STA 414/2104, Spring 2012 — Assignment #1

Due at the start of class on February 14. Please hand it in on 8 1/2 by 11 inch paper, stapled
in the upper left, with no other packaging.

This assignment is to be done by each student individually. You may discuss it in general
terms with other students, but the work you hand in should be your own. In particular, you
should not leave any discussion with someone else with any written notes (either on paper or
in electronic form).

In this assignment, you will investigate a supervised learning method that combines linear
regression on the input variables with nearest-neighbor prediction. You will implement this
method in R, and try it out on two data sets that I have provided on the course web page.

The method looks at a set of n training cases, for each of which there is a vector of p inputs,
x, and real-valued response, y. From the information in these training cases, predictions are
made for test cases in which z is known but y is unknown. (For this assignment, you will
actually have the true values of y in the tests cases, but you should not use them until the
time comes to evaluate how well this method works.)

The method first fits a linear regression model for y based on x, in which y is modeled as
follows:

p
y = [Bo + ijﬁj + noise
j=1

This model is fit by penalized least squares, which produces estimated regression coefficients,
Bo, Brs - .-, Bp, that minimize a quadratic penalty plus the sum of the squares of errors in
training cases:

)\zp:ﬁ; + Zn: (yi — (50 +zp:9€ijﬁj))2
=1 i=1 j=1

The value of A determines the magnitude of the penalty. Note that [y is not included in the
penalty term.

Once BO, Bl, cee Bp have been found, the residual for each training case can be computed.
The residual for case 7 is defined as

Ti = Y — (BoJrif%@)
j=1

When making a prediction for a test case with input vector z, the method starts by finding
the K training cases with inputs nearest to x in Euclidean distance. Let the set of indexes of
these K training cases be N(x). The prediction for y in this test case is then computed as

P 1
Bo + 2wl + 3 X
Jj=1 1€EN(x)

The effect of this is that the prediction follows the linear regression model modified by the
average residual for training cases near to the test case. One might hope that this method



will do better than either simple linear regression or the simple nearest neighbor method, at
least for problems in which the true relationship of y to x is close to linear, but with some
local variations.

Note: If there are any ties when finding nearest neighbors, you may for simplicity break
them in favour of the training case with lowest index. (This may not be the best thing to do,
but ties will rarely or never arise with the data you will look at anyway.)

In order to use this method, values for A (a non-negative real) and for K (an integer from
1 to n) must be specified. Since it isn’t obvious what values will be best (and this will vary
from one problem to another), we will use S-fold cross validation to pick values for A and K,
using squared error as the cross validation performance measure.

In the experiments you do, you should set S to 5 (but your program should handle any
integer S from 1 to n). You may assume that the training sets you are supplied with are
already in random order, so you can divide the training set into S validations sets by just
taking the first n/S cases, the next n/S cases, etc. (If n/S isn’t an integer, you should divide
the training set as equally as possible.)

You should implement this method as a set of R functions, which should be written in
good style (in particular, properly indented), and suitably documented. You should hand in
a listing of these functions.

First, you should write an R function called 1m.nn that takes as arguments a matrix of
inputs in training cases, a vector of responses in training cases, a matrix of inputs in test cases,
the value of K to use, and the value of A to use. The result of this function should be a vector
of predictions for y in the test cases. If the value of K is greater than n (the number of training
cases), it should be adjusted to equal n. If A is infinity (Inf in R), the estimated 3 should be
the limiting values as A\ goes to infinity (which you will probably have to compute specially).
You should implement the penalized least squares estimation using matrix operations (not by
trying to use R’s built-in 1m function). Explicitly inverting matrices is OK, even though this
isn’t the best method.

Second, you should write an R function called 1m.nn.val that takes as arguments a matrix
of inputs in training cases, a vector of responses in training cases, a vector of indexes of
validation cases, a vector of values for K to try, and a vector of values for A to try (which
might include 0 or Inf). This functions should assess all combinations of the values for K
and A to be tried using the set of validation cases specified, fitting to the remaining cases (the
estimation set), and return an array of validation squared errors for these combinations. The
lm.nn.val function should of course call the 1m.nn function with the “training cases” and
“test cases” for this call of 1m.nn actually being the estimation and validation subsets of the
full training set.

Third, you should write an R function called 1m.nn.cross.val that takes as arguments
a matrix of inputs in training cases, a vector of responses in training cases, the value of S,
a vector of values for K to try, and a vector of values for A to try (which might include 0
or Inf). This function should assess all combinations of the values for K and A to be tried
using S-fold cross validation, and return a list with elements K and lambda giving the best
combination found. It should also print a table giving the cross-validation results (square root
of average squared error) for all combinations of K and A. The lm.nn.cross.val function



should work by calling the Im.nn.val function S times.

To make predictions for a set of test cases in a real application, the 1m.nn.cross.val
function would first be used to find the “best” K and A, and these values for K and A would
then be used as arguments in a call of 1m.nn that is given the full training set and the actual
matrix of inputs in test cases.

For this assignment, however, you should write a function called 1m.nn.test.err that
takes as arguments a matrix of inputs for training cases, a vector of responses for training
cases, a matrix of inputs for test cases, a vector of responses for test cases, a vector of values for
K, and a vector of values for A, and prints a table giving the predictive performance (square
root of average squared error) of 1m.nn on the test cases for each combination of values for
K and A. This table shows how good each combination of values for K and A actually is
(on these test cases), and can be compared with the table printed by 1m.nn.cross.val. (Of
course, in a real application you wouldn’t know the true values the responses in the test cases
at the time when you need to make predictions.)

You should try out this method on two data sets provided on the course web page, handing
in the output of 1lm.nn.cross.val and 1m.nn.test.err for each. For both data sets, you
should try values for K of 1, 2, 4, 8, 16, 32, and Inf (which will set K to the number of items
in the training/estimation set), and values for A of 0, 0.1, 1, 10, 100, 1000, and Inf. You
should hand in the R script that runs the functions you wrote on these data sets, and the
output of your script.

The first data set is the one used as an example in lectures, with a single input. The fifty
training case supplied in the file art-train.dat are the same as in the lecture examples. There
are 1000 test cases in the file art-test.dat. You should read both files using read.table
with the head=FALSE option. The response variable is first, followed by the input variable.

The second data set was used as an example in Hastie, Tibshirani, and Friedman’s book,
The Elements of Statistical Learning: Data Mining, Inference, and Prediction. The objective
with this data is to predict ozone levels from nine input variables. I have randomly reordered
the cases, and selected 100 for a test set, in the file ozone-test.dat, with the other 230 used
for training in the file ozone-train.dat. (Note that this random split makes sense only if
one assumes that the cases are independent, which is open to question since they are from
(mostly) consecutive days in one year, but we’ll ignore this issue.) In both files, the response
variable (ozone) is first, with the nine input variables following. Both files should be read
using read.table with the head=TRUE option.

You should first try predicting ozone using the inputs as given. You should then standardize
the inputs to have mean zero and standard deviation one (the R scale function is useful for
this), and try predicting ozone using these standardized inputs.

Last, you should hand in your discussion of the method and results. To begin, you should
consider what the method does in the limits as A goes to 0 or to infinity, and as K goes to
the number of training/estimation cases (explain and justify your reasoning about this). You
can then discuss the results you obtained for the two data sets, and the effect of standardizing
inputs.



