
MCMC Methods for Gaussian Process Models

Using Fast Approximations for the Likelihood

Chunyi Wang

Department of Statistical Sciences

University of Toronto

chunyi@utstat.toronto.edu

Radford M. Neal

Department of Statistical Sciences and

Department of Computer Science

University of Toronto

radford@utstat.toronto.edu

9 May 2013

Gaussian Process (GP) models are a powerful and flexible tool for non-parametric

regression and classification. Computation for GP models is intensive, since computing

the posterior density, π, for covariance function parameters requires computation of

the covariance matrix, C, a pn2 operation, where p is the number of covariates and

n is the number of training cases, and then inversion of C, an n3 operation. We

introduce MCMC methods based on the “temporary mapping and caching” framework,

using a fast approximation, π∗, as the distribution needed to construct the temporary

space. We propose two implementations under this scheme: “mapping to a discretizing

chain”, and “mapping with tempered transitions”, both of which are exactly correct

MCMC methods for sampling π, even though their transitions are constructed using

an approximation. These methods are equivalent when their tuning parameters are set

at the simplest values, but differ in general. We compare how well these methods work

when using several approximations, finding on synthetic datasets that a π∗ based on the

“Subset of Data” (SOD) method is almost always more efficient than standard MCMC

using only π. On some datasets, a more sophisticated π∗ based on the “Nyström-

Cholesky” method works better than SOD.

1 Introduction

Evaluating the posterior probability density function is the most costly operation when Markov

Chain Monte Carlo (MCMC) is applied to many Bayesian inference problems. One example is

the Gaussian Process regression model (see Section 5 for a brief introduction), for which the

time required to evaluate the posterior probability density increases with the cube of the sample

size. However, several fast but approximate methods for Gaussian Process models have been

1

developed. We show in this paper how such an approximation to the posterior distribution for

parameters of the covariance function in a Gaussian process model can be used to speed up

sampling, using either of two schemes, based on “mapping to a discretizing chain” or “mapping

with tempered transitions”. Both schemes produce an exactly correct MCMC method, despite

using an approximation to the posterior density for some operations.

In the next section, we describe a general scheme for contructing efficient MCMC methods

using temporary mapping and caching techniques, first introduced by Neal (2006), which is the

basis for both of the schemes for using approximations that are introduced in this paper.

One possibility for a space to temporarily map to is the space of Markov chain realizations

that leave a distribution π∗ invariant. Our hope is that if we use such a space with a π∗ that is

a good approximation to π, but faster to compute, then MCMC with temporary mapping and

caching will be faster than MCMC methods using only π.

We then consider how the tempered transiton method due to Neal (1996) can also be viewed

as mapping temporary to another space. Using this view, we give a different proof that de-

tailed balance holds for tempered transitions. We then discuss how the sequence of transitions

T̂1, T̂2, ..., Ť2, Ť1 (which collectively form the tempered transition) should be chosen when they are

defined using fast approximations, rather than (as in the original context for tempered transtions)

by modifying the original distribution, π, in a way that does not reduce computation time.

We apply these two proposed schemes to Gaussian process regression models that have a

covariance function with unknown hyperparameters, whose posterior distribution must be sampled

using MCMC. We discuss several fast GP approximation methods that can be used to contruct

an approximate π∗. We conclude by presenting experiments on synthetic datasets using the new

methods that show that these methods are indeed faster than standard methods using only π.

2 MCMC with temporary mapping and caching

To start, we present two general ideas for improving MCMC — temporarily mapping to a different

state space, and caching the results of posterior density computations for possible later use.

2.1 Creating Markov transitions using temporary mappings

To obtain samples of a target distribution π from space X using MCMC, we need to find a

transition probability T (x′|x), for which∫
π(x)T (x′|x)dx = π(x′) (1)

2

i.e., T (x′|x) leaves the target distribution π invariant. There are many ways to form such a tran-

sition. In the famous Metropolis algorithm (Metropolis et. al, 1953), from a current state x, we

propose to move to a candidate state x∗ according to a proposal distribution S(x′|x) that is sym-

metric (i.e., S(x′|x) = S(x|x′)), and then accept this proposal with probability min(1, π(x∗)/π(x)).

If this proposal is accepted, the new state is x′ = x∗, otherwise x′ = x. It’s easy to show that

these transitions leave π invariant (in fact they satisfy the stronger “detailed balance” condition

that π(x)T (x′|x) = π(x′)T (x|x′)).
The temporary mapping technique (Neal, 2006) defines such a transition via three other

stochastic mappings, T̂ , T̄ and Ť , as follows:

x
T̂−→ y

T̄−→ y′
Ť−→ x′ (2)

where x, x′ ∈ X and y, y′ ∈ Y . Starting from x, we obtain a value y in the temporary space Y by

T̂ (y|x). The target distribution for y has probability mass/density function ρ(y). We require that∫
π(x)T̂ (y|x)dx = ρ(y) (3)

We then obtain another sample y′ using T̄ (y′|y), which leaves ρ invariant:∫
ρ(y)T̄ (y′|y)dy = ρ(y′) (4)

Finally, we map back to x′ ∈ X using Ť (x′|y), which we require to satisfy∫
ρ(y′)Ť (x′|y′)dy′ = π(x′) (5)

It’s easy to see that the combined transition T (x′|x) =
∫ ∫

T̂ (y|x)T̄ (y′|y)Ť (x′|y′)dydy′ leaves

π invariant: ∫
π(x)T (x′|x)dx =

∫ ∫ ∫
π(x)T̂ (y|x)T̄ (y′|y)Ť (x′|y′)dydy′dx (6)

=

∫ ∫
ρ(y)T̄ (y′|y)Ť (x′|y′)dydy′ (7)

=

∫
ρ(y′)Ť (x′|y′)dy′ (8)

= π(x′) (9)

Quite a few existing methods can be viewed as mapping to temporary spaces. For instance,

the technique of temporarily introducing auxiliary variables can be considered as mapping from x

to y = (x, z), where z is a set of auxiliary variables.

3

2.2 Caching values for future re-use

Many MCMC transitions require evalulating the probability density of π, up to a possibly un-

known normalizing constant. For example, each iteration of the Metropolis algorithm needs the

probability density values of both the current state x and the candidate state x∗. Since these eval-

uations typically dominate the MCMC computation time, it may be desirable to save (‘cache’)

computed values of π(x) so they can be re-used when the same state x appears in the chain again.

Caching is always useful for the Metropolis algorithm, since if we reject a proposal x∗, we will

need π(x) for the next transition, and if we instead accept x∗ then it becomes the current state

and we will need π(x∗) for the next transition.

When the proposal distribution is discrete (as it will always be when the state space is dis-

crete), the probability of proposing an x∗ that was previously proposed can be positive, so saving

the computed value of π(x∗) may be beneficial even if x∗ is rejected. When the state space is

continuous, however, the proposal distributions commonly used are also continuous, and we will

have zero probability of proposing the same x∗ again. But in this case, as we will see next, caching

can still be beneficial if we first map to another space with a “discretizing chain”.

3 Mapping to a discretizing chain

To take full advantage of both mapping and caching, we propose a temporary mapping scheme

where the temporary space is continuous, but is effectively discrete with regard to transitions T̄ .

Let R(x′|x) be the transition probabilities for a Markov Chain which leaves π∗ invariant. Let

R̃(x|x′) = R(x′|x)π∗(x)/π∗(x′) be the reverse transition probabilities, which clearly also leave π∗

invariant.

We map from X to Y , a space of realizations of this Markov Chain of length K, where one

time step of this chain is “marked”. To map x ∈ X to y ∈ Y , we use a T̂ that operates as follows:

• Choose k uniformly from 0, ..., K − 1.

• Simulate K − 1 − k forward transition steps using R starting at xk = x, producing states

xk+1, ..., xK−1.

• Simulate k reverse transitions using R̃, starting at xk = x, producing states xk−1, ..., x0.

• Set the “marked” time step to k.

The transition T̄ moves the mark along the chain from k to another time step k′ ∈ {0, . . . , K−1},
while keeping the current chain realization, (x0, . . . , xK−1), fixed. The transition Ť just takes the

4

X

Y

T̂

Ť

T̄
x

y has a mark here

y′ has a mark here

x′

R

Figure 1: Mapping to a discretizing chain and back.

marked state, so x′ = xk′ . The actual implementation will not necessarily simulate all K− 1 steps

of the discretizing chain — a new step is simulated only when it is needed. We can then let K go

to infinity, so that T̄ can move the mark any finite number of steps forward or backward.

Figure 1 illustrates this scheme. Note that an element y ∈ Y is a chain realization with a mark

placed on the time step k. We write y = (k;x0, ..., xK−1). When we say we “move the mark from

k to k′”, we actually use a transition T̄ to move from y = (k;x0, ..., xK−1) to y′ = (k′;x0, ..., xK−1),

where y and y′ share the same chain realization and differ only on the marked position. We are

free to choose the way T̄ moves the mark in any way that leaves ρ invariance — for instance, we

can pick a number s and propose to move mark from k to k + s or k− s with equal probabilities.

We can make r such moves within each mapping. The discretizing chain makes the state space

effectively discrete, even though the space Y is continuous, and consequently, when we move the

mark around the chain realization, there is a positive probability of hitting a location that has

been visited before.

The transition T̄ has to leave ρ(y) invariant. We compute the ratio of ρ(y′) and ρ(y) to see how

we can construct a such a T̄ . ρ has been implicitly defined in (3) as the distribution resulting from

applying T̂ to x drawn from π. The probability to sample y is given by the simulation process

described above (i.e. start from x, simulate K−1−k forward steps using R and k backward steps

using R̃), namely, if y = (k;x0, ..., xK−1),

ρ(y) = π(xk)
1

K
R(xk+1|xk) · · ·R(xK−1|xK−2)× R̃(xk−1|xk) · · · R̃(x0|x1)

=
π(xk)

π∗(xk)

1

K
π∗(xk)R(xk+1|xk) · · ·R(xK−1|xK−2)× R̃(xk−1|xk) · · · R̃(x0|x1)︸ ︷︷ ︸

:=A

(10)

5

An expression for ρ(y′) can be similarly obtained for y′ = (k′;x0, ..., xK−1):

ρ(y′) =
π(xk′)

π∗(xk′)

1

K
π∗(xk′)R(xk′+1|x′) · · ·R(xK−1|xK−2)× R̃(xk′−1|xk′) · · · R̃(x0|x1)︸ ︷︷ ︸

:=A′

(11)

We take out a factor of the ratio of densities π/π∗ from both (10) and (11), and write the remaining

term as A or A′, as indicated in the respective equation. Since R and R̃ are reverse transitions

with respect to π∗, if k′ > k, then

π∗(xk)R(xk+1|xk) · · ·R(xk′|xk′−1)

= R̃(xk|xk+1)π∗(xk+1)R(xk+2|xk+1) · · ·R(xk′|xk′−1)

...

= R̃(xk|xk+1)...R̃(xk′−1|xk′)π∗(xk′) (12)

It therefore follows that A = A′. A similar argument shows that A = A′ when k′ ≤ k. Thus the

ratio of ρ(y′) and ρ(y) is

ρ(y′)

ρ(y)
=
π(xk′)/π

∗(xk′)

π(xk)/π∗(xk)
(13)

Equation (13) implies that to leave ρ invariant we can use a Metropolis type transition, T̄ , that

proposes to move the mark from k to k′ and accepts the move with probability

min

(
1,
π(xk′)/π

∗(xk′)

π(xk)/π∗(xk)

)
Note that if π = π∗, then the transition T̄ will accept a move of the mark to any other time step

on the discretizing chain, since the discretizing chain actually leaves the target distribution π∗

invariant and therefore every time step of this chain is a valid sample of π. If π∗ 6= π, but is very

similar to π, we can hope the acceptance rate will be high. In addition, if the evaluation of π∗(x)

takes much less time than that of π(x), mapping to the discretizing chain and then proposing

large moves of the mark can save computation time, since it effectively replaces evaluations of π

with evaluations of π∗, except for the acceptance decisions.. On the other hand, if π∗ is completely

arbitrary, the acceptance rate will be low, and if the evalution of π∗ is not much faster than π(x),

we will not save computation time. These π∗’s are not useful. We need π∗ to be a fast but good

approximation to π. We will discuss this in the context of GP models in a later section.

Every time we map into a temporary space, we can make multiple T̄ updates (move the “mark”

several times). This way we can take advantage of the “caching” idea, since sometimes the mark

will be moved to a state where π has already been computed, and therefore no new computation

6

is needed. The number of updates is a tuning parameter, which we denote as “r”. Another tuning

parameter, which we denote as “s”, is the number of steps of transition R to “jump” when we try

to move the mark. Note that although we only “bring back” (using Ť) the last updated sample as

x′, all of the marked states are valid samples of π(x), and can be used for computing expectations

with respect to π if desired.

4 Tempered transitions

The “tempered transitions” method of Neal (1996) can also be viewed as mapping to a temporary

space. This method aims to sample from π using a sequence of distributions π = π0, π1, . . . , πn.

For i = 0, . . . , n, let T̂i (called the “up” transition) and Ťi (the “down” transition) be mutually

reversible transitions with respect to the density πi — i.e. for any pair of states xi and x′i,

πi(xi)T̂i(x
′
i|xi) = Ťi(xi|x′i)πi(x′i) (14)

This condition implies that both T̂i and Ťi have πi as their invariant distribution. If T̂i = Ťi then

(14) reduces to the detailed balance condition. If T̂i = S1S2...Sk with all of Si being reversible

transitions, then Ťi = SkSk−1...S1 would satisfy condition (14).

We map from x ∈ X to y ∈ Y , a space of realizations of tempered transitions, using a T̂ that

operates as follows:

Generate x̂1 from x using T̂1;

Generate x̂2 from x̂1 using T̂2;
...

Generate x̄n from x̂n−1 using T̂n.

Generate x̌n−1 from x̄n using Ťn;

Generate x̌n−2 from x̌n−1 using Ťn−1;
...

Generate x∗ from x̌1 using Ť1.

An element y ∈ Y can be written as y = (x, x̂1, ..., x̄n, ..., x̌1, x
∗).

T̄ attempts to flip the order of y, accepting the flip with probability

min

(
1,
π1(x̂0)

π0(x̂0)
· · · πn(x̂n−1)

πn−1(x̂n−1)
· πn−1(x̌n−1)

πn(x̌n−1)
· · · π0(x̌0)

π1(x̌0)

)
(15)

where x̂0 and x̌0 are synonyms for x and x∗, respectively, to keep notations consistent. In other

words, with this probability, we set y′ to y∗ = (x∗, x̌1, ..., x̄n, ..., x̂1, x) (the order is reversed);

otherwise we sset y′ = y (the order is preserved).

7

Finally, Ť maps back to x′ ∈ X by taking the first coordinate of y′ (either the original x or x∗,

depending on whether or not the flip was accepted).

Using the temporary mapping perspective, we can show that tempered transitions are valid

updates, leaving π invariant, by defining ρ to be the result of applying T̂ to a point drawn from

π, and then showing that T̄ leaves ρ invariant, and that Ť produces a point distributed as π from

a point distributed as ρ.

The T̂ mapping from x = x̂0 to y = (x̂0, x̂1, ..., x̄n, ..., x̌1, x̌0) involves a sequence of transitions:

x̂0
T̂1−→ x̂1

T̂2−→ x̂2 −→ · · · −→ x̂n−1
T̂n−→ x̄n

Ťn−→ x̌n−1
Ťn−1−→ x̌n−2 −→ · · · −→ x̌1

Ť1−→ x̌0

The probability density, ρ, for y can be computed from this as

ρ(y) = π0(x̂0)T̂1(x̂1|x̂0) · · · T̂n(x̄n|x̂n−1)Ťn(x̌n−1|x̄n) · · · Ť1(x̌0|x̌1) (16)

Similarly,

ρ(y∗) = π0(x̌0)T̂1(x̌1|x̌0) · · · T̂n(x̄n|x̌n−1)Ťn(x̂n−1|x̄n) · · · Ť1(x̂0|x̂1) (17)

Now we compute the ratio of probability densities of y∗ and y:

ρ(y∗)

ρ(y)
=
π0(x̌0)T̂1(x̌1|x̌0) · · · T̂n(x̄n|x̌n−1)Ťn(x̂n−1|x̄n) · · · Ť1(x̂0|x̂1)

π0(x̂0)T̂1(x̂1|x̂0) · · · T̂n(x̄n|x̂n−1)Ťn(x̌n−1|x̄n) · · · Ť1(x̌0|x̌1)

= π0(x̌0) · T̂1(x̌1|x̌0)

Ť1(x̌0|x̌1)
· · · T̂n(x̄n|x̌n−1)Ťn(x̂n−1|x̄n)

Ťn(x̌n−1|x̄n)T̂n(x̄n|x̂n−1)
· · · Ť1(x̂0|x̂1)

T̂1(x̂1|x̂0)
· 1

π0(x̂0)
(18)

= π0(x̌0) · π1(x̌1)

π1(x̌0)
· · · πn(x̄n)

πn(x̌n−1)
· πn(x̂n−1)

πn(x̄n)
· · · π1(x̂0)

π1(x̂1)
· 1

π0(x̂0)
(19)

=
π1(x̂0)

π0(x̂0)
· · · πn(x̂n−1)

πn−1(x̂n−1)
· πn−1(x̌n−1)

πn(x̌n−1)
· · · π0(x̌0)

π1(x̌0)
(20)

We obtain (19) from the mutual reversibility property of the transitions T̂i and Ťi, and (18) and

(20) simply by reordering terms.

From (20), we see that the probability of accepting the flip from y to y∗ given by (15) is equal

to min(1, ρ(y∗)/ρ(y)), and thus T̄ satisfies detailed balance with respect to ρ. It is also clear from

(16) that the marginal distribution under ρ of the first component of y is π0 = π, and thus Ť maps

from ρ to π.

The original motivation of the tempered transition method described by Neal (2006) is to move

between isolated modes of multimodal distributions. The distributions π1, ..., πn are typically

of the same class as π, but broader, making it easier to move between modes of π (typically,

as i gets larger, the distribution πi gets broader, thus making it more likely that modes have

substantial overlap). Evaluating the densities for π1, ..., πn typically takes similar computation

8

time as evaluating the density for π. Our mapping-caching scheme, on the other hand, is designed

to reduce computation. Ideally, in our scheme the bigger i is, the faster is the evaluation of πi(x).

One possibility for this is that each πi is an approximation of π, and as i increases the computation

of πi becomes cheaper (but worse).

The two methods we propose in this paper are equivalent if the following are all true:

• For mapping to a discretizing chain:

1. The transition R which leaves π∗ invariant is reversible.

2. s = 2k, i.e. T̄ always attempts to move the mark over an even number of R updates.

3. r = 1, i.e. T̄ attempts to move the mark only once within each mapping.

• For mapping by tempered transitions:

1. n = 1, i.e., there is only one additional distribution.

2. T̂1 = Ť1 = Rk, i.e. these transitions consist of k updates using R (and hence π1 = π∗).

When all above are true except that n > 1, so more than one additional distribution is used

in the tempered transitions, we might expect tempered transitions to perform better, as they

propose a new point through the guidance of these additional distributions, and computations for

these additional distributions should be negligible, if they are faster and faster approximations.

On the other hand, we might think that r > 1 will improve the performance when mapping to

a discretizing chain, since then caching could be exploited. So each method may have its own

advantages.

5 Application to Gaussian process models

We now show how these MCMC methods can be applied to Bayesian inference for Gaussian process

models.

5.1 Introduction to Gaussian process models

We start with a brief introduction to Gaussian process (GP) models to establish notation. The

problem is to model the association between covariates x and a response y using n observed pairs

(x1, y1), ..., (xn, yn), and then make predictions for the y in future items once their covariates, x,

have been observed. We can write such a model as

yi = f(xi) + εi (21)

9

where xi is a covariate vector of length p, and yi is the correspoding scalar response. The εi are

random residuals, assumed to have Gaussian distributions with mean 0 and constant variance σ2.

Bayesian GP models assume that the noise-free function f comes from a Gaussian Process

which has prior mean function zero and some specified covariance function. Note that a zero

mean prior is not a requirement — we could specify a non-zero prior mean function m(x) if

we have a priori knowledge of the mean structure. Using a zero mean prior just reflects prior

knowledge that the function is equally likely to be positive or negative; the posterior mean of the

function is typically not zero.

The covariance function could be fixed a priori, but more commonly is specified in terms of

unknown hyperparameters, θ, which are then estimated from the data. Given the values of the

hyperparameters, the response y follows a multivariate Gaussian distribution with zero mean and

a covariance matrix given by

Cov(yi, yj) = K(xi, xj) + Cov(εi, εj) = K(xi, xj) + δijσ
2 (22)

where δii = 1 and δij = 0 when i 6= j, and K is the covariance function of f . Any covariance

function that always leads to a positive semi-definite covariance matrix can be used. One example

is the squared exponential covariance function with isotropic length-scale (to which we add a

constant allowing the overall level of the function to be shifted from zero):

K(xi, xj) = c2 + η2 exp

(
−‖xi − xj‖

2

ρ2

)
(23)

Here, c is a fairly large constant (not excessively large, to avoid numerical singularity), and η, σ,

and ρ are hyperparameters — η controls the magnitude of variation of f , σ is the residual standard

deviation, and ρ is a length scale parameter for the covariates. We can instead assign a different

length scale to each covariate, which leads to the squared exponential covariance function with

automatic relevance determination (ARD):

K(xi, xj) = c2 + η2 exp

(
−

p∑
k=1

(xik − xjk)2

ρ2
k

)
(24)

Unless noted otherwise, we will use the squared exponential covariance functions (23) or (24)

thoughout this paper.

When the values of the hyperparameters are known, the predictive distribution for the response,

y∗, a test case with covariates x∗, based on observed values x = (x1, ..., xn) and (y1, ..., yn), is

Gaussian with the following mean and variance:

E(y∗|x, y, x∗, θ) = kTC(θ)−1y (25)

10

Var(y∗|x, y, x∗, θ) = v − kTC(θ)−1k (26)

In the equations above, k is the vector of covariances between y∗ and each of yi, C(θ) is the

covariance matrix of the observed y, based on the known hyperparameters θ, and v is the prior

variance of y∗, which is Cov(y∗, y∗) from (22).

When the values of the hyperparameters are unknown, and therefore must be estimated from

the data, we put a prior, p(θ), on them (typically an independent Gaussian prior on the logarithm

of each hyper-parameter), and obtain the posterior distribution p(θ|x, y) ∝ N (y|0, C(θ)) p(θ).

The predictive mean of y is then computed by integrating over the posterior distribution of the

hyperparameters:

E(y∗|x, y, x∗) =

∫
Θ

kTC(θ)−1y · p(θ|x, y) dθ (27)

The predicted variance is given by

Var(y∗|x, y, x∗) = E[Var(y∗|x, y, x∗, θ) |x, y] + Var[E(y∗|x, y, x∗, θ) |x, y] (28)

Finding C−1 directly takes time proportional to n3, but we do not have to find the inverse of

C explicitly. Instead we find the Cholesky decomposition of C, denoted as R = chol(C), for which

RTR = C and R is an “upper” triangular matrix (also called a “right” triangular matrix). This

also takes time proportional to n3, but with a much smaller constant. We then solve RTu = y for

u using a series of forward subsititutions (taking time proportional to n2). From R and u, we can

compute the likelihood for θ, which is needed to compute the posterior density, by making use of

the expressions

yTC−1y = yT (RTR)−1y = yTR−1
(
RT
)−1

y = uTu (29)

and

det(C) = det(R)2 =
n∏

i=1

R2
ii (30)

Similarly, equations (25) and (26) and be reformulated to use R rather than C−1.

5.2 Approximating π for GP models

As discussed in Section 3, using a poor π∗ for the discretizing chains on Y , or poor πi for tempered

transitions, can lead to a poor MCMC method which is not useful. We would like to choose

approximations to π that are good, but that can nevertheless be computated much faster than π.

For GP regression models, π will be the posterior distribution of the hyperparameters, θ.

Quite a few efficient approximation methods for GP models have been discussed from a different

perspective. For example, Quiñonero-Candela (2007) categorizes these approximations in terms

11

of “effective prior”. Most of these methods are used for approximate training and prediction; not

all of them are suitable for forming a posterior approximation, π∗. For example, we cannot take

advantage of an efficient approximated prediction.

5.2.1 Subset of data (SOD)

The most obvious approximation is to simply take a subset of size m from the n observed pairs

(xi, yi) and use the posterior distribution given only these observations as π∗:

π∗(θ) = N (y|0, Ĉ(m)(θ)) p(θ) (31)

where p(θ) is the prior for θ, the vector of hyperparameters, and N (a|µ,Σ) denotes the probability

density of a multivariate normal distribution N(µ,Σ) evaluated at a. Ĉ(m)(θ) is computed based

on hyperparameters θ and the m observations in the subset.

Even though the SOD method seems quite naive, it does speed up computation of the Cholesky

decomposition of C from time proportional to n3 to time proportional to m3. If a small subset (say

10% of the full dataset) is used to form π∗, we can afford to do a lot of Markov chain updates for

π∗, since the time it takes to make these updates will be quite small compared to a computation

of π. So a π∗ formed by this method might still be useful.

To form a π∗ using SOD, we need the following major computations, if there are p covariates:

Operation Complexity

Compute Ĉ(m) pm2

Find chol(Ĉ(m)) m3

5.2.2 Using low-rank plus diagonal matrices

A covariance matrix in a GP model typically has the form C = K+σ2I, where K is the noise-free

covariance matrix, and σ2 is the residual variance. More generally, if the residual variance differs

for different observations, the covariance matrix will be K plus a diagonal matrix giving these

residual variances. If we approximate K by a matrix K̂ with rank m < n, and let Ĉ = K̂ + σ2I,

then after writing K̂ = BSBT , where B is n by m, we can quickly find Ĉ−1 by taking advantage

of the matrix inversion lemma, which states that

(BSBT +D)−1 = D−1 −D−1B(S−1 +BTD−1B)−1BTD−1 (32)

This can be simplified as follows when D = dI, where d is a scalar, B has orthonormal columns

(so that BTB = I), and S is a diagonal matrix with diagonal elements given by the vector s,

12

denoted by diag(s):

(B diag(s)BT + dI)−1 = d−1I − d−1IB(diag(s−1) +BTd−1IB)−1BTd−1I (33)

= d−1I − d−2B(diag(1/s) +BTB/d)−1BT (34)

= d−1I − d−1B(diag(d/s) + I)−1BT (35)

= d−1I − d−1B(diag((s+ d)/s)))−1B (36)

= d−1I −B diag(s/(d(s+ d)))BT (37)

Expressions above such as 1/s denote element-by-element arithmetic on the vector operands.

We can use the matrix determinant lemma to compute the determinant of Ĉ.

det(BSBT +D) = det(S−1 +BTD−1B) det(D) det(S) (38)

When D = dI with d being a scalar, det(D) = dn is trivial, and det(S−1 +BTD−1B) can be found

from the Cholesky decomposition of S−1 +BTD−1B.

Once we obtain Ĉ−1 and det(Ĉ), we can easily establish our π∗:

π∗(θ) = N (y|0, Ĉ)p(θ) (39)

5.2.3 The Eigen-exact approximation

Since the noise-free covariance matrix, K, is non-negative definite, we can write it as K = EΛET =∑n
i λieie

T
i , where E has columns e1, e2, ..., en, the eigenvectors of K, and the diagonal matrix Λ has

the eigenvalues of K, λ1 ≥ λ2 ≥ ... ≥ λn on its diagonal. This is known as the eigendecomposition.

A natural choice of low-rank plus diagonal approximation would be Ĉ = K̂+σ2I where K̂ = BSBT

where B is an n × m matrix with columns e1, ..., em, and S is a diagonal matrix with diagonal

entries λ1, ..., λm. We expect this to be a good approximation if λm+1 is close to zero.

With this approximation, Ĉ−1 can be computed rapidly from B and S using (37). However, the

time needed to find the first m eigenvalues and eigenvectors (and hence B and S) is proportional

to mn2, with a much larger constant factor than for the n3 computation of all eigenvalues and

eigenvectors. In practice, depending on the values of m and n and the software implementation, a

π∗ formed by this method could even be slower than the original π. Since our experiments confirm

this, we mention it here only because it is a natural reference point.

5.2.4 The Nytröm-Cholesky approximation

In the Nyström method, we take a random m by m submatrix of the noise-free covariance matrix,

K, which is equivalent to looking at the noise-free covariance for a subset of the data of size m, and

13

then find its eigenvalues and eigenvectors. This takes time proportional to m3. We will denote the

submatrix chosen by K(m,m), and its eigenvalues and eigenvectors by λ
(m)
1 , ..., λ

(m)
m and e

(m)
1 , ..., e

(m)
m .

We can then approximate the first m eigenvalues and eigenvectors of the full noise-free covariance

matrix by

λ̂i = (n/m)λ
(m)
i (40)

êi =

√
m/n

λ
(m)
i

K(n,m)e
(m)
i (41)

where K(n,m) is the n by m submatrix of K with only the columns corresponding to the m cases

in the random subset.

The covariance matrix C can then be approximated in the same fashion as Eigen-exact, with

the exact eigenvalues and eigenvectors replaced by the approximated eigenvalues λ̂1, ..., λ̂m and

eigenvectors ê1, ...êm. However, a more efficient computational method for this approximation,

requiring no eigenvalue/eigenvector computations, is available as follows:

K̂ = K(n,m)[K(m,m)]−1K(m,n) (42)

where K(m,n) = [K(n,m)]T). We can find the Cholesky decomposition of K(m,m) as RTR, in

time proportional to m3, with a much smaller constant factor than finding the eigenvalues and

eigenvectors. Equation (42) can then be put in the form of BSBT by letting B = K(n,m)R−1 and

S = I. In practice, the noise free submatrix K(m,m) often has some very small positive eigenvalues,

which can appear to be negative due to round-off error, making the Cholesky decomposition fail,

a problem that can be avoided by adding a small jitter to the diagonal (Neal, 1993).

An alternative way of justifying the approximation in (42) is by considering the covariance

matrix for the predictive distribution of all n noise-free observations from the random subset of

m noise-free observations, which (from a generalization of (26)) is K − K(n,m)[K(m,m)]−1K(m,n).

When this is close to zero (so these m noise-free observations are enough to almost determine the

function), K̂ will be almost the same as K.

More sophisticated schemes for Nyström-Cholesky have been proposed. For instance, Drineas

and Mahoney (2005) randomly select them columns to construct Ĉ according to some “judiciously-

chosen’’ and data-dependent probability distribution rather than uniformly choose the m columns.

To form a π∗ using Nyström-Cholesky, we need the following major computations:

Operation Complexity

Compute K(n,m) pmn

Find chol(K(m,m)) m3

14

6 Experiments

Here we report tests of the performance of the methods described in this paper using synthetic

datasets.

6.1 Experimental setup

The datasets we used in these experiments were randomly generated, with all covariates drawn

independently from uniform distributions on the interval [0, 1], and responses then generated

according to a Gaussian process with specified hyperparameters.

We generated ten types of datasets in this way, with different combinations of the following:

• Number of observations: n = 300 or n = 900.

• Number of covariates: p=1 or p = 5.

• Type of covariance function: squared exponential covariance function with a single length

scale (isotropic), or with multiple length scales (Automatic Relevance Determination, ARD).

Note that these are identical when p = 1.

• Size of length scales: “short” indicates that a dataset has small length scales,“long” that it

has large length scales.

The specific hyperparameter values that were used for each combination of covariance function

and length scale are shown in Table 1.

The efficiency of an MCMC method is usually measured by the autocorrelation time, τ , for

the sequence of values produced by the chain (see Neal, 1993):

τ = 1 + 2
∞∑
i=1

ρi (43)

where ρi is the lag-i autocorrelation for some function of interest. In practice, with an MCMC

sample of size M , we can only find estimates, ρ̂i, of autocorrelations up to lag i = M − 1. To

Length scale size Length scale type η l

short isotropic 5 l = 0.1

short ARD 5 li = 0.1i

long isotropic 5 l = 2

long ARD 5 li = 2i

Table 1: Hyperparameter values used to generate the synthetic datasets.

15

avoid excessive variance from summing many noisy estimates, we typically estimate τ by

τ̂ = 1 + 2
k∑

i=1

ρ̂i (44)

where k is a point where for all i > k, ρ̂i is not significantly different from 0.

Below, we will compare methods with respect to autocorrelation time of the log likelihood. For

a fair comparison, we multiply the estimate of each method’s autocorrelation times by the average

CPU time it needs to obtain a new sample point.

6.2 Experiments with mapping to a discretizing chain

For each dataset, we tried the method of mapping to a discretizing chain using both a π∗ formed

with SOD and a π∗ formed with Nyström-Cholesky. For comparison, we also ran a standard

MCMC model. All the Markov chains were started from the hyperparameter values that were

used to generate them, so these tests assess only autocorrelation time once the high-probability

region of the posterior has been reached, not time needed for convergence when starting at a

low-probability initial state. The adjustable parameters of each method were chosen to give

good performance. All chains were run for 2000 iterations, and autocorrelation times were then

computed based on the last two-thirds of the chain.

The standard MCMC method we used is a slice sampler (Neal, 2003), specifically a univariate

slice sampler with stepping-out and shrinkage, updating parameters in sequence. For the discretiz-

ing Markov chain, the transition R(x′|x) uses the same slice sampler. Although slice sampling

has tuning parameters (the stepsize, w, and the upper limit on number of steps, M), satisfactory

results can be obtained without extensive tuning (that is, the autocorrelation time of a moderately-

well-tuned chain will not be much bigger than for an optimally-tuned chain). Because finding an

optimal set of tuning parameters is generally hard (requiring much time for trial runs), we will

accept the results using moderately-well-tuned chains.

We found that r = s = 1 gives the best performance for the method of mapping to a discretizing

chain when the slice sampler is used for R(x′|x), at least if only fairly small values of r and s are

considered. Recall that r is the number of T̄ updates to do in each temporary mapping, and s is

the number of steps of R(x′|x) to propose to move the mark for each T̄ update. Note that a single

slice sampling update will usually evaluate π or π∗ more than once, since an evaluation is needed

for each outward step and each time a point is sampled from the interval found by stepping out.

Therefore if we didn’t use a mapping method we would have to compute π(x) several times for

each slice sampling update. When a mapping method is used, π(x) only needs to be evaluated

16

once each update, for the new state (its value at the previous state having been saved), while

meanwhile, π∗(x) will be evaluated several times.

We tuned the remaining parameter m, the subset size for SOD, or the number of random

columns for Nyström-Cholesky, by trial and error. Generally speaking, m should be between 10%

and 50% of n, depending on the problem. For Nyström-Cholesky, quite good results are obtained

if such a value for m makes π∗ be very close to π(x).

The results are in Table 2, which shows CPU time per iteration times autocorrelation time for

the standard MCMC method, and for other methods the ratio of this with the standard method.

Table 3 shows actual autocorrelation time and CPU time per iteration for each experimental run.

From these results, we see that Subset of Data is overall the most reliable method for forming

a π∗. We can almost always find a SOD type of π∗ that leads to more efficient MCMC than

the standard method. Depending on the problem, mapping to a discretizing chain using such a

π∗ can be two to four times faster than standard MCMC, for the Gaussian Process regression

problems we tested. The computational savings go up when the size of the dataset increases. This

is likely because when n is small, evaluation of π is fast, so overhead operations (especially those

not related to n) are not trivial in comparison. The computational saving of π∗ compared to π

will be then less than the m3 to n3 ratio we expect from SOD for large n. Also when n is small,

time to compute C (proportional to pn2) may be significant, which also reduces the computational

savings from a π∗ based on SOD.

For some datasets, we can find a Nyström-Cholesky π∗ with a small m that can approximate π

well, in which case this method works very nicely. However, for datasets with small length scales

with p = 5, in order to find a working π∗ we have to set m to be around 95% of n or greater,

making π∗ as slow as, or even slower than π. This is due to the fact that when the length scale

parameters for the GP are small, the covariance declines rapidly as the input variable changes, so

x and x′ that are even moderately far apart have low covariance. As a result, we were not able to

find efficient mapping method using Nyström-Cholesky with performance even close to standard

MCMC (so no result is shown in the table). On the other hand, when the length scale is large, a

good approximation can be had with a small m (as small as 10% of n). For n = 900 and p = 5

with ARD covariance, Nyström-Cholesky substantially outperforms SOD.

6.3 Experiments with tempered transitions

We have seen in the previous section that the method of mapping to a discretizing chain has a

lot of tuning parameters, and finding the optimal combination of these tuning parameters is not

easy. The method of tempered transitions actually has more tuning parameters. To start with,

17

#
Length scale

p n
m Autocorrelation time × CPU time per iteration

size type SOD NYS TMP TSTD TSOD/TSTD TNYS/TSTD TTMP/TSTD

1 small isotropic 1 300 40 30 40, 20 0.76 0.45 0.51 1.05

2 small isotropic 5 300 150 - 100, 50 1.62 0.81 - 0.14

3 small ARD 5 300 100 - 90, 45 3.39 0.83 - 0.36

4 long isotropic 5 300 150 120 130, 65 2.05 0.81 0.97 0.69

5 long ARD 5 300 90 80 100, 50 5.23 0.66 0.85 0.51

6 small isotropic 1 900 60 90 60, 30 9.06 0.27 0.23 0.28

7 small isotropic 5 900 300 - - 18.17 0.51 - -

8 small ARD 5 900 100 - - 25.47 0.43 - -

9 long isotropic 5 900 100 110 - 16.86 0.34 0.40 -

10 long ARD 5 900 300 90 - 47.46 0.67 0.34 -

Table 2: Results of experiments on the ten datasets.

#
CPU time (s) per iteration Autocorrelation time

STD SOD NYS TMP STD SOD NYS TMP

1 0.26 0.078 0.11 0.15 2.90 4.32 3.53 5.40

2 0.28 0.14 - 0.13 5.77 9.32 - 1.67

3 0.56 0.23 - 0.14 6.09 11.98 - 8.63

4 0.13 0.072 0.15 0.09 15.62 23.04 12.88 16.56

5 0.49 0.19 0.41 0.13 11.16 18.07 10.89 20.37

6 3.10 0.53 0.83 0.61 2.92 4.63 2.48 4.21

7 3.76 0.82 - - 4.83 11.24 - -

8 7.21 1.48 - - 3.53 7.38 - -

9 1.81 0.69 0.91 - 9.33 8.27 7.40 -

10 5.66 1.95 1.75 - 8.39 16.18 9.14 -

Table 3: CPU time per iteration and autocorrelation time for each run in Table 2.

18

Mapping to a discretizing chain Tempered transitions

0 5 10 15 20 25 30 35 40 45 50
−0.2

0

0.2

0.4

0.6

0.8

Lag

S
am

pl
e

A
ut

oc
or

re
la

tio
n

Mapping to Chain, S,n=300,p=5,ISO

0 5 10 15 20 25 30 35 40 45 50
−0.2

0

0.2

0.4

0.6

0.8

Lag

S
am

pl
e

A
ut

oc
or

re
la

tio
n

Mapping by Transition, S,n=300,p=5,ISO

Figure 2: Comparison of autocorrelation times of the log likelihood for MCMC runs using mapping

to a discretizing chain and using tempered transitions. Dataset #2 is used (with five covariates,

small length scales, an isotropic covariance function, and 300 observations).

we have to decide the number of “layers” (we call each of T̂i or Ťi a “layer”). For each layer,

(e.g. x̂i
T̂i+1−→ x̂i+1), we have to decide how many MCMC updates to simulate. This reduces the

attraction of tempered transitions, but in some situations it does improve sampling efficiency.

In the experiments for the method of mapping to a discretizing chain, the results given by

both SOD and Nyström-Cholesky for datasets with n = 300, p = 5 are less satisfatory compared

to others. We tried tempered transitions with these datasets. For simplicity, we used just two

layers, each of which uses SOD to form the transition. The number of observations in each subset

(denoted as mi for transition T̂i and Ťi) is listed in Table 2 under the column “TMP” and the time

ratio results are under the column “TTMP/TSTD”. We can see that for all these datasets, tempered

transitions outperform the method of mapping to a discretizing chain, sometimes substantially.

The advantage of tempered transitons is further illustrated n Figure 2, which shows the sample

autocorrelation plots of the log likelihood for both methods, on dataset #2.

7 Discussion and future work

We have introduced two classes of MCMC methods using the “mapping and caching” framework:

the method of mapping to a discretizing chain, and the tempered transition method. Our ex-

periments indicate that for method of mapping to a discretizing chain, when an appropriate π∗

19

is chosen (e.g. SOD approximation of π with an appropriate m), an efficient MCMC can be

constructed by making “local” jumps (e.g. setting r = s = 1). A good MCMC method can also

be constructed using the tempered transitions, with a small number of πi, where each T̂i and Ťi

makes only a small update.

These results are understandable. Though π∗ and πi, are broader than π, making small ad-

justments a small number of times will have a good chance to still stay in a high probability area

of π. However, even though the acceptance rate is high, this strategy of making small adjustments

cannot bring us very far from the previous state. On the other hand, if we make large jumps, for

instance, by using large values for r and s in the method of mapping to a discretizing chain, the

acceptance rate will be low, but when a proposal is accepted, it will be much further away from

the previous state, which is favourable for a MCMC method. We haven’t had much success using

this strategy so far, perhaps due to difficulty of parameter tuning, but we believe this direction is

worth pursuing. The tempered transition method may be more suitable for this direction, because

moving from one state to another state further away is somewhat similar to moving among modes

— the sequence of T̂i and Ťi should be able to “guide” the transition back to a region with high

probability under π.

Acknowledgements

This research was supported by the Natural Sciences and Engineering Research Council of Canada.

R. N. holds a Canada Research Chair in Statistics and Machine Learning.

References

Drineas, P. and Mahoney, M. (2005) “On the Nystrom Method for Approximating a Gram Matrix

for Improved Kernel-Based Learning’’ Journal of Machine Learning Research vol.6 pp.2153-2175

Metropolis, N. and Rosenbluth, A.W. and Rosenbluth, M.N. and Teller, A.H. and Teller, E. (1953)

“Equations of State Calculations by Fast Computing Machines”, Journal of Chemical Physics

vol. 21, pp. 1087-1092.

Neal, R. M. (1993), “Probabilistic Inference Using Markov Chain Monte Carlo Methods”, Tech-

nical Report, Dept. of Computer Science, University of Toronto, CRG-TR-93-1, Available from

http://www.utstat.utoronto.ca/~radford

20

Neal, R. M. (1996) “Sampling from multimodal distributions using tempered transitions”, Statis-

tics and Computing, vol. 6, pp. 353-366

Neal, R. M. (1997), “Monte Carlo implementation of Gaussian process models for Bayesian regres-

sion and classification”, Technical Report, Dept. of Statistics, University of Toronto, no. 9702,

Available from http://www.utstat.utoronto.ca/~radford

Neal, R. M. (1998), “Regression and Classification Using Gaussian Process Priors”, Bernardo, J.

M. (editor) Bayesian Statistics, vol. 6, Oxford University Press, pp. 475-501

Neal, R. M. (2003), “Slice sampling”, Annals of Statistics, vol. 11, pp. 125-139

Neal, R. M. (2006), “Constructing Efficient MCMC Methods Using Temporary Map-

ping and Caching”, Talk at Columbia University, December 2006 Available from

http://www.utstat.utoronto.ca/~radford

Quiñonero-Candela, J., Rasmussen, C. E., and Williams, C. K. I. (2007), “Approximation Methods

for Gaussian Process Regression”, Technical Report MSR-TR-2007-124, Microsoft Research

Rasmussen, C. E. and Williams, C. K. I. (2006), Gaussian Process for Machine Learning, the MIT

Press, ISBN 026218253X,

Williams, C.K.I. and Seeger, M. (2001), “Using the Nyström Method to Speed up Kernel Ma-

chines”, Advances in Neural Information Processing Systems 13, pp. 682-688

Woodbury, M.A., (1950) “Inverting modified matrices”, Memorandum Rept. 42, Statistical Re-

search Group, Princeton University, Princeton, NJ, 1950, 4pp

21

