
Chapter 4

Probability

In this chapter we define the basic terminology associated with probability and derive some

of its properties. We discuss three interpretations of probability. We discuss conditional prob-

ability and independent events, along with Bayes’ Theorem. We finish the chapter with an

introduction to random variables, which paves the way for the next two chapters.

In this book we distinguish between two types of experiments: deterministic and random.

A deterministic experiment is one whose outcome may be predicted with certainty beforehand,

such as combining Hydrogen and Oxygen, or adding two numbers such as 2 � 3. A random

experiment is one whose outcome is determined by chance. We posit that the outcome of a ran-

dom experiment may not be predicted with certainty beforehand, even in principle. Examples

of random experiments include tossing a coin, rolling a die, and throwing a dart on a board,

how many red lights you encounter on the drive home, how many ants traverse a certain patch

of sidewalk over a short period, etc.

What do I want them to know?

• that there are multiple interpretations of probability, and the methods used depend some-

what on the philosophy chosen

• nuts and bolts of basic probability jargon: sample spaces, events, probability functions,

etc.

• how to count

• conditional probability and its relationship with independence

• Bayes’ Rule and how it relates to the subjective view of probability

• what we mean by ’random variables’, and where they come from

4.1 Sample Spaces

For a random experiment E, the set of all possible outcomes of E is called the sample space

and is denoted by the letter S . For the coin-toss experiment, S would be the results “Head”

and “Tail”, which we may represent by S = {H� T }. Formally, the performance of a random

experiment is the unpredictable selection of an outcome in S .

65

66 CHAPTER 4. PROBABILITY

4.1.1 How to do it with R

Most of the probability work in this book is done with the prob package [52]. A sample space is

(usually) represented by a data frame, that is, a rectangular collection of variables (see Section

3.5.2). Each row of the data frame corresponds to an outcome of the experiment. The data frame

choice is convenient both for its simplicity and its compatibility with the R Commander. Data

frames alone are, however, not sufficient to describe some of the more interesting probabilistic

applications we will study later; to handle those we will need to consider a more general list

data structure. See Section 4.6.3 for details.

Example 4.1. Consider the random experiment of dropping a Styrofoam cup onto the floor

from a height of four feet. The cup hits the ground and eventually comes to rest. It could land

upside down, right side up, or it could land on its side. We represent these possible outcomes

of the random experiment by the following.

> S <- data.frame(lands = c("down", "up", "side"))

> S

lands

1 down

2 up

3 side

The sample space S contains the column lands which stores the outcomes "down", "up",

and "side".

Some sample spaces are so common that convenience wrappers were written to set them up

with minimal effort. The underlying machinery that does the work includes the expand.grid

function in the base package, combn in the combinat package [14], and permsn in the prob

package1.

Consider the random experiment of tossing a coin. The outcomes are H and T . We can set

up the sample space quickly with the tosscoin function:

> library(prob)

> tosscoin(1)

toss1

1 H

2 T

The number 1 tells tosscoin that we only want to toss the coin once. We could toss it

three times:

> tosscoin(3)

toss1 toss2 toss3

1 H H H

2 T H H

3 H T H

1The seasoned R user can get the job done without the convenience wrappers. I encourage the beginner to use

them to get started, but I also recommend that introductory students wean themselves as soon as possible. The

wrappers were designed for ease and intuitive use, not for speed or efficiency.

4.1. SAMPLE SPACES 67

4 T T H

5 H H T

6 T H T

7 H T T

8 T T T

Alternatively we could roll a fair die:

> rolldie(1)

X1

1 1

2 2

3 3

4 4

5 5

6 6

The rolldie function defaults to a 6-sided die, but we can specify others with the nsides

argument. The command rolldie(3, nsides = 4)would be used to roll a 4-sided die three

times.

Perhaps we would like to draw one card from a standard set of playing cards (it is a long

data frame):

> head(cards())

rank suit

1 2 Club

2 3 Club

3 4 Club

4 5 Club

5 6 Club

6 7 Club

The cards function that we just used has optional arguments jokers (if you would like

Jokers to be in the deck) and makespace which we will discuss later. There is also a roulette

function which returns the sample space associated with one spin on a roulette wheel. There are

EU and USA versions available. Interested readers may contribute any other game or sample

spaces that may be of general interest.

4.1.2 Sampling from Urns

This is perhaps the most fundamental type of random experiment. We have an urn that contains

a bunch of distinguishable objects (balls) inside. We shake up the urn, reach inside, grab a ball,

and take a look. That’s all.

But there are all sorts of variations on this theme. Maybe we would like to grab more than

one ball – say, two balls. What are all of the possible outcomes of the experiment now? It

depends on how we sample. We could select a ball, take a look, put it back, and sample again.

Another way would be to select a ball, take a look – but do not put it back – and sample again

(equivalently, just reach in and grab two balls). There are certainly more possible outcomes

68 CHAPTER 4. PROBABILITY

of the experiment in the former case than in the latter. In the first (second) case we say that

sampling is done with (without) replacement.

There is more. Suppose we do not actually keep track of which ball came first. All we

observe are the two balls, and we have no idea about the order in which they were selected. We

call this unordered sampling (in contrast to ordered) because the order of the selections does

not matter with respect to what we observe. We might as well have selected the balls and put

them in a bag before looking.

Note that this one general class of random experiments contains as a special case all of the

common elementary random experiments. Tossing a coin twice is equivalent to selecting two

balls labeled H and T from an urn, with replacement. The die-roll experiment is equivalent to

selecting a ball from an urn with six elements, labeled 1 through 6.

4.1.3 How to do it with R

The prob package accomplishes sampling from urns with the urnsamples function, which has

arguments x, size, replace, and ordered. The argument x represents the urn from which

sampling is to be done. The size argument tells how large the sample will be. The ordered

and replace arguments are logical and specify how sampling will be performed. We will

discuss each in turn.

Example 4.2. Let our urn simply contain three balls, labeled 1, 2, and 3, respectively. We are

going to take a sample of size 2 from the urn.

Ordered, With Replacement

If sampling is with replacement, then we can get any outcome 1, 2, or 3 on any draw. Further,

by “ordered” we mean that we shall keep track of the order of the draws that we observe. We

can accomplish this in R with

> urnsamples(1:3, size = 2, replace = TRUE, ordered = TRUE)

X1 X2

1 1 1

2 2 1

3 3 1

4 1 2

5 2 2

6 3 2

7 1 3

8 2 3

9 3 3

Notice that rows 2 and 4 are identical, save for the order in which the numbers are shown.

Further, note that every possible pair of the numbers 1 through 3 are listed. This experi-

ment is equivalent to rolling a 3-sided die twice, which we could have accomplished with

rolldie(2, nsides = 3).

4.1. SAMPLE SPACES 69

Ordered, Without Replacement

Here sampling is without replacement, so we may not observe the same number twice in any

row. Order is still important, however, so we expect to see the outcomes 1,2 and 2,1 some-

where in our data frame.

> urnsamples(1:3, size = 2, replace = FALSE, ordered = TRUE)

X1 X2

1 1 2

2 2 1

3 1 3

4 3 1

5 2 3

6 3 2

This is just as we expected. Notice that there are less rows in this answer due to the more

restrictive sampling procedure. If the numbers 1, 2, and 3 represented “Fred”, “Mary”, and

“Sue”, respectively, then this experiment would be equivalent to selecting two people of the

three to serve as president and vice-president of a company, respectively, and the sample space

shown above lists all possible ways that this could be done.

Unordered, Without Replacement

Again, we may not observe the same outcome twice, but in this case, we will only retain those

outcomes which (when jumbled) would not duplicate earlier ones.

> urnsamples(1:3, size = 2, replace = FALSE, ordered = FALSE)

X1 X2

1 1 2

2 1 3

3 2 3

This experiment is equivalent to reaching in the urn, picking a pair, and looking to see what

they are. This is the default setting of urnsamples, so we would have received the same output

by simply typing urnsamples(1:3, 2).

Unordered, With Replacement

The last possibility is perhaps the most interesting. We replace the balls after every draw, but

we do not remember the order in which the draws came.

> urnsamples(1:3, size = 2, replace = TRUE, ordered = FALSE)

X1 X2

1 1 1

2 1 2

3 1 3

4 2 2

5 2 3

6 3 3

70 CHAPTER 4. PROBABILITY

We may interpret this experiment in a number of alternative ways. One way is to consider

this as simply putting two 3-sided dice in a cup, shaking the cup, and looking inside – as in a

game of Liar’s Dice, for instance. Each row of the sample space is a potential pair we could

observe. Another way is to view each outcome as a separate method to distribute two identical

golf balls into three boxes labeled 1, 2, and 3. Regardless of the interpretation, urnsamples

lists every possible way that the experiment can conclude.

Note that the urn does not need to contain numbers; we could have just as easily taken

our urn to be x = c("Red","Blue","Green"). But, there is an important point to mention

before proceeding. Astute readers will notice that in our example, the balls in the urn were

distinguishable in the sense that each had a unique label to distinguish it from the others in the

urn. A natural question would be, “What happens if your urn has indistinguishable elements, for

example, what if x = c("Red","Red","Blue")?” The answer is that urnsamples behaves

as if each ball in the urn is distinguishable, regardless of its actual contents. We may thus

imagine that while there are two red balls in the urn, the balls are such that we can tell them

apart (in principle) by looking closely enough at the imperfections on their surface.

In this way, when the x argument of urnsamples has repeated elements, the resulting sam-

ple space may appear to be ordered = TRUE even when, in fact, the call to the function was

urnsamples(..., ordered = FALSE). Similar remarks apply for the replace argument.

4.2 Events

An event A is merely a collection of outcomes, or in other words, a subset of the sample

space2. After the performance of a random experiment E we say that the event A occurred

if the experiment’s outcome belongs to A. We say that a bunch of events A1, A2, A3, . . . are

mutually exclusive or disjoint if Ai ∩ Aj = ∅ for any distinct pair Ai � Aj. For instance, in

the coin-toss experiment the events A = {Heads} and B = {Tails} would be mutually exclusive.

Now would be a good time to review the algebra of sets in Appendix E.1.

4.2.1 How to do it with R

Given a data frame sample/probability space S, we may extract rows using the [] operator:

> S <- tosscoin(2, makespace = TRUE)

toss1 toss2 probs

1 H H 0.25

2 T H 0.25

3 H T 0.25

4 T T 0.25

> S[1:3,]

toss1 toss2 probs

1 H H 0.25

2 T H 0.25

3 H T 0.25

2This naive definition works for finite or countably infinite sample spaces, but is inadequate for sample spaces

in general. In this book, we will not address the subtleties that arise, but will refer the interested reader to any text

on advanced probability or measure theory.

4.2. EVENTS 71

> S[c(2, 4),]

toss1 toss2 probs

2 T H 0.25

4 T T 0.25

and so forth. We may also extract rows that satisfy a logical expression using the subset

function, for instance

> S <- cards()

> subset(S, suit == "Heart")

rank suit

27 2 Heart

28 3 Heart

29 4 Heart

30 5 Heart

31 6 Heart

32 7 Heart

33 8 Heart

34 9 Heart

35 10 Heart

36 J Heart

37 Q Heart

38 K Heart

39 A Heart

> subset(S, rank %in% 7:9)

rank suit

6 7 Club

7 8 Club

8 9 Club

19 7 Diamond

20 8 Diamond

21 9 Diamond

32 7 Heart

33 8 Heart

34 9 Heart

45 7 Spade

46 8 Spade

47 9 Spade

We could continue indefinitely. Also note that mathematical expressions are allowed:

> subset(rolldie(3), X1 + X2 + X3 > 16)

X1 X2 X3

180 6 6 5

210 6 5 6

215 5 6 6

216 6 6 6

72 CHAPTER 4. PROBABILITY

4.2.2 Functions for Finding Subsets

It does not take long before the subsets of interest become complicated to specify. Yet the main

idea remains: we have a particular logical condition to apply to each row. If the row satisfies

the condition, then it should be in the subset. It should not be in the subset otherwise. The ease

with which the condition may be coded depends of course on the question being asked. Here

are a few functions to get started.

The �in� function

The function %in% helps to learn whether each value of one vector lies somewhere inside an-

other vector.

> x <- 1:10

> y <- 8:12

> y %in% x

[1] TRUE TRUE TRUE FALSE FALSE

Notice that the returned value is a vector of length 5 which tests whether each element of y

is in x, in turn.

The isin function

It is more common to want to know whether the whole vector y is in x. We can do this with the

isin function.

> isin(x, y)

[1] FALSE

Of course, one may ask why we did not try something like all(y %in% x), which would

give a single result, TRUE. The reason is that the answers are different in the case that y has

repeated values. Compare:

> x <- 1:10

> y <- c(3, 3, 7)

> all(y %in% x)

[1] TRUE

> isin(x, y)

[1] FALSE

The reason for the above is of course that x contains the value 3, but x does not have two

3’s. The difference is important when rolling multiple dice, playing cards, etc. Note that there

is an optional argument ordered which tests whether the elements of y appear in x in the order

in which they are appear in y. The consequences are

> isin(x, c(3, 4, 5), ordered = TRUE)

4.2. EVENTS 73

[1] TRUE

> isin(x, c(3, 5, 4), ordered = TRUE)

[1] FALSE

The connection to probability is that have a data frame sample space and we would like to

find a subset of that space. A data.frame method was written for isin that simply applies

the function to each row of the data frame. We can see the method in action with the following:

> S <- rolldie(4)

> subset(S, isin(S, c(2, 2, 6), ordered = TRUE))

X1 X2 X3 X4

188 2 2 6 1

404 2 2 6 2

620 2 2 6 3

836 2 2 6 4

1052 2 2 6 5

1088 2 2 1 6

1118 2 1 2 6

1123 1 2 2 6

1124 2 2 2 6

1125 3 2 2 6

1126 4 2 2 6

1127 5 2 2 6

1128 6 2 2 6

1130 2 3 2 6

1136 2 4 2 6

1142 2 5 2 6

1148 2 6 2 6

1160 2 2 3 6

1196 2 2 4 6

1232 2 2 5 6

1268 2 2 6 6

There are a few other functions written to find useful subsets, namely, countrep and

isrep. Essentially these were written to test for (or count) a specific number of designated

values in outcomes. See the documentation for details.

4.2.3 Set Union, Intersection, and Di�erence

Given subsets A and B, it is often useful to manipulate them in an algebraic fashion. To this

end, we have three set operations at our disposal: union, intersection, and difference. Below is

a table that summarizes the pertinent information about these operations.

Name Denoted Defined by elements Code

Union A ∪ B in A or B or both union(A,B)

Intersection A ∩ B in both A and B intersect(A,B)

Difference A�B in A but not in B setdiff(A,B)

74 CHAPTER 4. PROBABILITY

Some examples follow.

> S = cards()

> A = subset(S, suit == "Heart")

> B = subset(S, rank %in% 7:9)

We can now do some set algebra:

> union(A, B)

rank suit

6 7 Club

7 8 Club

8 9 Club

19 7 Diamond

20 8 Diamond

21 9 Diamond

27 2 Heart

28 3 Heart

29 4 Heart

30 5 Heart

31 6 Heart

32 7 Heart

33 8 Heart

34 9 Heart

35 10 Heart

36 J Heart

37 Q Heart

38 K Heart

39 A Heart

45 7 Spade

46 8 Spade

47 9 Spade

> intersect(A, B)

rank suit

32 7 Heart

33 8 Heart

34 9 Heart

> setdiff(A, B)

rank suit

27 2 Heart

28 3 Heart

29 4 Heart

30 5 Heart

31 6 Heart

35 10 Heart

36 J Heart

37 Q Heart

38 K Heart

39 A Heart

4.3. MODEL ASSIGNMENT 75

> setdiff(B, A)

rank suit

6 7 Club

7 8 Club

8 9 Club

19 7 Diamond

20 8 Diamond

21 9 Diamond

45 7 Spade

46 8 Spade

47 9 Spade

Notice that setdiff is not symmetric. Further, note that we can calculate the complement

of a set A, denoted Ac and defined to be the elements of S that are not in A simply with

setdiff(S,A).

There have been methods written for intersect, setdiff, subset, and union in the case

that the input objects are of class ps. See Section 4.6.3.

Note 4.3. When the prob package loads you will notice a message: “The following object(s)

are masked from package:base : intersect, setdiff, union”. The reason for this

message is that there already exist methods for the functions intersect, setdiff, subset,

and union in the base package which ships withR. However, these methods were designed for

when the arguments are vectors of the same mode. Since we are manipulating sample spaces

which are data frames and lists, it was necessary to write methods to handle those cases as well.

When the prob package is loaded, R recognizes that there are multiple versions of the same

function in the search path and acts to shield the new definitions from the existing ones. But

there is no cause for alarm, thankfully, because the prob functions have been carefully defined

to match the usual base package definition in the case that the arguments are vectors.

4.3 Model Assignment

Let us take a look at the coin-toss experiment more closely. What do we mean when we say

“the probability of Heads” or write IP(Heads)? Given a coin and an itchy thumb, how do we go

about finding what IP(Heads) should be?

4.3.1 The Measure Theory Approach

This approach states that the way to handle IP(Heads) is to define a mathematical function,

called a probability measure, on the sample space. Probability measures satisfy certain axioms

(to be introduced later) and have special mathematical properties, so not just any mathemat-

ical function will do. But in any given physical circumstance there are typically all sorts of

probability measures from which to choose, and it is left to the experimenter to make a reason-

able choice – usually based on considerations of objectivity. For the tossing coin example, a

valid probability measure assigns probability p to the event {Heads}, where p is some number

0 ≤ p ≤ 1. An experimenter that wishes to incorporate the symmetry of the coin would choose

p = 1/2 to balance the likelihood of {Heads} and {Tails}.

Once the probability measure is chosen (or determined), there is not much left to do. All

assignments of probability are made by the probability function, and the experimenter needs

������������������������������

����������������������������

�����������������������������

�������������������������

76 CHAPTER 4. PROBABILITY

only to plug the event {Heads} into to the probability function to find IP(Heads). In this way,

the probability of an event is simply a calculated value, nothing more, nothing less. Of course

this is not the whole story; there are many theorems and consequences associated with this

approach that will keep us occupied for the remainder of this book. The approach is called

measure theory because the measure (probability) of a set (event) is associated with how big it

is (how likely it is to occur).

The measure theory approach is well suited for situations where there is symmetry to the

experiment, such as flipping a balanced coin or spinning an arrow around a circle with well-

defined pie slices. It is also handy because of its mathematical simplicity, elegance, and flexibil-

ity. There are literally volumes of information that one can prove about probability measures,

and the cold rules of mathematics allow us to analyze intricate probabilistic problems with

vigor.

The large degree of flexibility is also a disadvantage, however. When symmetry fails it is

not always obvious what an “objective” choice of probability measure should be; for instance,

what probability should we assign to {Heads} if we spin the coin rather than flip it? (It is

not 1/2.) Furthermore, the mathematical rules are restrictive when we wish to incorporate

subjective knowledge into the model, knowledge which changes over time and depends on

the experimenter, such as personal knowledge about the properties of the specific coin being

flipped, or of the person doing the flipping.

The mathematician who revolutionized this way to do probability theory was Andrey Kol-

mogorov, who published a landmark monograph in 1933. See

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Kolmogorov.html

for more information.

4.3.2 Relative Frequency Approach

This approach states that the way to determine IP(Heads) is to flip the coin repeatedly, in exactly

the same way each time. Keep a tally of the number of flips and the number of Heads observed.

Then a good approximation to IP(Heads) will be

IP(Heads) ≈
number of observed Heads

total number of flips
. (4.3.1)

The mathematical underpinning of this approach is the celebrated Law of Large Numbers,

which may be loosely described as follows. Let E be a random experiment in which the event

A either does or does not occur. Perform the experiment repeatedly, in an identical manner, in

such a way that the successive experiments do not influence each other. After each experiment,

keep a running tally of whether or not the event A occurred. Let S n count the number of times

that A occurred in the n experiments. Then the law of large numbers says that

S n

n
→ IP(A) as n→ ∞. (4.3.2)

As the reasoning goes, to learn about the probability of an event A we need only repeat the

random experiment to get a reasonable estimate of the probability’s value, and if we are not

satisfied with our estimate then we may simply repeat the experiment more times all the while

confident that with more and more experiments our estimate will stabilize to the true value.

The frequentist approach is good because it is relatively light on assumptions and does not

worry about symmetry or claims of objectivity like the measure-theoretic approach does. It is

4.3. MODEL ASSIGNMENT 77

perfect for the spinning coin experiment. One drawback to the method is that one can never

know the exact value of a probability, only a long-run approximation. It also does not work

well with experiments that can not be repeated indefinitely, say, the probability that it will rain

today, the chances that you get will get an A in your Statistics class, or the probability that the

world is destroyed by nuclear war.

This approach was espoused by Richard von Mises in the early twentieth century, and some

of his main ideas were incorporated into the measure theory approach. See

http://www-history.mcs.st-andrews.ac.uk/Biographies/Mises.html

for more.

4.3.3 The Subjective Approach

The subjective approach interprets probability as the experimenter’s degree of belief that the

event will occur. The estimate of the probability of an event is based on the totality of the indi-

vidual’s knowledge at the time. As new information becomes available, the estimate is modified

accordingly to best reflect his/her current knowledge. The method by which the probabilities

are updated is commonly done with Bayes’ Rule, discussed in Section 4.8.

So for the coin toss example, a person may have IP(Heads) = 1/2 in the absence of addi-

tional information. But perhaps the observer knows additional information about the coin or the

thrower that would shift the probability in a certain direction. For instance, parlor magicians

may be trained to be quite skilled at tossing coins, and some are so skilled that they may toss a

fair coin and get nothing but Heads, indefinitely. I have seen this. It was similarly claimed in

Bringing Down the House [65] that MIT students were accomplished enough with cards to be

able to cut a deck to the same location, every single time. In such cases, one clearly should use

the additional information to assign IP(Heads) away from the symmetry value of 1/2.

This approach works well in situations that cannot be repeated indefinitely, for example, to

assign your probability that you will get an A in this class, the chances of a devastating nuclear

war, or the likelihood that a cure for the common cold will be discovered.

The roots of subjective probability reach back a long time. See

http://en.wikipedia.org/wiki/Subjective_probability

for a short discussion and links to references about the subjective approach.

4.3.4 Equally Likely Model �ELM)

We have seen several approaches to the assignment of a probability model to a given random

experiment and they are very different in their underlying interpretation. But they all cross paths

when it comes to the equally likely model which assigns equal probability to all elementary

outcomes of the experiment.

The ELM appears in the measure theory approach when the experiment boasts symmetry

of some kind. If symmetry guarantees that all outcomes have equal “size”, and if outcomes

with equal “size” should get the same probability, then the ELM is a logical objective choice

for the experimenter. Consider the balanced 6-sided die, the fair coin, or the dart board with

equal-sized wedges.

The ELM appears in the subjective approach when the experimenter resorts to indiffer-

ence or ignorance with respect to his/her knowledge of the outcome of the experiment. If the

78 CHAPTER 4. PROBABILITY

experimenter has no prior knowledge to suggest that (s)he prefer Heads over Tails, then it is

reasonable for the him/her to assign equal subjective probability to both possible outcomes.

The ELM appears in the relative frequency approach as a fascinating fact of Nature: when

we flip balanced coins over and over again, we observe that the proportion of times that the

coin comes up Heads tends to 1/2. Of course if we assume that the measure theory applies then

we can prove that the sample proportion must tend to 1/2 as expected, but that is putting the

cart before the horse, in a manner of speaking.

The ELM is only available when there are finitely many elements in the sample space.

4.3.5 How to do it with R

In the prob package, a probability space is an object of outcomes S and a vector of probabilities

(called “probs”) with entries that correspond to each outcome in S. When S is a data frame,

we may simply add a column called probs to S and we will be finished; the probability space

will simply be a data frame which we may call S. In the case that S is a list, we may combine

the outcomes and probs into a larger list, space; it will have two components: outcomes

and probs. The only requirements we need are for the entries of probs to be nonnegative and

sum(probs) to be one.

To accomplish this in R, we may use the probspace function. The general syntax is

probspace(x, probs), where x is a sample space of outcomes and probs is a vector (of

the same length as the number of outcomes in x). The specific choice of probs depends on the

context of the problem, and some examples follow to demonstrate some of the more common

choices.

Example 4.4. The Equally Likely Model asserts that every outcome of the sample space has

the same probability, thus, if a sample space has n outcomes, then probs would be a vector

of length n with identical entries 1/n. The quickest way to generate probs is with the rep

function. We will start with the experiment of rolling a die, so that n = 6. We will construct the

sample space, generate the probs vector, and put them together with probspace.

> outcomes <- rolldie(1)

X1

1 1

2 2

3 3

4 4

5 5

6 6

> p <- rep(1/6, times = 6)

[1] 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667

> probspace(outcomes, probs = p)

X1 probs

1 1 0.1666667

2 2 0.1666667

3 3 0.1666667

4 4 0.1666667

5 5 0.1666667

6 6 0.1666667

4.3. MODEL ASSIGNMENT 79

The probspace function is designed to save us some time in many of the most common

situations. For example, due to the especial simplicity of the sample space in this case, we

could have achieved the same result with only (note the name change for the first column)

> probspace(1:6, probs = p)

x probs

1 1 0.1666667

2 2 0.1666667

3 3 0.1666667

4 4 0.1666667

5 5 0.1666667

6 6 0.1666667

Further, since the equally likely model plays such a fundamental role in the study of prob-

ability the probspace function will assume that the equally model is desired if no probs are

specified. Thus, we get the same answer with only

> probspace(1:6)

x probs

1 1 0.1666667

2 2 0.1666667

3 3 0.1666667

4 4 0.1666667

5 5 0.1666667

6 6 0.1666667

And finally, since rolling dice is such a common experiment in probability classes, the

rolldie function has an additional logical argument makespace that will add a column of

equally likely probs to the generated sample space:

> rolldie(1, makespace = TRUE)

X1 probs

1 1 0.1666667

2 2 0.1666667

3 3 0.1666667

4 4 0.1666667

5 5 0.1666667

6 6 0.1666667

or just rolldie(1, TRUE). Many of the other sample space functions (tosscoin, cards,

roulette, etc.) have similar makespace arguments. Check the documentation for details.

One sample space function that does NOT have a makespace option is the urnsamples

function. This was intentional. The reason is that under the varied sampling assumptions the

outcomes in the respective sample spaces are NOT, in general, equally likely. It is important for

the user to carefully consider the experiment to decide whether or not the outcomes are equally

likely and then use probspace to assign the model.

80 CHAPTER 4. PROBABILITY

Example 4.5. An unbalanced coin. While the makespace argument to tosscoin is useful to

represent the tossing of a fair coin, it is not always appropriate. For example, suppose our coin

is not perfectly balanced, for instance, maybe the “H” side is somewhat heavier such that the

chances of a H appearing in a single toss is 0.70 instead of 0.5. We may set up the probability

space with

> probspace(tosscoin(1), probs = c(0.7, 0.3))

toss1 probs

1 H 0.7

2 T 0.3

The same procedure can be used to represent an unbalanced die, roulette wheel, etc.

4.3.6 Words of Warning

It should be mentioned that while the splendour of R is uncontested, it, like everything else,

has limits both with respect to the sample/probability spaces it can manage and with respect to

the finite accuracy of the representation of most numbers (see the R FAQ 7.31). When playing

around with probability, one may be tempted to set up a probability space for tossing 100 coins

or rolling 50 dice in an attempt to answer some scintillating question. (Bear in mind: rolling a

die just 9 times has a sample space with over 10 million outcomes.)

Alas, even if there were enough RAM to barely hold the sample space (and there were

enough time to wait for it to be generated), the infinitesimal probabilities that are associated

with so many outcomes make it difficult for the underlying machinery to handle reliably. In

some cases, special algorithms need to be called just to give something that holds asymptoti-

cally. User beware.

4.4 Properties of Probability

4.4.1 Probability Functions

A probability function is a rule that associates with each event A of the sample space a unique

number IP(A) = p, called the probability of A. Any probability function IP satisfies the follow-

ing three Kolmogorov Axioms:

Axiom 4.6. IP(A) ≥ 0 for any event A ⊂ S .

Axiom 4.7. IP(S) = 1.

Axiom 4.8. If the events A1, A2, A3. . . are disjoint then

IP

�


n�

i=1

Ai


 =

n�

i=1

IP(Ai) for every n� (4.4.1)

and furthermore,

IP

�


∞�

i=1

Ai


 =

∞�

i=1

IP(Ai). (4.4.2)

4.4. PROPERTIES OF PROBABILITY 81

The intuition behind the axioms: first, the probability of an event should never be negative.

And since the sample space contains all possible outcomes, its probability should be one, or

100%. The final axiom may look intimidating, but it simply means that for a sequence of

disjoint events (in other words, sets that do not overlap), their total probability (measure) should

equal the sum of its parts. For example, the chance of rolling a 1 or a 2 on a die is the chance of

rolling a 1 plus the chance of rolling a 2. The connection to measure theory could not be more

clear.

4.4.2 Properties

For any events A and B,

1. IP(Ac) = 1 − IP(A).

Proof. Since A ∪ Ac = S and A ∩ Ac = ∅, we have

1 = IP(S) = IP(A ∪ Ac) = IP(A) � IP(Ac).

�

2. IP(∅) = 0.

Proof. Note that ∅ = S c, and use Property 1. �

3. If A ⊂ B , then IP(A) ≤ IP(B).

Proof. Write B = A ∪ (B ∩ Ac), and notice that A ∩ (B ∩ Ac) = ∅; thus

IP(B) = IP(A ∪ (B ∩ Ac)) = IP(A) � IP (B ∩ Ac) ≥ IP(A)�

since IP (B ∩ Ac) ≥ 0. �

4. 0 ≤ IP(A) ≤ 1.

Proof. The left inequality is immediate from Axiom 4.6, and the second inequality fol-

lows from Property 3 since A ⊂ S . �

5. The General Addition Rule.

IP(A ∪ B) = IP(A) � IP(B) − IP(A ∩ B). (4.4.3)

More generally, for events A1, A2, A3,. . . , An,

IP

�


n�

i=1

Ai


 =

n�

i=1

IP(Ai) −

n−1�

i=1

n�

j=i�1

IP(Ai ∩ Aj) � · · · � (−1)
n−1 IP

�


n�

i=1

Ai


 (4.4.4)

6. The Theorem of Total Probability. Let B1, B2, . . . , Bn be mutually exclusive and exhaus-

tive. Then

IP(A) = IP(A ∩ B1) � IP(A ∩ B2) � · · · � IP(A ∩ Bn). (4.4.5)

82 CHAPTER 4. PROBABILITY

4.4.3 Assigning Probabilities

A model of particular interest is the equally likely model. The idea is to divide the sample

space S into a finite collection of elementary events {a1� a2� . . . � aN} that are equally likely in

the sense that each ai has equal chances of occurring. The probability function associated with

this model must satisfy IP(S) = 1, by Axiom 2. On the other hand, it must also satisfy

IP(S) = IP({a1� a2� . . . � aN}) = IP(a1 ∪ a2 ∪ · · · ∪ aN) =

N�

i=1

IP(ai)�

by Axiom 3. Since IP(ai) is the same for all i, each one necessarily equals 1/N.

For an event A ⊂ S , we write it as a collection of elementary outcomes: if A =
�
ai1 � ai2 � . . . � aik

�

then A has k elements and

IP(A) = IP(ai1) � IP(ai2) � · · · � IP(aik)�

=
1

N
�

1

N
� · · · �

1

N
�

=
k

N
=

#(A)

#(S)
.

In other words, under the equally likely model, the probability of an event A is determined by

the number of elementary events that A contains.

Example 4.9. Consider the random experiment E of tossing a coin. Then the sample space is

S = {H� T }, and under the equally likely model, these two outcomes have IP(H) = IP(T) = 1/2.

This model is taken when it is reasonable to assume that the coin is fair.

Example 4.10. Suppose the experiment E consists of tossing a fair coin twice. The sample

space may be represented by S = {HH� HT� TH� TT }. Given that the coin is fair and that

the coin is tossed in an independent and identical manner, it is reasonable to apply the equally

likely model.

What is IP(at least 1 Head)? Looking at the sample space we see the elements HH, HT ,

and TH have at least one Head; thus, IP(at least 1 Head) = 3/4.

What is IP(no Heads)? Notice that the event {no Heads} = {at least one Head}c, which by

Property 1 means IP(no Heads) = 1−IP(at least one Head) = 1−3/4 = 1/4. It is obvious in this

simple example that the only outcome with no Heads is TT , however, this complementation

trick is useful in more complicated circumstances.

Example 4.11. Imagine a three child family, each child being either Boy (B) or Girl (G). An

example sequence of siblings would be BGB. The sample space may be written

S =

�
BBB� BGB� GBB� GGB�

BBG� BGG� GBG� GGG

�

.

Note that for many reasons (for instance, it turns out that girls are slightly more likely to be

born than boys), this sample space is not equally likely. For the sake of argument, however, we

will assume that the elementary outcomes each have probability 1/8.

What is IP(exactly 2 Boys)? Inspecting the sample space reveals three outcomes with ex-

actly two boys: {BBG� BGB� GBB}. Therefore IP(exactly 2 Boys) = 3/8.

What is IP(at most 2 Boys)? One way to solve the problem would be to count the outcomes

that have 2 or less Boys, but a quicker way would be to recognize that the only way that the

event
�
at most 2 Boys

�
does not occur is the event {all Girls}. Thus

IP(at most 2 Boys) = 1 − IP(GGG) = 1 − 1/8 = 7/8.

��

���������������������������

4.4. PROPERTIES OF PROBABILITY 83

Example 4.12. Consider the experiment of rolling a six-sided die, and let the outcome be the

face showing up when the die comes to rest. Then S = {1� 2� 3� 4� 5� 6}. It is usually reasonable

to suppose that the die is fair, so that the six outcomes are equally likely.

Example 4.13. Consider a standard deck of 52 cards. These are usually labeled with the four

suits: Clubs, Diamonds, Hearts, and Spades, and the 13 ranks: 2, 3, 4, . . . , 10, Jack (J), Queen

(Q), King (K), and Ace (A). Depending on the game played, the Ace may be ranked below 2

or above King.

Let the random experiment E consist of drawing exactly one card from a well-shuffled

deck, and let the outcome be the face of the card. Define the events A = {draw an Ace} and

B = {draw a Club}. Bear in mind: we are only drawing one card.

Immediately we have IP(A) = 4/52 since there are four Aces in the deck; similarly, there

are 13 Clubs which implies IP(B) = 13/52.

What is IP(A ∩ B)? We realize that there is only one card of the 52 which is an Ace and a

Club at the same time, namely, the Ace of Clubs. Therefore IP(A ∩ B) = 1/52.

To find IP(A ∪ B) we may use the above with the General Addition Rule to get

IP(A ∪ B) = IP(A) � IP(B) − IP(A ∩ B)�

= 4/52 � 13/52 − 1/52�

= 16/52.

Example 4.14. Staying with the deck of cards, let another random experiment be the selection

of a five card stud poker hand, where “five card stud” means that we draw exactly five cards

from the deck without replacement, no more, and no less. It turns out that the sample space

S is so large and complicated that we will be obliged to settle for the trivial description S =
�
all possible 5 card hands

�
for the time being. We will have a more precise description later.

What is IP(Royal Flush), or in other words, IP(A, K, Q, J, 10 all in the same suit)?

It should be clear that there are only four possible royal flushes. Thus, if we could only

count the number of outcomes in S then we could simply divide four by that number and we

would have our answer under the equally likely model. This is the subject of Section 4.5.

4.4.4 How to do it with R

Probabilities are calculated in the prob package with the prob function.

Consider the experiment of drawing a card from a standard deck of playing cards. Let’s

denote the probability space associated with the experiment as S, and let the subsets A and B be

defined by the following:

> S <- cards(makespace = TRUE)

> A <- subset(S, suit == "Heart")

> B <- subset(S, rank %in% 7:9)

Now it is easy to calculate

> prob(A)

[1] 0.25

Note that we can get the same answer with

84 CHAPTER 4. PROBABILITY

> prob(S, suit == "Heart")

[1] 0.25

We also find prob(B)= 0.23 (listed here approximately, but 12/52 actually) and prob(S)=

1. Internally, the prob function operates by summing the probs column of its argument. It

will find subsets on-the-fly if desired.

We have as yet glossed over the details. More specifically, prob has three arguments: x,

which is a probability space (or a subset of one), event, which is a logical expression used to

define a subset, and given, which is described in Section 4.6.

WARNING. The event argument is used to define a subset of x, that is, the only outcomes

used in the probability calculation will be those that are elements of x and satisfy event simul-

taneously. In other words, prob(x, event) calculates

prob(intersect(x, subset(x, event)))

Consequently, x should be the entire probability space in the case that event is non-null.

4.5 Counting Methods

The equally-likely model is a convenient and popular way to analyze random experiments. And

when the equally likely model applies, finding the probability of an event A amounts to nothing

more than counting the number of outcomes that A contains (together with the number of events

in S). Hence, to be a master of probability one must be skilled at counting outcomes in events

of all kinds.

Proposition 4.15. The Multiplication Principle. Suppose that an experiment is composed of

two successive steps. Further suppose that the first step may be performed in n1 distinct ways

while the second step may be performed in n2 distinct ways. Then the experiment may be

performed in n1n2 distinct ways.

More generally, if the experiment is composed of k successive steps which may be performed

in n1, n2, . . . , nk distinct ways, respectively, then the experiment may be performed in n1n2 · · · nk
distinct ways.

Example 4.16. We would like to order a pizza. It will be sure to have cheese (and marinara

sauce), but we may elect to add one or more of the following five (5) available toppings:

pepperoni, sausage, anchovies, olives, and green peppers.

How many distinct pizzas are possible?

There are many ways to approach the problem, but the quickest avenue employs the Mul-

tiplication Principle directly. We will separate the action of ordering the pizza into a series of

stages. At the first stage, we will decide whether or not to include pepperoni on the pizza (two

possibilities). At the next stage, we will decide whether or not to include sausage on the pizza

(again, two possibilities). We will continue in this fashion until at last we will decide whether

or not to include green peppers on the pizza.

At each stage we will have had two options, or ways, to select a pizza to be made. The

Multiplication Principle says that we should multiply the 2’s to find the total number of possible

pizzas: 2 · 2 · 2 · 2 · 2 = 25 = 32.

4.5. COUNTING METHODS 85

Example 4.17. We would like to buy a desktop computer to study statistics. We go to a website

to build our computer our way. Given a line of products we have many options to customize

our computer. In particular, there are 2 choices for a processor, 3 different operating systems,

4 levels of memory, 4 hard drives of differing sizes, and 10 choices for a monitor. How many

possible types of computer must Gell be prepared to build? Answer: 2 · 3 · 4 · 4 · 10 = 960.

4.5.1 Ordered Samples

Imagine a bag with n distinguishable balls inside. Now shake up the bag and select k balls at

random. How many possible sequences might we observe?

Proposition 4.18. The number of ways in which one may select an ordered sample of k subjects

from a population that has n distinguishable members is

� nk if sampling is done with replacement,

� n(n − 1)(n − 2) · · · (n − k � 1) if sampling is done without replacement.

Recall from calculus the notation for factorials:

1� = 1�

2� = 2 · 1 = 2�

3� = 3 · 2 · 1 = 6�
...

n� = n(n − 1)(n − 2) · · · 3 · 2 · 1.

Fact 4.19. The number of permutations of n elements is n�.

Example 4.20. Take a coin and flip it 7 times. How many sequences of Heads and Tails are

possible? Answer: 27 = 128.

Example 4.21. In a class of 20 students, we randomly select a class president, a class vice-

president, and a treasurer. How many ways can this be done? Answer: 20 · 19 · 18 = 6840.

Example 4.22. We rent five movies to watch over the span of two nights. We wish to watch 3

movies on the first night. How many distinct sequences of 3 movies could we possibly watch?

Answer: 5 · 4 · 3 = 60.

4.5.2 Unordered Samples

The number of ways in which one may select an unordered sample of k subjects from a popu-

lation that has n distinguishable members is

• (n − 1 � k)�/[(n − 1)�k�] if sampling is done with replacement,

• n�/[k�(n − k)�] if sampling is done without replacement.

The quantity n�/[k�(n − k)�] is called a binomial coefficient and plays a special role in mathe-

matics; it is denoted �
n

k

�

=
n�

k�(n − k)�
(4.5.1)

and is read “n choose k”.

86 CHAPTER 4. PROBABILITY

ordered = TRUE ordered = FALSE

replace = TRUE nk
(n−1�k)�

(n−1)�k�

replace = FALSE n�
(n−k)�

�
n

k

�

Table 4.1: Sampling k from n objects with urnsamples

Example 4.23. You rent five movies to watch over the span of two nights, but only wish to

watch 3 movies the first night. Your friend, Fred, wishes to borrow some movies to watch at

his house on the first night. You owe Fred a favor, and allow him to select 2 movies from the

set of 5. How many choices does Fred have? Answer:
�
5

2

�
= 10.

Example 4.24. Place 3 six-sided dice into a cup. Next, shake the cup well and pour out the

dice. How many distinct rolls are possible? Answer: (6 − 1 � 3)�/[(6 − 1)�3�] =
�
8

5

�
= 56.

4.5.3 How to do it with R

The factorial n� is computed with the command factorial(n) and the binomial coefficient�
n

k

�
with the command choose(n,k).

The sample spaces we have computed so far have been relatively small, and we can visually

study them without much trouble. However, it is very easy to generate sample spaces that are

prohibitively large. And while R is wonderful and powerful and does almost everything except

wash windows, even R has limits of which we should be mindful.

But we often do not need to actually generate the sample space; it suffices to count the

number of outcomes. The nsamp function will calculate the number of rows in a sample space

made by urnsamples without actually devoting the memory resources necessary to generate

the space. The arguments are n, the number of (distinguishable) objects in the urn, k, the

sample size, and replace, ordered, as above.

Example 4.25. We will compute the number of outcomes for each of the four urnsamples

examples that we saw in Example 4.2. Recall that we took a sample of size two from an urn

with three distinguishable elements.

> nsamp(n = 3, k = 2, replace = TRUE, ordered = TRUE)

[1] 9

> nsamp(n = 3, k = 2, replace = FALSE, ordered = TRUE)

[1] 6

> nsamp(n = 3, k = 2, replace = FALSE, ordered = FALSE)

[1] 3

> nsamp(n = 3, k = 2, replace = TRUE, ordered = FALSE)

[1] 6

Compare these answers with the length of the data frames generated above.

4.5. COUNTING METHODS 87

The Multiplication Principle

A benefit of nsamp is that it is vectorized so that entering vectors instead of numbers for n, k,

replace, and ordered results in a vector of corresponding answers. This becomes particularly

convenient for combinatorics problems.

Example 4.26. There are 11 artists who each submit a portfolio containing 7 paintings for com-

petition in an art exhibition. Unfortunately, the gallery director only has space in the winners’

section to accommodate 12 paintings in a row equally spread over three consecutive walls. The

director decides to give the first, second, and third place winners each a wall to display the

work of their choice. The walls boast 31 separate lighting options apiece. How many displays

are possible?

Answer: The judges will pick 3 (ranked) winners out of 11 (with rep = FALSE, ord =

TRUE). Each artist will select 4 of his/her paintings from 7 for display in a row (rep = FALSE,

ord = TRUE), and lastly, each of the 3 walls has 31 lighting possibilities (rep = TRUE, ord

= TRUE). These three numbers can be calculated quickly with

> n <- c(11, 7, 31)

> k <- c(3, 4, 3)

> r <- c(FALSE, FALSE, TRUE)

> x <- nsamp(n, k, rep = r, ord = TRUE)

[1] 990 840 29791

(Notice that ordered is always TRUE; nsamp will recycle ordered and replace to the

appropriate length.) By the Multiplication Principle, the number of ways to complete the ex-

periment is the product of the entries of x:

> prod(x)

[1] 24774195600

Compare this with the some other ways to compute the same thing:

> (11 * 10 * 9) * (7 * 6 * 5 * 4) * 313

[1] 260290800

or alternatively

> prod(9:11) * prod(4:7) * 313

[1] 260290800

or even

> prod(factorial(c(11, 7))/factorial(c(8, 3))) * 313

[1] 260290800

����������������������������������

���

88 CHAPTER 4. PROBABILITY

As one can guess, in many of the standard counting problems there aren’t substantial sav-

ings in the amount of typing; it is about the same using nsamp versus factorial and choose.

But the virtue of nsamp lies in its collecting the relevant counting formulas in a one-stop shop.

Ultimately, it is up to the user to choose the method that works best for him/herself.

Example 4.27. The Birthday Problem. Suppose that there are n people together in a room.

Each person announces the date of his/her birthday in turn. The question is: what is the prob-

ability of at least one match? If we let the event A represent {there is at least one match}, then

would like to know IP(A), but as we will see, it is more convenient to calculate IP(Ac).

For starters we will ignore leap years and assume that there are only 365 days in a year. Sec-

ond, we will assume that births are equally distributed over the course of a year (which is not

true due to all sorts of complications such as hospital delivery schedules). See http://en.wikipedia.org/wiki

for more.

Let us next think about the sample space. There are 365 possibilities for the first person’s

birthday, 365 possibilities for the second, and so forth. The total number of possible birthday

sequences is therefore #(S) = 365n.

Now we will use the complementation trick we saw in Example 4.11. We realize that the

only situation in which A does not occur is if there are no matches among all people in the

room, that is, only when everybody’s birthday is different, so

IP(A) = 1 − IP(Ac) = 1 −
#(Ac)

#(S)
�

since the outcomes are equally likely. Let us then suppose that there are no matches. The first

person has one of 365 possible birthdays. The second person must not match the first, thus,

the second person has only 364 available birthdays from which to choose. Similarly, the third

person has only 363 possible birthdays, and so forth, until we reach the nth person, who has

only 365 − n � 1 remaining possible days for a birthday. By the Multiplication Principle, we

have #(Ac) = 365 · 364 · · · (365 − n � 1), and

IP(A) = 1 −
365 · 364 · · · (365 − n � 1)

365n
= 1 −

364

365
·
363

365
· · ·

(365 − n � 1)

365
. (4.5.2)

As a surprising consequence, consider this: how many people does it take to be in the room

so that the probability of at least one match is at least 0.50? Clearly, if there is only n = 1

person in the room then the probability of a match is zero, and when there are n = 366 people

in the room there is a 100% chance of a match (recall that we are ignoring leap years). So how

many people does it take so that there is an equal chance of a match and no match?

When I have asked this question to students, the usual response is “somewhere around

n = 180 people” in the room. The reasoning seems to be that in order to get a 50% chance of

a match, there should be 50% of the available days to be occupied. The number of students in

a typical classroom is 25, so as a companion question I ask students to estimate the probability

of a match when there are n = 25 students in the room. Common estimates are a 1%, or 0.5%,

or even 0.1% chance of a match. After they have given their estimates, we go around the room

and each student announces their birthday. More often than not, we observe a match in the

class, to the students’ disbelief.

Students are usually surprised to hear that, using the formula above, one needs only n = 23

students to have a greater than 50% chance of at least one match. Figure 4.5.1 shows a graph

of the birthday probabilities:

����������������������������������

4.6. CONDITIONAL PROBABILITY 89

0 10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Number of people in room

P
ro
b
(a
t
le
a
s
t
o
n
e
 m
a
tc
h
)

Figure 4.5.1: The birthday problem

The horizontal line is at p = 0.50 and the vertical line is at n = 23.

4.5.4 How to do it with R

We can make the plot in Figure 4.5.1 with the following sequence of commands.

g <- Vectorize(pbirthday.ipsur)

plot(1:50, g(1:50),

xlab = "Number of people in room",

ylab = "Prob(at least one match)",

main = "The Birthday Problem")

abline(h = 0.5)

abline(v = 23, lty = 2) # dashed line

There is a Birthday problem item in the Probability menu of RcmdrPlugin.IPSUR.

In the base R version, one can compute approximate probabilities for the more general case

of probabilities other than 1/2, for differing total number of days in the year, and even for more

than two matches.

4.6 Conditional Probability

Consider a full deck of 52 standard playing cards. Now select two cards from the deck, in

succession. Let A = {first card drawn is an Ace} and B = {second card drawn is an Ace}. Since

there are four Aces in the deck, it is natural to assign IP(A) = 4/52. Suppose we look at the

first card. What now is the probability of B? Of course, the answer depends on the value of the

first card. If the first card is an Ace, then the probability that the second also is an Ace should

be 3/51, but if the first card is not an Ace, then the probability that the second is an Ace should

90 CHAPTER 4. PROBABILITY

F
ir
st
R
o
ll

Second Roll

1 2 3 4 5 6

1
�

2
�

�
3

�
� �

4 ⊗ � �
5 � � ⊗ �
6 � � � � ⊗
Table 4.2: Rolling two dice

be 4/51. As notation for these two situations we write

IP(B|A) = 3/51� IP(B|Ac) = 4/51.

Definition 4.28. The conditional probability of B given A, denoted IP(B|A), is defined by

IP(B|A) =
IP(A ∩ B)

IP(A)
� if IP(A) > 0. (4.6.1)

We will not be discussing a conditional probability of B given A when IP(A) = 0, even though

this theory exists, is well developed, and forms the foundation for the study of stochastic pro-

cesses3.

Example 4.29. Toss a coin twice. The sample space is given by S = {HH� HT� TH� TT }.

Let A = {a head occurs} and B = {a head and tail occur}. It should be clear that IP(A) = 3/4,

IP(B) = 2/4, and IP(A ∩ B) = 2/4. What now are the probabilities IP(A|B) and IP(B|A)?

IP(A|B) =
IP(A ∩ B)

IP(B)
=

2/4

2/4
= 1�

in other words, once we know that a Head and Tail occur, we may be certain that a Head occurs.

Next

IP(B|A) =
IP(A ∩ B)

IP(A)
=

2/4

3/4
=

2

3
�

which means that given the information that a Head has occurred, we no longer need to account

for the outcome TT , and the remaining three outcomes are equally likely with exactly two

outcomes lying in the set B.

Example 4.30. Toss a six-sided die twice. The sample space consists of all ordered pairs (i� j)

of the numbers 1� 2� . . . � 6, that is, S = {(1� 1)� (1� 2)� . . . � (6� 6)}. We know from Section 4.5

that #(S) = 62 = 36. Let A = {outcomes match} and B = {sum of outcomes at least 8}. The

sample space may be represented by a matrix:

The outcomes lying in the event A are marked with the symbol “
�

”, the outcomes falling

in B are marked with “�”, and those in both A and B are marked “⊗”. Now it is clear that

IP(A) = 6/36, IP(B) = 15/36, and IP(A ∩ B) = 3/36. Finally,

IP(A|B) =
3/36

15/36
=

1

5
� IP(B|A) =

3/36

6/36
=

1

2
.

3Conditional probability in this case is defined by means of conditional expectation, a topic that is well be-

yond the scope of this text. The interested reader should consult an advanced text on probability theory, such as

Billingsley, Resnick, or Ash Dooleans-Dade.

���

4.6. CONDITIONAL PROBABILITY 91

Again, we see that given the knowledge that B occurred (the 15 outcomes in the lower right

triangle), there are 3 of the 15 that fall into the set A, thus the probability is 3/15. Similarly,

given that A occurred (we are on the diagonal), there are 3 out of 6 outcomes that also fall in B,

thus, the probability of B given A is 1/2.

4.6.1 How to do it with R

Continuing with Example 4.30, the first thing to do is set up the probability space with the

rolldie function.

> library(prob)

> S <- rolldie(2, makespace = TRUE) # assumes ELM

> head(S) # first few rows

X1 X2 probs

1 1 1 0.02777778

2 2 1 0.02777778

3 3 1 0.02777778

4 4 1 0.02777778

5 5 1 0.02777778

6 6 1 0.02777778

Next we define the events

> A <- subset(S, X1 == X2)

> B <- subset(S, X1 + X2 >= 8)

And now we are ready to calculate probabilities. To do conditional probability, we use the

given argument of the prob function:

> prob(A, given = B)

[1] 0.2

> prob(B, given = A)

[1] 0.5

Note that we do not actually need to define the events A and B separately as long as we

reference the original probability space S as the first argument of the prob calculation:

> prob(S, X1==X2, given = (X1 + X2 >= 8))

[1] 0.2

> prob(S, X1+X2 >= 8, given = (X1==X2))

[1] 0.5

92 CHAPTER 4. PROBABILITY

4.6.2 Properties and Rules

The following theorem establishes that conditional probabilities behave just like regular prob-

abilities when the conditioned event is fixed.

Theorem 4.31. For any fixed event A with IP(A) > 0,

1. IP(B|A) ≥ 0� for all events B ⊂ S ,

2. IP(S |A) = 1, and

3. If B1, B2, B3,. . . are disjoint events, then

IP

�


∞�

k=1

Bk

�������
A


 =

∞�

k=1

IP(Bk|A). (4.6.2)

In other words, IP(·|A) is a legitimate probability function. With this fact in mind, the

following properties are immediate:

Proposition 4.32. For any events A, B, and C with IP(A) > 0,

1. IP(Bc|A) = 1 − IP(B|A).

2. If B ⊂ C then IP(B|A) ≤ IP(C|A).

3. IP[(B ∪C)|A] = IP(B|A) � IP(C|A) − IP[(B ∩C|A)].

4. The Multiplication Rule. For any two events A and B,

IP(A ∩ B) = IP(A) IP(B|A). (4.6.3)

And more generally, for events A1, A2, A3,. . . , An,

IP(A1 ∩ A2 ∩ · · · ∩ An) = IP(A1) IP(A2|A1) · · · IP(An|A1 ∩ A2 ∩ · · · ∩ An−1). (4.6.4)

The Multiplication Rule is very important because it allows us to find probabilities in ran-

dom experiments that have a sequential structure, as the next example shows.

Example 4.33. At the beginning of the section we drew two cards from a standard playing

deck. Now we may answer our original question, what is IP(both Aces)?

IP(both Aces) = IP(A ∩ B) = IP(A) IP(B|A) =
4

52
·
3

51
≈ 0.00452.

4.6.3 How to do it with R

Continuing Example 4.33, we set up the probability space by way of a three step process. First

we employ the cards function to get a data frame L with two columns: rank and suit. Both

columns are stored internally as factors with 13 and 4 levels, respectively.

Next we sample two cards randomly from the L data frame by way of the urnsamples func-

tion. It returns a list Mwhich contains all possible pairs of rows from L (there are choose(52,2)

of them). The sample space for this experiment is exactly the list M.

4.6. CONDITIONAL PROBABILITY 93

At long last we associate a probability model with the sample space. This is right down the

probspace function’s alley. It assumes the equally likely model by default. We call this result

N which is an object of class ps – short for “probability space”.

But do not be intimidated. The object N is nothing more than a list with two elements:

outcomes and probs. The outcomes element is itself just another list, with choose(52,2)

entries, each one a data frame with two rows which correspond to the pair of cards chosen. The

probs element is just a vector with choose(52,2) entries all the same: 1/choose(52,2).

Putting all of this together we do

> library(prob)

> L <- cards()

> M <- urnsamples(L, size = 2)

> N <- probspace(M)

Now that we have the probability space N we are ready to do some probability. We use the

prob function, just like before. The only trick is to specify the event of interest correctly, and

recall that we were interested in IP(both Aces). But if the cards are both Aces then the rank of

both cards should be "A", which sounds like a job for the all function:

> prob(N, all(rank == "A"))

[1] 0.004524887

Note that this value matches what we found in Example 4.33, above. We could calculate

all sorts of probabilities at this point; we are limited only by the complexity of the event’s

computer representation.

Example 4.34. Consider an urn with 10 balls inside, 7 of which are red and 3 of which are

green. Select 3 balls successively from the urn. Let A =
�
1st ball is red

�
, B =

�
2nd ball is red

�
,

and C =
�
3rd ball is red

�
. Then

IP(all 3 balls are red) = IP(A ∩ B ∩ C) =
7

10
·
6

9
·
5

8
≈ 0.2917.

4.6.4 How to do it with R

Example 4.34 is similar to Example 4.33, but it is even easier. We need to set up an urn (vector

L) to hold the balls, we sample from L to get the sample space (data frame M), and we associate

a probability vector (column probs) with the outcomes (rows of M) of the sample space. The

final result is a probability space (an ordinary data frame N).

It is easier for us this time because our urn is a vector instead of a cards() data frame.

Before there were two dimensions of information associated with the outcomes (rank and suit)

but presently we have only one dimension (color).

> library(prob)

> L <- rep(c("red", "green"), times = c(7, 3))

> M <- urnsamples(L, size = 3, replace = FALSE, ordered = TRUE)

> N <- probspace(M)

94 CHAPTER 4. PROBABILITY

Now let us think about how to set up the event {all 3 balls are red}. Rows of N that satisfy

this condition have X1=="red"& X2=="red"& X3=="red", but there must be an easier way.

Indeed, there is. The isrep function (short for “is repeated”) in the prob package was written

for this purpose. The command isrep(N,"red",3) will test each row of N to see whether the

value "red" appears 3 times. The result is exactly what we need to define an event with the

prob function. Observe

> prob(N, isrep(N, "red", 3))

[1] 0.2916667

Note that this answer matches what we found in Example 4.34. Now let us try some other

probability questions. What is the probability of getting two "red"s?

> prob(N, isrep(N, "red", 2))

[1] 0.525

Note that the exact value is 21/40; we will learn a quick way to compute this in Section 5.6.

What is the probability of observing "red", then "green", then "red"?

> prob(N, isin(N, c("red", "green", "red"), ordered = TRUE))

[1] 0.175

Note that the exact value is 7/20 (do it with theMultiplicationRule). What is the probability

of observing "red", "green", and "red", in no particular order?

> prob(N, isin(N, c("red", "green", "red")))

[1] 0.525

We already knew this. It is the probability of observing two "red"s, above.

Example 4.35. Consider two urns, the first with 5 red balls and 3 green balls, and the sec-

ond with 2 red balls and 6 green balls. Your friend randomly selects one ball from the first

urn and transfers it to the second urn, without disclosing the color of the ball. You select

one ball from the second urn. What is the probability that the selected ball is red? Let

A = {transferred ball is red} and B = {selected ball is red}. Write

B = S ∩ B

= (A ∪ Ac) ∩ B

= (A ∩ B) ∪ (Ac ∩ B)

and notice that A ∩ B and Ac ∩ B are disjoint. Therefore

IP(B) = IP(A ∩ B) � IP(Ac ∩ B)

= IP(A) IP(B|A) � IP(Ac) IP(B|Ac)

=
5

8
·
3

9
�
3

8
·
2

9

=
21

72

(which is 7/24 in lowest terms).

4.7. INDEPENDENT EVENTS 95

Example 4.36. We saw the RcmdrTestDrive data set in Chapter 2 in which a two-way table

of the smoking status versus the gender was

gender

smoke Female Male Sum

No 80 54 134

Yes 15 19 34

Sum 95 73 168

If one person were selected at random from the data set, then we see from the two-way table

that IP(Female) = 70/168 and IP(Smoker) = 32/168. Now suppose that one of the subjects

quits smoking, but we do not know the person’s gender. If we select one subject at random, what

now is IP(Female)? Let A =
�
the quitter is a female

�
and B =

�
selected person is a female

�
.

Write

B = S ∩ B

= (A ∪ Ac) ∩ B

= (A ∩ B) ∪ (Ac ∩ B)

and notice that A ∩ B and Ac ∩ B are disjoint. Therefore

IP(B) = IP(A ∩ B) � IP(Ac ∩ B)�

= IP(A) IP(B|A) � IP(Ac) IP(B|Ac)�

=
5

8
·
3

9
�
3

8
·
2

9
�

=
21

72
�

(which is 7/24 in lowest terms).

Using the same reasoning, we can return to the example from the beginning of the section

and show that

IP({second card is an Ace}) = 4/52.

.

4.7 Independent Events

Toss a coin twice. The sample space is S = {HH� HT� TH� TT }. We know that IP(1st toss is H) =

2/4, IP(2nd toss is H) = 2/4, and IP(both H) = 1/4. Then

IP(2nd toss is H | 1st toss is H) =
IP(both H)

IP(1st toss is H)
�

=
1/4

2/4
�

= IP(2nd toss is H).

Intuitively, this means that the information that the first toss is H has no bearing on the proba-

bility that the second toss is H. The coin does not remember the result of the first toss.

���

96 CHAPTER 4. PROBABILITY

Definition 4.37. Events A and B are said to be independent if

IP(A ∩ B) = IP(A) IP(B). (4.7.1)

Otherwise, the events are said to be dependent.

The connection with the above example stems from the following. We know from Section

4.6 that when IP(B) > 0 we may write

IP(A|B) =
IP(A ∩ B)

IP(B)
. (4.7.2)

In the case that A and B are independent, the numerator of the fraction factors so that IP(B)

cancels with the result:

IP(A|B) = IP(A) when A, B are independent. (4.7.3)

The interpretation in the case of independence is that the information that the event B occurred

does not influence the probability of the event A occurring. Similarly, IP(B|A) = IP(B), and

so the occurrence of the event A likewise does not affect the probability of event B. It may

seem more natural to define A and B to be independent when IP(A|B) = IP(A); however, the

conditional probability IP(A|B) is only defined when IP(B) > 0. Our definition is not limited by

this restriction. It can be shown that when IP(A)� IP(B) > 0 the two notions of independence

are equivalent.

Proposition 4.38. If the events A and B are independent then

� A and Bc are independent,

� Ac and B are independent,

� Ac and Bc are independent.

Proof. Suppose that A and B are independent. We will show the second one; the others are

similar. We need to show that

IP(Ac ∩ B) = IP(Ac) IP(B).

To this end, note that the Multiplication Rule, Equation 4.6.3 implies

IP(Ac ∩ B) = IP(B) IP(Ac|B)�

= IP(B)[1 − IP(A|B)]�

= IP(B) IP(Ac).

�

Definition 4.39. The events A, B, and C are mutually independent if the following four condi-

tions are met:

IP(A ∩ B) = IP(A) IP(B)�

IP(A ∩ C) = IP(A) IP(C)�

IP(B ∩ C) = IP(B) IP(C)�

and

IP(A ∩ B ∩C) = IP(A) IP(B) IP(C).

If only the first three conditions hold then A, B, and C are said to be independent pairwise.

Note that pairwise independence is not the same as mutual independence when the number of

events is larger than two.

4.7. INDEPENDENT EVENTS 97

We can now deduce the pattern for n events, n > 3. The events will be mutually independent

only if they satisfy the product equality pairwise, then in groups of three, in groups of four, and

so forth, up to all n events at once. For n events, there will be 2n − n − 1 equations that must

be satisfied (see Exercise 4.1). Although these requirements for a set of events to be mutually

independent may seem stringent, the good news is that for most of the situations considered in

this book the conditions will all be met (or at least we will suppose that they are).

Example 4.40. Toss ten coins. What is the probability of observing at least one Head? Answer:

Let Ai =
�
the ith coin shows H

�
� i = 1� 2� . . . � 10. Supposing that we toss the coins in such a

way that they do not interfere with each other, this is one of the situations where all of the Ai
may be considered mutually independent due to the nature of the tossing. Of course, the only

way that there will not be at least one Head showing is if all tosses are Tails. Therefore,

IP(at least one H) = 1 − IP(all T)�

= 1 − IP(Ac1 ∩ A
c
2 ∩ · · · ∩ A

c
10)�

= 1 − IP(Ac1) IP(A
c
2) · · · IP(A

c
10)�

= 1 −

�
1

2

�10
�

which is approximately 0.9990234.

4.7.1 How to do it with R

Example 4.41. Toss ten coins. What is the probability of observing at least one Head?

> S <- tosscoin(10, makespace = TRUE)

> A <- subset(S, isrep(S, vals = "T", nrep = 10))

> 1 - prob(A)

[1] 0.9990234

Compare this answer to what we got in Example 4.40.

Independent, Repeated Experiments

Generalizing from above it is common to repeat a certain experiment multiple times under iden-

tical conditions and in an independent manner. We have seen many examples of this already:

tossing a coin repeatedly, rolling a die or dice, etc.

The iidspace function was designed specifically for this situation. It has three arguments:

x, which is a vector of outcomes, ntrials, which is an integer telling how many times to

repeat the experiment, and probs to specify the probabilities of the outcomes of x in a single

trial.

Example 4.42. An unbalanced coin (continued, see Example 4.5). It was easy enough to

set up the probability space for one unbalanced toss, however, the situation becomes more

complicated when there are many tosses involved. Clearly, the outcome HHH should not have

the same probability as TTT , which should again not have the same probability as HTH. At

the same time, there is symmetry in the experiment in that the coin does not remember the face

it shows from toss to toss, and it is easy enough to toss the coin in a similar way repeatedly.

We may represent tossing our unbalanced coin three times with the following:

98 CHAPTER 4. PROBABILITY

> iidspace(c("H","T"), ntrials = 3, probs = c(0.7, 0.3))

X1 X2 X3 probs

1 H H H 0.343

2 T H H 0.147

3 H T H 0.147

4 T T H 0.063

5 H H T 0.147

6 T H T 0.063

7 H T T 0.063

8 T T T 0.027

As expected, the outcome HHH has the largest probability, while TTT has the smallest.

(Since the trials are independent, IP(HHH) = 0.73 and IP(TTT) = 0.33, etc.) Note that the

result of the function call is a probability space, not a sample space (which we could construct

already with the tosscoin or urnsamples functions). The same procedure could be used to

model an unbalanced die or any other experiment that may be represented with a vector of

possible outcomes.

Note that iidspace will assume x has equally likely outcomes if no probs argument

is specified. Also note that the argument x is a vector, not a data frame. Something like

iidspace(tosscoin(1),...) would give an error.

4.8 Bayes’ Rule

We mentioned the subjective view of probability in Section 4.3. In this section we introduce a

rule that allows us to update our probabilities when new information becomes available.

Theorem 4.43. �Bayes’ Rule). Let B1, B2, . . . , Bn be mutually exclusive and exhaustive and

let A be an event with IP(A) > 0. Then

IP(Bk|A) =
IP(Bk) IP(A|Bk)
�n
i=1 IP(Bi) IP(A|Bi)

� k = 1� 2� . . . � n. (4.8.1)

Proof. The proof follows from looking at IP(Bk ∩ A) in two different ways. For simplicity,

suppose that P(Bk) > 0 for all k. Then

IP(A) IP(Bk|A) = IP(Bk ∩ A) = IP(Bk) IP(A|Bk).

Since IP(A) > 0 we may divide through to obtain

IP(Bk|A) =
IP(Bk) IP(A|Bk)

IP(A)
.

Now remembering that {Bk} is a partition, the Theorem of Total Probability (Equation 4.4.5)

gives the denominator of the last expression to be

IP(A) =

n�

k=1

IP(Bk ∩ A) =

n�

k=1

IP(Bk) IP(A|Bk).

�

4.8. BAYES’ RULE 99

What does it mean? Usually in applications we are given (or know) a priori probabilities

IP(Bk). We go out and collect some data, which we represent by the event A. We want to know:

how do we update IP(Bk) to IP(Bk|A)? The answer: Bayes’ Rule.

Example 4.44. Misfiling Assistants. In this problem, there are three assistants working at a

company: Moe, Larry, and Curly. Their primary job duty is to file paperwork in the filing

cabinet when papers become available. The three assistants have different work schedules:

Moe Larry Curly

Workload 60% 30% 10%

That is, Moe works 60% of the time, Larry works 30% of the time, and Curly does the

remaining 10%, and they file documents at approximately the same speed. Suppose a person

were to select one of the documents from the cabinet at random. Let M be the event

M = {Moe filed the document}

and let L and C be the events that Larry and Curly, respectively, filed the document. What

are these events’ respective probabilities? In the absence of additional information, reasonable

prior probabilities would just be

Moe Larry Curly

Prior Probability IP(M) = 0.60 IP(L) = 0.30 IP(C) = 0.10

Now, the boss comes in one day, opens up the file cabinet, and selects a file at random. The

boss discovers that the file has been misplaced. The boss is so angry at the mistake that (s)he

threatens to fire the one who erred. The question is: who misplaced the file?

The boss decides to use probability to decide, and walks straight to the workload schedule.

(S)he reasons that, since the three employees work at the same speed, the probability that a ran-

domly selected file would have been filed by each one would be proportional to his workload.

The boss notifiesMoe that he has until the end of the day to empty his desk.

But Moe argues in his defense that the boss has ignored additional information. Moe’s

likelihood of having misfiled a document is smaller than Larry’s and Curly’s, since he is a

diligent worker who pays close attention to his work. Moe admits that he works longer than

the others, but he doesn’t make as many mistakes as they do. Thus, Moe recommends that –

before making a decision – the boss should update the probability (initially based on workload

alone) to incorporate the likelihood of having observed a misfiled document.

And, as it turns out, the boss has information about Moe, Larry, and Curly’s filing accuracy

in the past (due to historical performance evaluations). The performance information may be

represented by the following table:

Moe Larry Curly

Misfile Rate 0.003 0.007 0.010

In other words, on the average, Moe misfiles 0.3% of the documents he is supposed to file.

Notice that Moe was correct: he is the most accurate filer, followed by Larry, and lastly Curly.

If the boss were to make a decision based only on the worker’s overall accuracy, then Curly

should get the axe. But Curly hears this and interjects that he only works a short period during

100 CHAPTER 4. PROBABILITY

the day, and consequently makes mistakes only very rarely; there is only the tiniest chance that

he misfiled this particular document.

The boss would like to use this updated information to update the probabilities for the three

assistants, that is, (s)he wants to use the additional likelihood that the document was misfiled

to update his/her beliefs about the likely culprit. Let A be the event that a document is misfiled.

What the boss would like to know are the three probabilities

IP(M|A)� IP(L|A)� and IP(C|A).

We will show the calculation for IP(M|A), the other two cases being similar. We use Bayes’

Rule in the form

IP(M|A) =
IP(M ∩ A)

IP(A)
.

Let’s try to find IP(M∩A), which is just IP(M) · IP(A|M) by the Multiplication Rule. We already

know IP(M) = 0.6 and IP(A|M) is nothing more than Moe’s misfile rate, given above to be

IP(A|M) = 0.003. Thus, we compute

IP(M ∩ A) = (0.6)(0.003) = 0.0018.

Using the same procedure we may calculate

IP(L|A) = 0.0021 and IP(C|A) = 0.0010.

Now let’s find the denominator, IP(A). The key here is the notion that if a file is misplaced,

then either Moe or Larry or Curly must have filed it; there is no one else around to do the

misfiling. Further, these possibilities are mutually exclusive. We may use the Theorem of Total

Probability 4.4.5 to write

IP(A) = IP(A ∩ M) � IP(A ∩ L) � IP(A ∩C).

Luckily, we have computed these above. Thus

IP(A) = 0.0018 � 0.0021 � 0.0010 = 0.0049.

Therefore, Bayes’ Rule yields

IP(M|A) =
0.0018

0.0049
≈ 0.37.

This last quantity is called the posterior probability that Moe misfiled the document, since it

incorporates the observed data that a randomly selected file was misplaced (which is governed

by the misfile rate). We can use the same argument to calculate

Moe Larry Curly

Posterior Probability IP(M|A) ≈ 0.37 IP(L|A) ≈ 0.43 IP(C|A) ≈ 0.20

The conclusion: Larry gets the axe. What is happening is an intricate interplay between

the time on the job and the misfile rate. It is not obvious who the winner (or in this case, loser)

will be, and the statistician needs to consult Bayes’ Rule to determine the best course of action.

4.8. BAYES’ RULE 101

Example 4.45. Suppose the boss gets a change of heart and does not fire anybody. But the next

day (s)he randomly selects another file and again finds it to be misplaced. To decide whom to

fire now, the boss would use the same procedure, with one small change. (S)he would not use

the prior probabilities 60%, 30%, and 10%; those are old news. Instead, she would replace the

prior probabilities with the posterior probabilities just calculated. After the math she will have

new posterior probabilities, updated even more from the day before.

In this way, probabilities found by Bayes’ rule are always on the cutting edge, always

updated with respect to the best information available at the time.

4.8.1 How to do it with R

There are not any special functions for Bayes’ Rule in the prob package, but problems like the

ones above are easy enough to do by hand.

Example 4.46. Misfiling assistants (continued from Example 4.44). We store the prior prob-

abilities and the likelihoods in vectors and go to town.

> prior <- c(0.6, 0.3, 0.1)

> like <- c(0.003, 0.007, 0.01)

> post <- prior * like

> post/sum(post)

[1] 0.3673469 0.4285714 0.2040816

Compare these answers with what we got in Example 4.44. We would replace prior with

post in a future calculation. We could raise like to a power to see how the posterior is affected

by future document mistakes. (Do you see why? Think back to Section 4.7.)

Example 4.47. Let us incorporate the posterior probability (post) information from the last

example and suppose that the assistants misfile seven more documents. Using Bayes’ Rule,

what would the new posterior probabilities be?

> newprior <- post

> post <- newprior * like^7

> post/sum(post)

[1] 0.0003355044 0.1473949328 0.8522695627

We see that the individual with the highest probability of having misfiled all eight docu-

ments given the observed data is no longer Larry, but Curly.

There are two important points. First, we did not divide post by the sum of its entries

until the very last step; we do not need to calculate it, and it will save us computing time to

postpone normalization until absolutely necessary, namely, until we finally want to interpret

them as probabilities.

Second, the reader might be wondering what the boss would get if (s)he skipped the inter-

mediate step of calculating the posterior after only one misfiled document. What if she started

from the original prior, then observed eight misfiled documents, and calculated the posterior?

What would she get? It must be the same answer, of course.

> fastpost <- prior * like^8

> fastpost/sum(fastpost)

[1] 0.0003355044 0.1473949328 0.8522695627

Compare this to what we got in Example 4.45.

��

����������������������������������

���������������������������������

��������������������������

102 CHAPTER 4. PROBABILITY

4.9 Random Variables

We already know about experiments, sample spaces, and events. In this section, we are inter-

ested in a number that is associated with the experiment. We conduct a random experiment E

and after learning the outcome ω in S we calculate a number X. That is, to each outcome ω in

the sample space we associate a number X(ω) = x.

Definition 4.48. A random variable X is a function X : S → � that associates to each outcome

ω ∈ S exactly one number X(ω) = x.

We usually denote random variables by uppercase letters such as X, Y , and Z, and we

denote their observed values by lowercase letters x, y, and z. Just as S is the set of all possible

outcomes of E, we call the set of all possible values of X the support of X and denote it by S X.

Example 4.49. Let E be the experiment of flipping a coin twice. We have seen that the sample

space is S = {HH� HT� TH� TT }. Now define the random variable X = the number of heads.

That is, for example, X(HH) = 2, while X(HT) = 1. We may make a table of the possibilities:

ω ∈ S HH HT TH TT

X(ω) = x 2 1 1 0

Taking a look at the second row of the table, we see that the support of X – the set of all

numbers that X assumes – would be S X = {0� 1� 2}.

Example 4.50. Let E be the experiment of flipping a coin repeatedly until observing a Head.

The sample space would be S = {H� TH� TTH� TTTH� . . .}. Now define the random vari-

able Y = the number of Tails before the first head. Then the support of Y would be S Y =

{0� 1� 2� . . .}.

Example 4.51. Let E be the experiment of tossing a coin in the air, and define the random

variable Z = the time (in seconds) until the coin hits the ground. In this case, the sample space

is inconvenient to describe. Yet the support of Z would be (0�∞). Of course, it is reasonable to

suppose that the coin will return to Earth in a short amount of time; in practice, the set (0�∞)

is admittedly too large. However, we will find that in many circumstances it is mathematically

convenient to study the extended set rather than a restricted one.

There are important differences between the supports of X, Y , and Z. The support of X

is a finite collection of elements that can be inspected all at once. And while the support of

Y cannot be exhaustively written down, its elements can nevertheless be listed in a naturally

ordered sequence. Random variables with supports similar to those of X and Y are called

discrete random variables. We study these in Chapter 5.

In contrast, the support of Z is a continuous interval, containing all rational and irrational

positive real numbers. For this reason4, random variables with supports like Z are called con-

tinuous random variables, to be studied in Chapter 6.

4.9.1 How to do it with R

The primary vessel for this task is the addrv function. There are two ways to use it, and we

will describe both.

4This isn’t really the reason, but it serves as an effective litmus test at the introductory level. See Billingsley or

Resnick.

���

�����

�����

4.9. RANDOM VARIABLES 103

Supply a Defining Formula

The first method is based on the transform function. See ?transform. The idea is to write

a formula defining the random variable inside the function, and it will be added as a column to

the data frame. As an example, let us roll a 4-sided die three times, and let us define the random

variable U = X1 − X2 � X3.

> S <- rolldie(3, nsides = 4, makespace = TRUE)

> S <- addrv(S, U = X1 - X2 + X3)

Now let’s take a look at the values of U. In the interest of space, we will only reproduce the

first few rows of S (there are 43 = 64 rows in total).

> head(S)

X1 X2 X3 U probs

1 1 1 1 1 0.015625

2 2 1 1 2 0.015625

3 3 1 1 3 0.015625

4 4 1 1 4 0.015625

5 1 2 1 0 0.015625

6 2 2 1 1 0.015625

We see from the U column it is operating just like it should. We can now answer questions

like

> prob(S, U > 6)

[1] 0.015625

Supply a Function

Sometimes we have a function laying around that we would like to apply to some of the out-

come variables, but it is unfortunately tedious to write out the formula defining what the new

variable would be. The addrv function has an argument FUN specifically for this case. Its value

should be a legitimate function from R, such as sum, mean, median, etc. Or, you can define

your own function. Continuing the previous example, let’s define V = max(X1� X2� X3) and

W = X1 � X2 � X3.

> S <- addrv(S, FUN = max, invars = c("X1", "X2", "X3"), name = "V")

> S <- addrv(S, FUN = sum, invars = c("X1", "X2", "X3"), name = "W")

> head(S)

X1 X2 X3 U V W probs

1 1 1 1 1 1 3 0.015625

2 2 1 1 2 2 4 0.015625

3 3 1 1 3 3 5 0.015625

4 4 1 1 4 4 6 0.015625

5 1 2 1 0 2 4 0.015625

6 2 2 1 1 2 5 0.015625

Notice that addrv has an invars argument to specify exactly to which columns one would

like to apply the function FUN. If no input variables are specified, then addrv will apply FUN

to all non-probs columns. Further, addrv has an optional argument name to give the new

variable; this can be useful when adding several random variables to a probability space (as

above). If not specified, the default name is “X”.

104 CHAPTER 4. PROBABILITY

Marginal Distributions

As we can see above, often after adding a random variable V to a probability space one will

find that V has values that are repeated, so that it becomes difficult to understand what the

ultimate behavior of V actually is. We can use the marginal function to aggregate the rows of

the sample space by values of V , all the while accumulating the probability associated with V’s

distinct values. Continuing our example from above, suppose we would like to focus entirely

on the values and probabilities of V = max(X1� X2� X3).

> marginal(S, vars = "V")

V probs

1 1 0.015625

2 2 0.109375

3 3 0.296875

4 4 0.578125

We could save the probability space of V in a data frame and study it further, if we wish. As

a final remark, we can calculate the marginal distributions of multiple variables desired using

the vars argument. For example, suppose we would like to examine the joint distribution of V

and W.

> marginal(S, vars = c("V", "W"))

V W probs

1 1 3 0.015625

2 2 4 0.046875

3 2 5 0.046875

4 3 5 0.046875

5 2 6 0.015625

6 3 6 0.093750

7 4 6 0.046875

8 3 7 0.093750

9 4 7 0.093750

10 3 8 0.046875

11 4 8 0.140625

12 3 9 0.015625

13 4 9 0.140625

14 4 10 0.093750

15 4 11 0.046875

16 4 12 0.015625

Note that the default value of vars is the names of all columns except probs. This can be

useful if there are duplicated rows in the probability space.

4.9. RANDOM VARIABLES 105

Chapter Exercises

Exercise 4.1. Prove the assertion given in the text: the number of conditions that the events A1,

A2, . . . , An must satisfy in order to be mutually independent is 2n − n − 1. (Hint: think about

Pascal’s triangle.)

Answer: The events must satisfy the product equalities two at a time, of which there are
�
n

2

�
,

then they must satisfy an additional
�
n

3

�
conditions three at a time, and so on, until they satisfy

the
�
n

n

�
= 1 condition including all n events. In total, there are

�
n

2

�

�

�
n

3

�

� · · · �

�
n

n

�

=

n�

k=0

�
n

k

�

−

��
n

0

�

�

�
n

1

��

conditions to be satisfied, but the binomial series in the expression on the right is the sum of

the entries of the nth row of Pascal’s triangle, which is 2n.

��

��

���

�����������������������������������

