - All of the references are deleted.

			hypothesis							
		<s></s>	how	to	wreck	а	nice	beach		
	<s></s>	0	1	2	3	4	5	6	7	
	how	1								
Reference	to	2								
	recognize	3								
	speech	4								
		5								

		hypothesis							
		<s></s>	how	to	wreck	а	nice	beach	
	<s></s>	0	1	2	3	4	5	6	7
	how	1	0						
Reference	to	2							
	recognize	3							
	speech	4							
		5							

		hypothesis							
		<s></s>	how	to	wreck	а	nice	beach	
	<s></s>	0	1	2	3	4	5	6	7
	how	1	0	1	2	3 =	4 =	5 -	• 6
ence	to	2							
Refer	recognize	3							
	speech	4							
		5							

	hypothesis								
		<s></s>	how	to	wreck	а	nice	beach	
	<s></s>	0	1	2	3	4	5	6	7
	how	1	0	1	2 🗖	3 🗖	4 =	5 -	• 6
Reference	to	2	1	0	1 -	2	3 🗖	4	5
	recognize	3	2	1	1 -	2 =	3 🗖	▶ 4 ■	5
	speech	4							
		5							

		hypothesis							
		<s></s>	how	to	wreck	а	nice	beach	
	<s></s>	0	1	2	3	4	5	6	7
	how	1	0	1 -	2 =	3 🗖	4 =	5 -	• 6
ence	to	2	1	0	1 🗖	2	3 🗖	4	5
Refer	recognize	3	2	1	1	2	3 🗖	▶ 4 ■	5
	speech	4	3	2	2	2	3	4	5
		5	4	3	3	3	3	4	4

Lecture review questions

By the end of this lecture, you should be able to:

- Describe the Listen, Attend, Spell ASR model.
- Describe how to evaluate an ASR system.
 - What is word-error rate?
 - What is substitution / insertion / deletion error?
 - What are the initialization and induction steps to compute WER?
- (Optional) Do Leetcode Q72 "Edit Distance".

Anonymous feedback form: https://forms.gle/W3i6AHaE4uRx2FAJA

