CSC 363, Winter 2010 — Short Assignment #4 Solution

Recall that a verifier for a language A takes as input a pair (w,c) and accepts or rejects in time that is
polynomial in |w|. For every w € A, the verifier must accept (w,c) for some ¢, and for every w ¢ A, the
verifier must reject (w, ¢) for all c. We call a ¢ for which the verifier accepts (w, ¢) a “certificate” that w is
in A.

1) For this language, the certificate can be two sets of values for the variables in ¢. The verifier checks
that with the first set of values results, ¢ evaluates to 1, and with the second set of values, ¢ evaluates
to 0 (ie, ¢ evaluates to 1). Evaluating a Boolean expression takes linear time if one assumes the values
of variables are immediately available, and still takes only quadratic time if getting the value of a
variable requires a linear search.

2) The certificate here is a string of length k which M accepts after exactly k% steps. The verifier
simulates M on this string, and checks that it does indeed accept after k2 steps. Since the size of the
input is greater than k, this takes polynomial time.

3) The certificate here can be a pair of integers whose product is n. The verifier rejects if w is not of the
form 1™, and otherwise counts the 1s to get n, and then verifies that the product of the two integers
in the certificate is n.

Actually, the certificate can be made trivial (so it is just ignored by the verifier), since it has recently
been proved that whether an integer in binary notation is composite is decidable in polynomial time.
For that matter, the integer here is presented in unary notation, so testing whether it is composite by
the obvious method of trying all factors greater than one and less than n takes time that is polynomial
in the length of the input.

4) This is a regular language, that is easily recognized in linear time by a Turing Machine. The certificate
can be trivial, and just be ignored by the verifier. The verifier will just accepts (w,c) for any ¢ if w
is in (01)*.

5) For this language, the certificate can be a set of nodes in G; and a set of nodes in Gy of the same
size. The verifier first checks that these sets really are the same size, and that they really do specify
cliques in G; and Gs. It then checks that these cliques are maximal. This can be done in polynomial
time by just looking at every node in the graph outside the clique, and rejecting if any such node is
connected to every node in the clique (which means that that node could be added to the clique to
give a bigger clique).

