
Classification

Read Chapter 4 in the text by Bishop, except omit

Sections 4.1.6, 4.1.7, 4.2.4, 4.3.3, 4.3.5, 4.3.6, 4.4, and 4.5.

Also, review sections 1.5.1, 1.5.2, 1.5.3, and 1.5.4.

Classification Problems

Many machine learning applications can be seen as classification problems —

given a vector of D “inputs” describing an item, predict which “class” the item

belongs to. Examples:

• Given anatomical measurements of an animal, predict which species the

animal belongs to.

• Given information on the credit history of a customer, predict whether or not

they would pay back a loan.

• Given an image of a hand-written digit, predict which digit (0-9) it is.

• Given the proportions of iron, nickel, carbon, etc. in a type of steel, predict

whether the steel will rust in the presence of moisture.

We assume that the set of possible classes is known, with labels C1, . . . , CK .

We have a training set of items in which we know both the inputs and the class,

from which we will somehow learn how to do the classificaton.

Once we’ve learned a classifier, we use it to predict the class of future items, given

only the inputs for those items.

Approaches to Classification

Classification problems can be solved in (at least) three ways:

• Learn how to directly produce a class from the inputs — that is, we learn

some function that maps an input vector, x, to a class, Ck.

• Learn a “discriminative” model for the probability distribution over classes for

given inputs — that is, learn P (Ck|x) as a function of x. From P (Ck|x) and a

“loss function”, we can make the best prediction for the class of an item.

• Learn a “generative” model for the probability distribution of the inputs for

each class — that is, learn P (x|Ck) for each class k. From this, and the class

probabilities, P (Ck), we can find P (Ck|x) using Bayes’ Rule.

Note that the last option above makes sense only if there is some well-defined

distribution of items in a class. This isn’t the case for the example of determining

whether or not a type of steel will rust.

Loss functions and Classification

Learning P (Ck|x) allows one to make a prediction for the class in a way that

depends on a “loss function”, which says how costly different kinds of errors are.

We define Lkj to be the loss we incur if we predict that an item is in class Cj

when it is actually in class Ck. We’ll assume that losses are non-negative and that

Lkk = 0 for all k (ie, there’s no loss when the prediction is correct). Only the

relative values of losses will matter.

If all errors are equally bad, we would let Lkj be the same for all k 6= j.

Example: Giving a loan to someone who doesn’t pay it back (class C1) is much

more costly than not giving a loan to someone who would pay it back (class C0).

So for this application we might define L01 = 1 and L10 = 10.

Note that we should define the loss function to account both for monetary

consequences (money not repaid, or interest not earned) and other effects that

don’t have immediate monetary consequences, such as customer dissatisfaction

when their loan isn’t approved.

Predicting to Minimize Expected Loss

A basic principle of decision theory is that we should take the action (here, make

the prediction) that minimizes the expected loss, according to our probabilistic

model.

If we predict that an item with inputs x is in class Cj , the expected loss is

K
∑

k=1

LkjP (Ck|x)

We should predict that this item in the class, Cj , for which this expected loss is

smallest. (The minimum might not be unique, in which case more than one

prediction would be optimal.)

If all errors are equally bad (say loss of 1), the expected loss when predicting Cj is

1 − P (Cj |x), so we should predict the class which highest probability given x.

For binary classification (K = 2, with classes labelled by 0 and 1), minimizing

expected loss is equivalent to predicting that an item is in class 1 if

P (C1|x)

P (C0|x)

L10

L01

> 1

Classification from Generative Models Using Bayes’ Rule

In the generative model approach to classification, we learn models from the

training data for the probability or probability density of the inputs, x, for items

in each of the possible classes, Ck — that is, we learn models for P (x|Ck) for

k = 1, . . . , K.

To do classification, we instead need P (Ck|x). We can get these conditional class

probabilities using Bayes’ Rule:

P (Ck|x) =
P (Ck) P (x|Ck)

∑K
j=1

P (Cj) P (x|Cj)

Here, P (Ck) is the prior probability of class Ck. We can easily estimate these

probabilities by the frequencies of the classes in the training data. Alternatively,

we may have good information about P (Ck) from other sources (eg, census data).

For binary classification, with classes C0 and C1, we get

P (C1|x) =
P (C1) P (x|C1)

P (C0) P (x|C0) + P (C1) P (x|C1)

=
1

1 + P (C0) P (x|C0) / P (C1) P (x|C1)

Naive Bayes Models for Binary Inputs

When the inputs are binary (ie, x is a vectors of 1’s and 0’s) we can use the

following simple generative model:

P (x|Ck) =
D
∏

i=1

µxi

ki (1−µki)
1−xi

Here, µki is the estimated probability that input i will have the value 1 in items

from class k.

The maximum likelihood estimate for µki is simply the fraction of 1’s in training

items that are in class k.

This is called the naive Bayes model — “Bayes” because we use it with Bayes’s

Rule to do classification, an “naive” because this model assumes that inputs are

independent given the class, which is something a naive person might assume,

though it’s usually not true.

It’s easy to generalize naive Bayes models to discrete inputs with more than two

values, and further generalizations (keeping the independence assumption) are

also possible.

Binary Classification using Naive Bayes Models

When there are two classes (C0 and C1) and binary inputs, applying Bayes’ Rule

with naive Bayes gives the following probability for C1 given x:

P (C1|x) =
P (C1) P (x|C1)

P (C0) P (x|C0) + P (C1) P (x|C1)

=
1

1 + P (C0) P (x|C0) / P (C1) P (x|C1)

=
1

1 + exp(−a(x))

where

a(x) = log

(

P (C1) P (x|C1)

P (C0) P (x|C0)

)

= log

(

P (C1)

P (C0)

D
∏

i=1

(µ1i

µ0i

)xi
(1−µ1i

1−µ0i

)1−xi

)

= log

(

P (C1)

P (C0)

D
∏

i=1

1−µ1i

1−µ0i

)

+
D
∑

i=1

xi log

(

µ1i/(1−µ1i)

µ0i/(1−µ0i)

)

Gaussian Generative Models

When the inputs are real-valued, a Gaussian model for the distribuiton of inputs

in each class may be appropriate. If we also assume that the covariance matrix

for all classes is the same, the class probabilities for binary classification turn out

to depend on a linear function of the inputs.

For this model,

P (x|Ck) = (2π)−D/2 |Σ|−1/2 exp
(

− (x − µk)
T Σ−1(x − µk) / 2

)

where µk is an estimate of the mean vector for class Ck, and Σ is an estimate for

the covariance matrix (same for all classes).

As shown in Bishop’s book, the maximum likelihood estimate for µk is the sample

means of input vectors for items in class Ck, and the maximum likelihood

estimate for Σ is
K
∑

k=1

Nk

N
Sk

where Nk is the number of training items in class Ck, and Sk is the usual

maximum likelihood estimate for the covariance matrix in class Ck.

Classification using Gaussian Models for Each Class

For binary classification, we can now apply Bayes’ Rule to get the probability of

class 1 from a Gaussian model with the same covariance matrix in each class:

As for the naive Bayes model:

P (C1|x) =
1

1 + exp(−a(x))

where

a(x) = log

(

P (C1) P (x|C1)

P (C0) P (x|C0)

)

Substituting the Gaussian densities, we get

a(x) = log

(

P (C1)

P (C0)

)

+ log

(

exp(−(x − µ1)
T Σ−1(x − µ1) / 2)

exp(−(x − µ0)T Σ−1(x − µ0) / 2)

)

= log

(

P (C1)

P (C0)

)

+
1

2

(

µT

0Σ−1µ0 − µT

1Σ−1µ1

)

+ xT

(

Σ−1(µ1 − µ0)
)

The quadratic terms of the form xT Σ−1xT /2 cancel, producing a linear function

of the inputs, as was also the case for naive Bayes models.

Logistic Regression

We see that binary classification using either naive Bayes or Gaussian generative

models leads to the probability of class C1 given inputs x having the form

P (C1|x) =
1

1 + exp(−a(x))

where a(x) is a linear function of x, which can be written as a(x) = w0 + xT w.

Rather than start with a generative model, however, we could simply start with

this formula, and estimate w0 and w from the training data. Maximum likelihood

estimation for w0 and w is not hard, though there is no explicit formula.

This is a discriminative training procedure, that estimates P (Ck|x) without

estimating P (x|Ck) for each class.

Which is Better — Generative or Discriminative?

Even though logistic regression uses the same formula for the probability for C1

given x as was derived for the earlier generative models, maximum likelihood

logistic regression does not in general give the same values for w0 and w as would

be found with maximum likelihood estimation for the generative model.

So which gives better results? It depends. . .

If the generative model accurately represents the distribution of inputs for each

class, it should give better results than discriminative training — it effectively has

more information to use when estimating parameters. (The discussion of this in

Bishop’s book, bottom of page 205, is misleading.)

However, if the generative model is not a good match for the actual distributions,

using it might produce very bad results, even when logistic regression would work

well. The independence assumption for naive Bayes and the equal covariance

assumption for Gaussian models are often rather dubious.

Similarly, logistic regression may be less sensitive to outliers than a Gaussian

generative model.

Non-linear Logistic Models

As we saw earlier for neural networks, the form P (C1|x) = 1 / (1 + exp(−a(x)))

for the probability of class C1 given x can be used with a(x) being a non-linear

function of x.

If a(x) can equally well be any non-linear function, the choice of this form for

P (C1|x) doesn’t really matter, since any function P (C1|x) could be obtained with

an approriate a(x).

However, in practice, non-linear models are biased towards some non-linear

functions more than others, so it does matter that a logistic model is being used,

though not as much as when a(x) must be linear.

Probit Models

An alternative to logistic models is the probit model, in which we let

P (C1|x) = Φ(a(x))

where Φ is the cumulative distribution function of the standard normal

distribution:

Φ(a) =

∫ a

−∞

(2π)−1/2 exp(−x2/2) dx

This would be the right model if the class depended on the sign of a(x) plus a

standard normal random variable. But this isn’t a reasonable model for most

applications. It might still be useful, though.

