STA 414/2104

Statistical Methods for Machine Learning and Data Mining

Radford M. Neal, University of Toronto, 2012

Week 9

Support Vector Machines

Another Way to Find the Hyperplane with Largest Margin

Recall that we if define a hyperplane by the equation $w^T x + b = 0$, we can find the maximum margin hyperplane by solving the following optimization problem:

minimize
$$||w||^2$$
, subject to $y_i(w^Tx_i+b) \geq 1$ for $i=1,\ldots,n$

We can always write

$$w = \sum_{i=1}^{n} a_i x_i + \delta$$

where $\delta^T x_i = 0$ for all i = 1, ..., n, for some (not necessarily unique) set of a_i . With this representation of w,

$$||w||^2 = \left(\sum_{i=1}^n a_i x_i + \delta\right)^T \left(\sum_{i'=1}^n a_{i'} x_{i'} + \delta\right) = \sum_{i=1}^n \sum_{i'=1}^n a_i a_{i'} (x_i^T x_{i'}) + ||\delta||^2$$

and

$$y_i(w^T x_i + b) = y_i \Big(\sum_{i'=1}^n a_{i'}(x_i^T x_{i'}) + b \Big)$$

Since the constraints don't depend on δ , the minimization will set $\delta = 0$, so we can assume that $w = \sum_{i=1}^{n} a_i x_i$.

Another Way to Find the Hyperplane...(Continued)

So we see that we can find $w = \sum_{i=1}^{n} a_i x_i$ and b as follows:

minimize
$$\sum_{i=1}^{n} \sum_{i'=1}^{n} a_i a_{i'}(x_i^T x_{i'}),$$
subject to $y_i \left(\sum_{i'=1}^{n} a_{i'}(x_i^T x_{i'}) + b \right) \ge 1$ for $i = 1, \dots, n$

This is also a quadratic programming problem — minimize a quadratic function of the a_i subject to linear constraints on the a_i and b — which could be solved by standard (and fairly efficient) methods.

However, the solution may not be unique (though the resulting w is). If the problem is formulated a bit differently, the result can be made unique, and often many of the a_i will be zero (with non-zero a_i only for the support vectors).

The formulation above does show one crucial property — the minimization depends only on inner products of input vectors (ie, on $x_i^T x_{i'}$). Predictions for test cases also depend only on such inner products, since we will classify x_* according to the sign of $w^T x_* + b = \sum_{i=1}^n a_i(x_*^T x_i) + b$.

Large Margin Classifiers Using Basis Functions

Rather than find a large margin classifier based on the original input vector, x, we can use a vector of basis function values, $\phi(x) = [\phi_1(x) \ \phi_2(x) \ \cdots \ \phi_m(x)]^T$.

The classes may be separable by a hyperplane in this space even if they aren't in the original space.

Finding a_1, \ldots, a_n and b can be done as before, using inner products, $\phi(x_i)^T \phi(x_{i'})$.

A test case with input vector x_* is classified by the sign of $\sum_{i=1}^n a_i (\phi(x_*)^T \phi(x_i)) + b$.

Since all that matters are these inner products, we can define

$$K(x, x') = \phi(x)^T \phi(x') = \sum_{j=1}^m \phi_j(x) \phi_j(x')$$

and then look at $K(x_i, x_{i'})$ for training cases i and i', and $K(x_*, x_i)$ for a test case.

So once we have a formula for K(x, x'), we can forget about the ϕ functions.

Classification (and regression) methods based on this "kernel trick" are known as Support Vector Machines (abbreviated to "SVM").

Letting the Number of Basis Functions Go to Infinity

Since all we need is a formula for the "kernel function",

$$K(x,x') = \sum_{j=1}^{m} \phi_j(x)\phi_j(x')$$

we can consider letting the number of basis functions, m, go to infinity, as long the resulting infinite sum has a finite limit, and can be computed efficiently.

This is essentially identical to what we did earlier for Gaussian process models. The noise-free covariance function corresponding to a Bayesian linear basis function model with independent zero-mean normal priors for coefficients, with the variance of the coefficient for ϕ_j being ω_j^2 , was found to be

$$K(x,x') = \sum_{j=0}^{m-1} \omega_j^2 \phi_j(x) \phi_j(x')$$

This becomes the same as above if we absorb a factor ω_j into the definition of ϕ_j (and replace 0 to m-1 with 1 to m).

Possible Kernel Functions

The possible kernel functions for a support vector machine are the same as the possible covariance functions for a Gaussian process model — all those that produce positive semi-definite matrices at any set of points.

Mercer's Theorem says that all such positive definite kernels can be represented in the form $K(x, x') = \sum \phi_j(x)\phi_j(x')$, though sometimes all but a finite number of the ϕ_j will be identically zero.

So the class of models defined using linear basis functions is the same as the class of models defined using a kernel/covariance function.

Commonly used kernel functions include $K(x, x') = (1 + x^T x')^d$, corresponding to polynomial basis functions to degree d, and $K(x, x') = \exp(-\rho^2 ||x - x'||^2)$.

Note that for an SVM (unlike for a Gaussian process), multiplying the kernel function by a positive constant does not change things.

More Elaborations on Support Vector Machines

- Which kernel function is best is usually not clear. Cross validation can be used to choose one.
- Finding a separating hyperplane (even if always possible in an infinite dimensional space) may not be a good idea, when class labels are actually "noisy". Introducing "slack variables" allows for some mis-classified points.
- Classification problems with more than two classes can be handled in various ways eg, combining results from pairwise binary classifiers.
- Regression problems can be handled by using a "loss" function that is " ϵ -insensitive" where small errors cost zero.

Support Vector Machines vs. Gaussian Process Models

SVM and GP models have a strong common element — the positive semi-definite kernel/covariance function. How do they compare otherwise?

Advantages of support vector machines:

- The number of support vectors is often much less than the total size of the training set, reducing computation time for training and prediction.
- Binary classification can be done directly, with a relatively fast optimization procedure, whereas Gaussian process classification requires handling a distribution over "latent variables".

Advantages of Gaussian process models:

- The covariance function has a probabilistic interpretation one can sample from the prior over functions that it defines which can guide the choice of a suitable covariance function.
- Finding good parameters of the covariance function can be done reasonably efficiently by maximum likelihood (or by Bayesian methods), without the need for cross validation.
- Classification problems with more than two classes can be handled naturally.