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Support Vector Machines



Another Way to Find the Hyperplane with Largest Margin

Recall that we if define a hyperplane by the equation wT x + b = 0, we can find

the maximum margin hyperplane by solving the following optimization problem:

minimize ||w||2, subject to yi(w
T xi + b) ≥ 1 for i = 1, . . . , n

We can always write

w =
n

∑

i=1

aixi + δ

where δT xi = 0 for all i = 1, . . . , n, for some (not necessarily unique) set of ai.

With this representation of w,

||w||2 =
(

n
∑

i=1

aixi + δ
)

T
(

n
∑

i′=1

ai′xi′ + δ
)

=
n

∑

i=1

n
∑

i′=1

aiai′(x
T

i xi′) + ||δ||2

and

yi(w
T xi + b) = yi

(

n
∑

i′=1

ai′(x
T

i xi′) + b
)

Since the constraints don’t depend on δ, the minimization will set δ = 0, so we

can assume that w =
n
∑

i=1

aixi.



Another Way to Find the Hyperplane. . . (Continued)

So we see that we can find w =
n
∑

i=1

aixi and b as follows:

minimize
n

∑

i=1

n
∑

i′=1

aiai′(x
T

i xi′),

subject to yi

(

n
∑

i′=1

ai′(x
T

i xi′) + b
)

≥ 1 for i = 1, . . . , n

This is also a quadratic programming problem — minimize a quadratic function

of the ai subject to linear constraints on the ai and b — which could be solved

by standard (and fairly efficient) methods.

However, the solution may not be unique (though the resulting w is). If the

problem is formulated a bit differently, the result can be made unique, and often

many of the ai will be zero (with non-zero ai only for the support vectors).

The formulation above does show one crucial property — the minimization

depends only on inner products of input vectors (ie, on xT

i xi′). Predictions for

test cases also depend only on such inner products, since we will classify x∗

according to the sign of wT x∗ + b =
n
∑

i=1

ai(x
T

∗
xi) + b.



Large Margin Classifiers Using Basis Functions

Rather than find a large margin classifier based on the original input vector, x,

we can use a vector of basis function values, φ(x) = [φ1(x) φ2(x) · · · φm(x)]T .

The classes may be separable by a hyperplane in this space even if they aren’t in

the original space.

Finding a1, . . . , an and b can be done as before, using inner products, φ(xi)
T φ(xi′).

A test case with input vector x∗ is classified by the sign of
n
∑

i=1

ai (φ(x∗)
T φ(xi)) + b.

Since all that matters are these inner products, we can define

K(x, x′) = φ(x)T φ(x′) =
m

∑

j=1

φj(x)φj(x
′)

and then look at K(xi, xi′) for training cases i and i′, and K(x∗, xi) for a test case.

So once we have a formula for K(x, x′), we can forget about the φ functions.

Classification (and regression) methods based on this “kernel trick” are known as

Support Vector Machines (abbreviated to “SVM”).



Letting the Number of Basis Functions Go to Infinity

Since all we need is a formula for the “kernel function”,

K(x, x′) =
m

∑

j=1

φj(x)φj(x
′)

we can consider letting the number of basis functions, m, go to infinity, as long

the resulting infinite sum has a finite limit, and can be computed efficiently.

This is essentially identical to what we did earlier for Gaussian process models.

The noise-free covariance function corresponding to a Bayesian linear basis

function model with independent zero-mean normal priors for coefficients, with

the variance of the coefficient for φj being ω2

j , was found to be

K(x, x′) =
m−1
∑

j=0

ω2

j φj(x)φj(x
′)

This becomes the same as above if we absorb a factor ωj into the definition of φj

(and replace 0 to m−1 with 1 to m).



Possible Kernel Functions

The possible kernel functions for a support vector machine are the same as the

possible covariance functions for a Gaussian process model — all those that

produce positive semi-definite matrices at any set of points.

Mercer’s Theorem says that all such positive definite kernels can be represented

in the form K(x, x′) =
∑

φj(x)φj(x
′), though sometimes all but a finite number

of the φj will be identically zero.

So the class of models defined using linear basis functions is the same as the class

of models defined using a kernel/covariance function.

Commonly used kernel functions include K(x, x′) = (1 + xT x′)d, corresponding to

polynomial basis functions to degree d, and K(x, x′) = exp(−ρ2||x − x′||2).

Note that for an SVM (unlike for a Gaussian process), multiplying the kernel

function by a positive constant does not change things.



More Elaborations on Support Vector Machines

• Which kernel function is best is usually not clear. Cross validation can be

used to choose one.

• Finding a separating hyperplane (even if always possible in an infinite

dimensional space) may not be a good idea, when class labels are actually

“noisy”. Introducing “slack variables” allows for some mis-classified points.

• Classification problems with more than two classes can be handled in various

ways — eg, combining results from pairwise binary classifiers.

• Regression problems can be handled by using a “loss” function that is

“ǫ-insensitive” — where small errors cost zero.



Support Vector Machines vs. Gaussian Process Models

SVM and GP models have a strong common element — the positive semi-definite

kernel/covariance function. How do they compare otherwise?

Advantages of support vector machines:

• The number of support vectors is often much less than the total size of the

training set, reducing computation time for training and prediction.

• Binary classification can be done directly, with a relatively fast optimization

procedure, whereas Gaussian process classification requires handling a

distribution over “latent variables”.

Advantages of Gaussian process models:

• The covariance function has a probabilistic interpretation — one can sample

from the prior over functions that it defines — which can guide the choice of

a suitable covariance function.

• Finding good parameters of the covariance function can be done reasonably

efficiently by maximum likelihood (or by Bayesian methods), without the

need for cross validation.

• Classification problems with more than two classes can be handled naturally.


