
Computer Science 401 15 January 2024
St. George Campus University of Toronto

Homework Assignment #1
Due: Friday, 9 February 2024 at 23h59 (11:59pm)

Red Team, Blue Team: Identifying Political Affiliations on Reddit

TAs: Mahya Mirbagheri and Yuntao Wu. Email: csc401-2024-01-a1@cs.toronto.edu.

Overview

In this assignment, you are tasked with creating classifiers that predict a user’s political affiliation by
analysing their posts. This assignment will give you experience with a social media corpus (viz., a collection
of posts from Reddit), Python programming on natural language data, part-of-speech (PoS) tags, sentiment
analysis, and machine learning with scikit-learn.

First, you will create a new feature-based classifier from beginning to end. This includes preprocessing
the corpus, designing and implementing an extractor to gather feature information from each post, and
creating classifiers to predict the user’s affiliation using various machine-learning-based algorithms. After-
wards, you will create a neural classifier by fine-tuning an off-the-shelf language model called POLITICS
and compare it to the feature-based classifiers.

Please monitor the course bulletin board (Piazza) regularly for announcements and discussion pertain-
ing to this assignment.

Reddit Corpus

We have curated data from Reddit by scraping subreddits, using Pushshift, according to perceived political
affiliation. Table 1 shows the subreddits assigned to each of four categories: left-leaning, right-leaning,
center/neutral, and “alternative facts.” Although at least the first three are often viewed as ordinal
segments on a unidimensional spectrum, here we will treat all four categories as nominal classes. Here, we
use the terms “post” and “comment” interchangeably to refer to short segments of user-produced text.

Left (598, 944) Center (599, 872) Right (600, 002) Alt (200, 272)

twoXChromosomes (7, 720, 661) news (2, 782, 9911) theNewRight (19, 466) conspiracy (6, 767, 099)
occupyWallStreet (397, 538) politics (60, 354, 767) whiteRights (118, 008) 911truth (79, 868)

lateStageCapitalism (634, 962) energy (416, 926) Libertarian (3, 886, 156)
progressive (246, 435) canada (7, 225, 005) AskTrumpSupporters (1, 007, 590)
socialism (1, 082, 305) worldnews (38, 851, 904) The Donald (21, 792, 999)

demsocialist (5269) law (464, 236) new right (25, 166)
Liberal (151, 350) Conservative (1, 929, 977)

tea party (1976)

Table 1: Subreddits assigned to each category, with the total posts in each. Since there are over 181M
posts, we sample randomly within each category – the resulting number of available posts for each category
in this assignment is shown on the top row.

These data are stored on the teach.cs servers under /u/cs401/A1/data/. To save space, these files
should only be accessed from that directory (and not copied). All data are in the JSON format.

Copyright © 2024, Gerald Penn, Raeid Saqur and Sean Robertson. All rights reserved.

1

mailto:csc401-2024-01-a1@cs.toronto.edu
csc401-2024-01-a1@cs.toronto.edu
https://huggingface.co/launch/POLITICS
https://piazza.com/class/lnlv5iq4kgria
https://www.reddit.com
https://github.com/pushshift/api

Each datum has several fields of interest, including:
ups: the integer number of upvotes.

downs: the integer number of downvotes.
score: [ups− downs]

controversiality: a combination of the popularity of a post and the ratio between ups and downs.
subreddit: the subreddit from which the post was sampled.

author: the author ID.
body: the main textual payload of the post, and our primary interest.

id: the unique identifier of the comment.

Starter Code

We provide four starter code files: a1 preprocess.py, a1 extract features.py, a1 classify.py and
a1 hf.py that correspond to the four tasks of this assignment. Please read the instructions in both the
starter code and this handout carefully. The starter code files are located in /u/cs401/A1/code/.

1 Pre-processing, Tokenizing and Tagging [18 marks]

The comments, as given, are not in a form amenable to feature extraction for classification – there is
too much “noise.” Therefore, the first step is to complete a Python program named a1 preprocess.py,
in accordance with Section 4. This will read subsets of JSON files and, for each comment, perform the
following steps, in order, on the “body” field of each selected comment:

1. Replace all non-space whitespace characters, including newlines, tabs, and carriage returns, with
spaces.

2. Remove “[deleted]” or “[removed]” statements.
3. Replace HTML character codes (i.e., &...;) with their ASCII equivalents (see http://www.asciitable.com).
4. Remove all URLs (i.e., tokens beginning with http or www).
5. Remove duplicate spaces between tokens.

• Each token is now be separated by a single space.

6. Apply the following steps using spaCy (see below):

• Tagging: Tag each token with its part-of-speech. A tagged token consists of a word, the ‘/’
symbol, and the tag (e.g., dog/NN). See below for information on how to use the tagging
module. The tagger can make mistakes.

• Lemmatization:

– Replace the token itself with the token.lemma ; e.g., words/NNS becomes word/NNS. If
the lemma begins with a dash (‘-’) when the token does not (e.g., -PRON- for I), just keep
the token.

– Retain the case of the original token when you perform this replacement. We make two dis-
tinctions here: if the original token is entirely in uppercase, then so is the lemma; otherwise,
keep the lemma in lowercase.

• Sentence segmentation: Add a newline between each sentence. For this assignment, we will use
spaCy’s sentencizer component to segment sentences in a post. Remember also to mark the
end of the post with a newline (watch out for duplicates!).

2

http://www.asciitable.com

Additional Specifications

spaCy The package spaCy is very handy for many NLP tasks. Here, we only use its ability to obtain
PoS tags and lemmata, along with sentence segmentation. For example:

import spacy

nlp = spacy.load("en_core_web_sm", disable=["parser", "ner"])

nlp.add_pipe("sentencizer")

utt = nlp("I know words. I have the best words")

for sent in utt.sents:

print(sent.text)

for token in sent:

print(token.text, token.lemma_, token.pos_, token.tag_, token.dep_,

token.shape_, token.is_alpha, token.is_stop)

Functionality The a1 preprocess.py program reads a subset of the (static) input JSON files, retains
the fields we care about, including id, which you’ll soon use as a key to obtain pre-computed features, and
body, which is text that you preprocess and replace before saving the result to an output file. To each
comment, also add a cat field, with the name of the file from which the comment was retrieved (e.g., Left,
Alt, . . .).

The program takes three arguments: your student ID (mandatory), the output file (mandatory), and
the maximum number of lines to sample from each category file (optional; default=10,000). For example,
if you are student 999123456 and want to create preprocessed.json, you’d run:

python3 a1 preprocess.py 999123456 -o preprocessed.json

The output of a1 preprocess.py will be used in Task 2.

Subsampling By default, you should only sample 10,000 lines from each of the Left, Center, Right, and
Alt files, for a total of 40,000 lines. From each file, start sampling lines at index [ID % len(X)], where
ID is your student ID, % is the modulo arithmetic operator, and len(X) is the number of comments in
the given input file (i.e., len(data), once the JSON parse is done). Use circular list indexing if your start
index is too close to the end.

Your Tasks Copy the template from /u/cs401/A1/code/a1 preprocess.py. There are two functions
you need to modify:

1. In preprocess, fill out each if statement with the associated preprocessing step above.
2. In main, replace the lines marked with TODO with the code they describe. By default, args.a1 dir

points to /u/cs401/A1/, so load the data from args.a1 dir’s data subdirectory.
For this section, you may only use standard Python libraries, except for Step 5. For debugging, you

are advised to either use a different input folder with your own JSON data, or pass strings directly to
preprocess.

3

https://spacy.io

2 Feature Extraction [22 marks]

The second step is to complete a Python program named a1 extract features.py, in accordance with
Section 4, that takes the preprocessed comments from Task 1, extracts features that are relevant to political
bias detection, and builds an .npz datafile that will be used to train models and classify comments in Task
3.

For each comment, you need to extract 173 features and write these, along with the category, to a single
NumPy array. These features are listed below. Several of these features involve counting tokens based
on their tags. For example, counting the number of adverbs in a comment involves counting the number
of tokens that have been tagged as RB, RBR, or RBS. Table 4 explicitly defines some of these features
(many of which we have provided as constants in the template); other definitions are available on teach.cs
in /u/cs401/Wordlists/. You may copy and modify these files, but do not change their filenames.

1. Number of tokens in uppercase (≥ 3 letters long).
2. Number of first-person pronouns.
3. Number of second-person pronouns.
4. Number of third-person pronouns.
5. Number of coordinating conjunctions.
6. Number of past-tense verbs.
7. Number of future-tense verbs.
8. Number of commas.
9. Number of multi-character punctuation tokens.
10. Number of common nouns.
11. Number of proper nouns.
12. Number of adverbs.
13. Number of wh- words.
14. Number of slang acronyms.
15. Average length of sentences, in tokens.
16. Average length of tokens, excluding punctuation-only tokens, in characters.
17. Number of sentences..
18. Average of AoA (100-700) from Bristol, Gilhooly, and Logie norms.
19. Average of IMG from Bristol, Gilhooly, and Logie norms.
20. Average of FAM from Bristol, Gilhooly, and Logie norms.
21. Standard deviation of AoA (100-700) from Bristol, Gilhooly, and Logie norms.
22. Standard deviation of IMG from Bristol, Gilhooly, and Logie norms.
23. Standard deviation of FAM from Bristol, Gilhooly, and Logie norms.
24. Average of V.Mean.Sum from Warringer norms.
25. Average of A.Mean.Sum from Warringer norms.
26. Average of D.Mean.Sum from Warringer norms.
27. Standard deviation of V.Mean.Sum from Warringer norms.
28. Standard deviation of A.Mean.Sum from Warringer norms.
29. Standard deviation of D.Mean.Sum from Warringer norms.

30-173. LIWC/Receptiviti features.

Note 1: All of the provided wordlists contain tokens in lowercase. After extracting feature 1 above, you
may convert the tokens in the comment to lowercase as well. Take care to modify only the text and not
the PoS tags , i.e, Dog/NN should become dog/NN and not dog/nn.

Note 2: While calculating features 18-29, only consider those tokens that are present in the text as well
as the wordlists. You may find that some tokens are present in the wordlists with an N/A value; ignore
these.

4

https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.savez_compressed.html#numpy.savez_compressed
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.array.html

Task Specification

Functionality The a1 extract features.py program reads a preprocessed JSON file and extracts fea-
tures for each comment therein, producing and saving a D × 174 NumPy array, where the ith row is the
slice of features for the ith comment, followed by an integer for the class (0: Left, 1: Center, 2: Right, 3:
Alt), as per the cat JSON field.

The program takes two arguments: the input filename (i.e., the output of a1 preproc), and the output
filename. For example, given input preprocessed.json and the desired output feats.npz, you’d run:

python3 a1 extract features.py -i preprocessed.json -o feats.npz

The output of a1 extract features.py will be used in Task 3.

Norms Lexical norms are aggregate subjective scores given to words by a large group of individuals.
Each type of norm assigns a numerical value to each word. Here, we use two sets of norms:

1. Bristol+GilhoolyLogie:
These are found in /u/cs401/Wordlists/BristolNorms+GilhoolyLogie.csv, specifically the fourth,
fifth, and sixth columns. These measure the Age-of-acquisition (AoA), imageability (IMG), and fa-
miliarity (FAM) of each word, which we can use to measure lexical complexity. More information
can be found, for example, in this article.

2. Warringer:
These are found in /u/cs401/Wordlists/Ratings Warriner et al.csv, specifically the third, sixth,
and ninth columns. These norms measure the valence (V), arousal (A), and dominance (D) of each
word, according to the VAD model of human affect and emotion. You can read more information on
this particular data set.

When you compute features 18-29, only consider those words that exist in the respective norms file.
Assume the default value for all of the above features is zero. Treat the mean and standard
deviation of zero words to be zero.

LIWC/Receptiviti The Linguistic Inquiry & Word Count (LIWC) tool has been a standard across
NLP research, including authorship and sentiment analysis. This tool provides 85 measures mostly related
to word choice. The company Receptiviti provides an extended set of these features, with 59 measures of
personality derived from text. The company has graciously donated this course access to its API.

To simplify things, we have already extracted these 144 features for you. Simply copy the pre-computed
features from the appropriate uncompressed .npy files stored in /u/cs401/A1/feats/. Specifically:

1. Comment IDs are stored in IDs.txt files (e.g., Alt IDs.txt). When processing a comment, find
the index (row) i of the ID in the appropriate ID text file for the category, and copy the 144 elements
of that row from the associated feats.dat.npy file.

2. The file feats.txt provides the names of these features in the order they are marshalled in the
.dat.npy files. For this assignment, these names will suffice as to the meaning of these features,
but you are welcome to obtain your own API license from Receptiviti in order to get access to their
documentation.

Your Tasks Copy the template from /u/cs401/A1/code/a1 extract features.py. There are two
functions you need to modify:

1. In extract1, extract each the first 29 of the aforementioned features from the input string. Features
30-173 should be extracted in extract2.

2. In main, call extract1 and extract2 on each datum and add the results (+ the class) to the feats
array.

When your feature extractor works to your satisfaction, build feats.npz, from all input data.

5

https://link.springer.com/article/10.3758/BF03201693
https://link.springer.com/article/10.3758/s13428-012-0314-x
https://web.archive.org/web/20231115122322/http://crr.ugent.be:80/archives/1003
https://www.liwc.app/help/howitworks
https://www.receptiviti.com/
https://www.receptiviti.com

3 Experiments and Classification [30 marks]

The third step is to use the features extracted in Task 2 to classify comments using the scikit-learn machine
learning package. Here, you will modify various hyper-parameters and interpret the results analytically. As
everyone has different slices of the data, there are no expectations on overall accuracy, but you are expected
to discuss your findings with scientific rigour. Copy the template from /u/cs401/A1/code/a1 classify.py

and complete the main body and the functions for the following experiments according to the specifications
therein.

The program takes two arguments: the input feature file (the output of a1 extract features), and
an output directory.

python3 a1 classify.py -i feats.npz -o .

You should create the output directory if it doesn’t already exist. In main, you are expected to load the
data from the input file, partition the input into a train and test set, and call the experimental functions
in order. Use the train test split method to split the data into a random 80% for training and 20% for
testing. For part 3.3, use the entire loaded data set.

3.1 Classifiers

Train the following 5 classifiers (see hyperlinks for API) with fit(X train, y train):
1. SGDClassifier: support vector machine with a linear kernel.
2. GaussianNB: a Gaussian naive Bayes classifier.
3. RandomForestClassifier: with a maximum depth of 5, and 10 estimators.
4. MLPClassifier: A feed-forward neural network, with α = 0.05.
5. AdaBoostClassifier: with the default hyper-parameters.

Here, X train is the first 173 columns of your training data, and y train is the last column. Obtain
predicted labels with these classifiers using predict(X test), where X test is the first 173 columns of
your testing data. Obtain the 4× 4 confusion matrix C using confusion matrix. ci,j , the element at row
i, column j in C, is the number of instances belonging to class i that were classified as class j. Compute
the following manually, using the associated function templates:

Accuracy : The total number of correctly classified instances over all classifications: A =
∑

i ci,i∑
i,j ci,j

.

Recall : For each class κ, the fraction of cases that are truly class κ that were classified as κ, R(κ) =
cκ,κ∑
j cκ,j

.

Precision : For each class κ, the fraction of cases classified as κ that truly are κ, P (κ) =
cκ,κ∑
i ci,κ

.

Write the results to the text file a1 3.1.txt in the output directory. You must write to this file using
the format strings provided in the template. If you do not follow the format, you may receive a
mark of zero. For each classifier, you will print the accuracy, recall, precision, and confusion matrix. You
may include a written analysis if you are so inclined, but only after the results.

3.2 Amount of Training Data

Many researchers attribute the success of modern machine learning to the sheer volume of data that is
now available. Modify the amount of data that is used to train your preferred classifier from above in
five increments: 1K, 5K, 10K, 15K, and 20K. These can be sampled arbitrarily from the training set in
Section 3.1. Using only the classification algorithm with the highest accuracy from Section 3.1, report the
accuracies of the classifier in the file a1 3.2.txt using the format string provided in the template. On
one or more lines following the reported accuracies, comment on the changes to accuracy as the number
of training samples increases, in two sentences or more, on a possible explanation. Is there an expected
trend? Do you see such a trend? Hypothesize as to why or why not.

6

http://scikit-learn.org/stable/
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html#sklearn.model_selection.train_test_split
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#sklearn.neural_network.MLPClassifier
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html#sklearn.ensemble.AdaBoostClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html

3.3 Feature Analysis

Certain features may be more or less useful for classification, and too many can lead to overfitting or other
problems. Here, you will select the best features for classification using SelectKBest according to the
f classif metric as in:

from sklearn.feature_selection import SelectKBest

from sklearn.feature_selection import f_classif

selector = SelectKBest(f_classif, you_figure_it_out)

X_new = selector.fit_transform(X_train, y_train)

pp = selector.pvalues_

In the example above, pp stores the p-value associated with doing a χ2 statistical test on each feature. A
smaller value means the associated feature better separates the classes. Do this:

1. For the 32k training set and each k ∈ {5, 50}, find the best k features according to this approach.
Write the associated p-values to a1 3.3.txt using the format strings provided.

2. Train the best classifier from section 3.1 on the 1K training set as well as the 32K training set, using
only the best k = 5 features. Write the accuracies of both classifiers on the full test to a1 3.3.txt

using the format strings provided.
3. Extract the indices of the top k = 5 features using the 1K training set and take the intersection with

the k = 5 features using the 32K training set. Write using the format strings provided.
4. Format the top k = 5 feature indices extracted from the 32K training set to the file using the format

string provided.
5. Following the above, answer the following questions:

(a) Provide names for the features found in the above intersection of the top k = 5 features. Provide
a possible explanation as to why these features may be especially useful.

(b) Are p-values generally higher or lower given more or less data? Why or why not?
(c) Name the top 5 features chosen for the 32K training case. Hypothesize as to why those particular

features might differentiate the classes.

3.4 Cross-validation

Many papers in machine learning stick with a single subset of data for training and another for testing
(occasionally with a third for validation). This may not be the most honest approach. Is the best classifier
from Section 3.1 really the best? For each of the classifiers in Section 3.1, run 5-fold cross-validation given
all the initially available data. Specifically, use KFold. Set the shuffle argument to true.

For each fold, obtain the accuracy on the test partition after training on the rest for each classifier.
Report the mean accuracy of each classifier for each of the 5 folds in the order specified in 3.1 to a1 3.4.txt

using the format strings provided. Next, determine whether the accuracy of your best classifier, across the
5 folds, is significantly better than any of the others. i.e., given vectors a and b, one for each classifier,
containing the accuracy values for each of the respective 5 folds, obtain the p-value from the output S,
below:

from scipy import stats

S = stats.ttest_ind(a, b)

print(S.pvalue)

You should have 4 p-values. Report them using the provided format string in the same order as the accura-
cies, excluding the self-comparison. For example, if the best classifier from 3.1 was the RandomForestClassifier,
then the p-values should be reported in the order: 1 vs. 3, 2 vs. 3, 4 vs. 3, 5 vs. 3.

7

http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html#sklearn.feature_selection.SelectKBest
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_classif.html#sklearn.feature_selection.f_classif
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html

4 LM-based Neural Classifier [20 marks]

Finally, you need to create a neural classifier on top of a language model (LM) and compare its performance
with the feature-based classifier you have just created. In particular, you will fine-tune a foundational model
called POLITICS. You can quickly pull together a functioning, task-specific model using platforms such
as Hugging Face. In a1 hf.py, you need to complete the entire training pipeline:

1. Data Loading and Preprocessing [2 marks]: The load data function loads and processes data
from the Reddit corpus. Then it returns a Python dictionary containing text and corresponding
labels. This part of the assignment is provided to you. Same as in Preprocessing 1, you need to use
your student ID for subsampling.

2. Tokenization [2 marks]: Implement the tokenize text function to tokenize the input text using
the Hugging Face tokenizer. This step is crucial for preparing the data for model training.

3. Model Training [2 marks]: Finish the train model function to set up the Trainer object from
Hugging Face. Use the provided model, tokenizer, and training arguments to train a sequence
classification model.

4. Evaluation Metrics [2 marks]: Complete the compute metrics function to calculate evaluation
metrics on the trained model’s predictions. You only need to calculate the accuracy, but you should
follow the specified return format.

5. The Main Training Loop [7 mark]: In the function main, load the data, tokenize it, train the
model and save the evaluation results into evaluation result.txt. Submit this .txt file.

Comparison to Feature-based Classifiers [5 marks]
Finally, in analysis.txt you need to provide a brief comparison between the feature-based classifiers

and this LM-based classifier. In particular, you need to cover the following points:

• How are the relative performances? How should we best use the different evaluation metrics in our
comparison?

• What are the potential strengths and weaknesses of the feature-based classifiers? What are the
potential strengths and weaknesses of the LM-based classifier?

• In 5 ∼ 10 sentences, describe one experiment to verify a pair of one strength and one weakness.
You don’t need to actually code or run the experiment. What are the possible outcomes? What
conclusion would you draw from each of these outcomes?

Additional Specifications

Hugging Face Transformers You will mostly interact with Hugging Face through the transformers

package. Here is its documentation.

Debugging and Using GPUs on teach.cs In a1 hf.py, we provide a --toy option to make your
model only train on a tiny sliver of the dataset (40 examples). You should use this option for debugging
during your development phase. You can train this toy model using the CPU, which will take ∼ 1 minute
to complete. Again, if you are student 999123456, you can run the following command.

python3 a1 hf.py 999123456 --toy

8

https://huggingface.co/launch/POLITICS
https://huggingface.co/
https://huggingface.co/docs/transformers/index

But you should also make sure your code works using GPU acceleration. Specifically, on teach.cs, you
can add srun -p csc401 --gres gpu to the beginning of your command to initiate your program using
one of the GPUs. The training process (not including the data loading process) should complete on one
instance.

srun -p csc401 --gres gpu python3 a1 hf.py 999123456 --toy

Finally, only when you are sure that your code works, you can start the real training process. This
actual training process must be initiated with a GPU available, and you must start your command with
srun -p csc401 --gres gpu.

srun -p csc401 --gres gpu python3 a1 hf.py 999123456

Note: Availability of GPU machines at particular times is not guaranteed, especially when it gets close
to the deadline. Start early!

Your Tasks

1. Copy the template from /u/cs401/A1/code/a1 hf.py and implement the missing parts. Submit the
finished file.

2. Run your code to actually train the model. Submit the result file, evaluation result.txt.

3. Write-up the comparison between the two types of classifiers in analysis.txt, and submit this file.

9

General Specifications

As part of grading your assignment, the grader may run your programs and/or python files on test data
and configurations that you have not previously seen. This may be done in part by automatic scripts. It
is therefore important that each of your programs precisely meets all the specifications, including its own
name and the names of the files and functions that it uses. A program that cannot be evaluated
because it varies from specifications will receive zero marks on the relevant sections.

The flag --a1-dir can be used to specify an alternate location than /u/cs401/A1 to load data from,
though the submitted files should be generated on the teach.cs machines. Do not hardwire the absolute
address of your home directory within the program; the grader does not have access to this directory.

All your programs must contain adequate internal documentation to be clear to the graders.
We use Python version 3.10.13 on teach.cs.

Submission Requirements

This assignment is submitted electronically. You should submit:

1. All your code for a1 preprocess.py, a1 extract features.py, a1 classify.py and a1 hf.py.
2. a1 3.1.txt: Report on classifiers.
3. a1 3.2.txt: Report on the amount of training data.
4. a1 3.3.txt: Report on feature analysis.
5. a1 3.4.txt: Report on 5-fold cross-validation.
6. evaluation result.txt: The evaluation result generated from the huggingface training process.
7. analysis.txt: The comparison between the two types of classifiers: LM-based and feature-based.

In another file called ID.txt (use the template on the course web page), provide the following information:

1. Your first and last name.
2. Your student number.
3. Your teach.cs login ID.
4. Your preferred contact email address.
5. Whether you are an undergraduate or graduate.
6. This statement:

By submitting this file, I declare that my electronic submission is my own work, and is in
accordance with the University of Toronto Code of Behaviour on Academic Matters and
the Code of Student Conduct, as well as the collaboration policies of this course.

You do not need to hand in any files other than those specified above. The electronic
submission must be made from teach.cs with the submit command:

$ submit -c <course> -a A1 <filename-1> ... <filename-n>

where <course> is csc401h or csc2511h depending on which course you’re registered in, and <filename-1>

to <filename-n> are the aforementioned 11 files (including ID) you are submitting.

Working Outside the Lab

If you want to do some or all of this assignment on your laptop or home computer, you will have to do
the extra work of downloading and installing the requisite software and data. If you take this route, you
take on all of the associated risks. You are strongly advised to upload regular backups of your work to

10

https://www.cs.toronto.edu/~raeidsaqur/csc401/assignments/ID.txt

teach.cs, so that if your home machine fails or proves to be inadequate, you can immediately continue
working on the assignment at teach.cs. When you have completed the assignment, you should try your
programs out on teach.cs to make sure that they run correctly there. Any component that does not
work on teach.cs will get zero marks.

Frequently Asked Questions

In this section, we provide a list of clarifications to possible concerns. In addition to checking this, students
needing clarification with respect to the assignment should check Piazza, where we will have another FAQ
section based on questions from your fellow students.

• Always take spaCy’s output to be correct when completing the tokenization and lemmatization. In
the case of lemmata that contain multiple tokens, concatenate the multiple tokens with an underscore
and append the tag to that.

• A multi-character punctuation token is a token consisting of only punctuation characters that is
more than one character long.

• For word-list features, only consider the words that are present in the word-list file.

• When we have 1 data point, the sample std. dev. is 0.

• For Feature 7, “Number of future-tense verbs,” capturing all cases of a future tense verb in text is
not straightforward, and we do not expect a foolproof solution. Identifying the patterns listed in
Table 4 is sufficient.

• To speed up convergence of the MLPClassifier, remember to set the alpha parameter to 0.05.

• Accuracies in the classification portion may differ from student to student based on a number of
benign factors.

• Of {“A11”, “AA1”, “AAA1”}, only “AAA1” contains at least 3 uppercase letters.

• For duplicated words in BristolNorms+GilhoolyLogie.csv, take the last of each duplication.

11

Appendix: Tables

Tag Name Example

CC Coordinating conjunction and
CD Cardinal number three
DT Determiner the
EX Existential there there [is]
FW Foreign word d’oeuvre
IN Preposition or subordinating in, of, like

conjunction
JJ Adjective green, good
JJR Adjective, comparative greener, better
JJS Adjective, superlative greenest, best
LS List item marker (1)
MD Modal could, will
NN Noun, singular or mass table
NNS Noun, plural tables
NNP Proper noun, singular John
NNPS Proper noun, plural Vikings
PDT Predeterminer both [the boys]
POS Possessive ending ’s, ’
PRP Personal pronoun I, he, it
PRP$ Possessive pronoun my, his, its
RB Adverb however, usually, naturally, here, good
RBR Adverb, comparative better
RBS Adverb, superlative best
RP Particle [give] up
SYM Symbol (mathematical or scientific) +
TO to to [go] to [him]
UH Interjection uh-huh
VB Verb, base form take
VBD Verb, past tense took
VBG Verb, gerund or present participle taking
VBN Verb, past participle taken
VBP Verb, non-3rd-person singular present take
VBZ Verb, 3rd-person singular present takes
WDT wh-determiner which
WP wh-pronoun who, what
WP$ Possessive wh-pronoun whose
WRB wh-adverb where, when

Table 2: The Penn part-of-speech tagset—words.

12

Tag Name Example

Pound sign £
$ Dollar sign $
. Sentence-final punctuation !, ?, .
, Comma
: Colon, semi-colon, ellipsis
(Left bracket character
) Right bracket character
" Straight double quote
‘ Left open single quote
“ Left open double quote
’ Right close single quote
” Right close double quote

Table 3: The Penn part-of-speech tagset—punctuation.

First person:
I, me, my, mine, we, us, our, ours

Second person:
you, your, yours, u, ur, urs

Third person:
he, him, his, she, her, hers, it, its, they, them, their, theirs

Future Tense:
’ll, will, gonna, going+to+VB

Common Nouns:
NN, NNS

Proper Nouns:
NNP, NNPS

Adverbs:
RB, RBR, RBS

wh-words :
WDT, WP, WP$, WRB

Modern slang acronyms:
smh, fwb, lmfao, lmao, lms, tbh, rofl, wtf, bff, wyd, lylc, brb, atm, imao, sml, btw,
bw, imho, fyi, ppl, sob, ttyl, imo, ltr, thx, kk, omg, omfg, ttys, afn, bbs, cya, ez, f2f,
gtr, ic, jk, k, ly, ya, nm, np, plz, ru, so, tc, tmi, ym, ur, u, sol, fml Consider also
https://www.netlingo.com/acronyms.php, if you want, for no-bonus completion.

Table 4: Miscellaneous feature category specifications.

13

https://www.netlingo.com/acronyms.php

	Pre-processing, Tokenizing and Tagging [18 marks]
	Feature Extraction [22 marks]
	Experiments and Classification [30 marks]
	LM-based Neural Classifier [20 marks]

