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Tentative List of Topics by Week

1: Introduction to Bayesian inference

Analytical inference with conjugate priors

2 & 3: Monte Carlo methods for Bayesian inference

Linear regression, logistic regression

4 & 5: Mixture models, finite and infinite

Latent variables (statistical and computational aspects)

Variational methods for Bayesian inference

Models using the Indian Buffet Process

6 & 7: Gaussian process models for regression and classification

Matrix computations

Monte Carlo and other methods of inference

8 & 9: Other models: neural networks, ??

10: Test

11 & 12: Project presentations



Evaluation

Five small exercises (1 week): 25%

Major assignment (4 weeks): 25%

Test: 20%

Project (individual or group): 30%

Projects may be done individually, in a group of two, or in

a group of three for good reason (with special permission).

Tentative Dates

Test: Mar 21

Major assignment: Handed out Jan 31, due Feb 28

Project: Proposal Feb 21 (emailed),

Presentations Mar 28 & Apr 4

Report Apr 7



Introduction to Bayesian Inference



The Bayesian Approach to Machine Learning (Or Anything)

1) We formulate our knowledge about the situation probabilistically:

– We define a model that expresses qualitative aspects of our knowledge

(eg, forms of distributions, independence assumptions). The model will

have some unknown parameters.

– We specify a prior probability distribution for these unknown parameters

that expresses our beliefs about which values are more or less likely,

before seeing the data.

2) We gather data.

3) We compute the posterior probability distribution for the parameters, given

the observed data.

4) We use this posterior distribution to:

– Reach scientific conclusions, properly accounting for uncertainty.

– Make predictions by averaging over the posterior distribution.

– Make decisions so as to minimize posterior expected loss.



Finding the Posterior Distribution

The posterior distribution for the model parameters given the observed data is

found by combining the prior distribution with the likelihood for the parameters

given the data.

This is done using Bayes’ Rule:

P (parameters | data) =
P (parameters) P (data | parameters)

P (data)

The denominator is just the required normalizing constant, and can often be

filled in at the end, if necessary. So as a proportionality, we can write

P (parameters | data) ∝ P (parameters) P (data | parameters)

which can be written schematically as

Posterior ∝ Prior × Likelihood

We make predictions by integrating with respect to the posterior:

P (new data | data) =

∫

parameters

P (new data | parameters) P (parameters | data)



Representing the Prior and Posterior Distributions by Samples

The complex distributions we will often use as priors, or obtain as posteriors,

may not be easily represented or understood using formulas.

A very general technique is to represent a distribution by a sample of many

values drawn randomly from it. We can then:

– Visualize the distribution by viewing these sample values, or

low-dimensional projections of them.

– Make Monte Carlo estimates for probabilities or expectations with respect to

the distribution, by taking averages over these sample values.

Obtaining a sample from the prior is often easy. Obtaining a sample from the

posterior is usually more difficult — but this is nevertheless the dominant

approach to Bayesian computation.



Inference at a Higher Level: Comparing Models

So far, we’ve assumed we were able to start by making a definite choice of model.

What if we’re unsure which model is right?

We can compare models based on the marginal likelihood (aka, the evidence) for

each model, which is the probability the model assigns to the observed data.

This is the normalizing constant in Bayes’ Rule that we previously ignored:

P (data | M1) =

∫

parameters

P (data | parameters, M1) P (parameters |M1)

Here, M1 represents the condition that model M1 is the correct one (which

previously we silently assumed). Similarly, we can compute P (data | M2), for

some other model (which may have a different parameter space).

We might choose the model that gives higher probability to the data, or average

predictions from both models with weights based on their marginal likelihood,

multiplied by any prior preference we have for M1 versus M2.



A Simple Example — A Hard Linear Classifier

The problem:

We will be observing pairs (x(i), y(i)), for i = 1, . . . , n, where x = (x1, x2) is a 2D

“input” and y is a −1/ + 1 class indicator. We are interested in predicting y

from x. We are not interested in predicting x, and this may not even make sense

(eg, we may determine the x(i) ourselves).

Our informal beliefs:

We believe that there is a line somewhere in the input space that determines y

perfectly — with −1 on one side, +1 on the other.

We think that this line could equally well have any orientation, and that it could

equally well be positioned anywhere, as long as it is no more than a distance of

three from the origin at its closest point.

We need to translate these informal beliefs into a model and a prior.



Formalizing the Model

Our model can be formalized by saying that

P (y(i) = y |x(i), u, w) =







1 if y u (wT x(i) − 1) > 0

0 if y u (wT x(i) − 1) < 0

where u ∈ {−1, +1} and w = (w1, w2) are unknown parameters of the model.

The value of w determines a line separating the classes, and u says which class is

on which side. (Here, wT x is the scalar product of w and x.)

This model is rather dogmatic — eg, it says that y is certain to be +1 if

u = +1 and wT x is greater than 1. A more realistic model would replace the

probabilities of 0 and 1 above with ε and 1 − ε to account for possible unusual

items, or for misclassified items. ε might be another unknown parameter.



Formalizing the Prior

A line is completely determined by giving the point, c, on the line that is closest

to the origin.

To formalize our prior belief that the line separating classes could equally well be

anywhere, as long as it is no more than a distance of three from the origin, we

decide to use a uniform distribution for c over the circle with radius 3.

Given c, we can compute w = c/||c||2, which makes wT x = 1 for points on the

line. (Here, ||c||2 is the squared norm, c2
1 + c2

2.)

Here’s an example:
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We also say that u is equally likely to be +1 or −1, independently of w.



Looking at the Prior Distribution

We can check this prior distribution by looking at many lines sampled from it:
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Something’s wrong here. We meant for the lines to be uniformly distributed, but

we see a sparse region near the origin.



Why This Prior Distribution is Wrong

Our first attempt at formalizing our prior beliefs didn’t work. We can see why if

we think about it.

Imagine moving a line that’s within five

degrees of vertical from left to right:
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To stay within five degrees of vertical, the closest point to the origin has to be

within the wedge shown. This becomes less and less likely as the origin is

approached. We don’t get the same probability of a near-vertical line for all

horizontal positions.



Fixing the Prior Distribution

We can fix the prior by letting the closest point on the line to the origin be

c = rv, with r uniformly distributed over (0, 3) and v uniformly distributed

over the unit circle.

Now a sample drawn from the prior looks the way we want it to:
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Some Data Points

Now that we have defined our model and prior, let’s get some data:
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The black points are in class +1, the white points in class −1.



Posterior Distribution for the Hard Linear Classifier

For the hard linear classifier, the likelihood is either 0 or 1:

P (y(1), . . . , y(n) |x(1), . . . , x(n), u, w) =
n

∏

i=1

P (y(i) |x(i), u, w)

=







1 if y(i) u (wT x(i) − 1) > 0, for i = 1, . . . , n

0 otherwise

The posterior distribution for u and w is therefore the same as their prior

distribution, except that parameter values incompatible with the data are

eliminated.

After renormalizing so that posterior probabilities integrate to one, the

parameter values compatible with the data will have higher probability than

they did in the prior.



Obtaining a Sample from the Posterior Distribution

To obtain a sample of values from the posterior, we can sample w values from

the prior, but retain only those that are compatible with the data (for some u).

Here’s what we get using a sample of size 200:
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The eight bold lines are a random sample from the posterior distribution.



Making a Prediction for a Test Case

The Bayesian predictive probability that in a test case with inputs x∗, the class,

y∗, will be +1 is found by integrating/summing over the parameters w and u:

P (y∗ = +1 |x∗, (x(1), y(1)), . . . , (x(n), y(n)))

=

∫

∑

u=±1

P (y∗ = +1 |x∗, u, w) P (u, w |x(1), y(1)), . . . , (x(n), y(n)) dw

Using a sample of K values from the posterior, (u(1), w(1)), . . . , (u(K), w(K)), we

can approximate this as follows:

P (y∗ = +1 |x∗, (x(1), y(1)), . . . , (x(n), y(n))) ≈
1

K

K
∑

j=1

P (y∗ = +1 |x∗, u(j), w(j))

For this model, P (y∗ = +1 |x∗, u(j), w(j)) is either 0 or 1, depending on the sign

of u(j) (w(j) T

x∗ − 1). The average above is just the fraction of lines drawn from

the posterior that would put the test point in class +1.



A Plot of the Predictive Probabilities

Here is a contour plot over the input space of the approximate predictive

probability of class +1, based on a sample of size 10000 from the prior, which

resulted in a sample of size 450 from the posterior:
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The contour lines go from 0 on the left to 1 on the right, in steps of 0.1.



The Marginal Likelihood

The sample of 10000 values from the prior also lets us estimate the marginal

likelihood for this model, given the seven observed data points.

We consider the x(i) to be fixed (not random), so the marginal likelihood is just

the probability of all the y(i) having their observed values. This probability is

one for a line that classifies all the points correctly, and zero for any other line.

We can therefore estimate the marginal likelihood by the fraction of lines drawn

from the prior that are compatible with the data: 450/10000 = 0.045.

[ Actually. . . The marginal likelihood is half that, since the chance of picking u to

have the +1’s on the right side of the line is 1/2. ]

We could use this to compare this model with some other, such as a model that

said the classes were separated by quadratic rather than linear curves.

However... the marginal likelihood is very sensitive to the prior used. If we

used a prior for the separating line that was uniform over a bigger region, say

allowing the closest point to the origin to be up to a distance of 10 away, the

marginal likelihood would be smaller. Computing marginal likelihoods makes

sense only if you have given careful thought to the prior.



Final Thoughts on This Example

• We see that correctly translating informal knowledge into a prior

distribution isn’t always trivial.

• However, a prior can be tested, by checking how well it corresponds to our

prior beliefs. Prior distributions are not “arbitrary”.

• More elaborate priors might sometimes be appropriate. For example, we

might use a prior that favoured lines that are almost horizontal or almost

vertical, if we believe that probably one of the two inputs is mostly irrelevant.

• For a data set with seven points, only about 4.5% of the parameter values we

drew from the prior made it into the posterior sample. This technique isn’t

going to work for realistic problems. We need better ways of sampling from

the posterior distribution.



Comparison of Bayesian Learning with Other Approaches



Distinctive Features of the Bayesian Approach

Probability is used not only to describe “physical” randomness, such as errors

in labeling, but also uncertainty regarding the true values of the parameters.

These prior and posterior probabilities represent degrees of belief, before and

after seeing the data.

The Bayesian approach takes modeling seriously. A Bayesian model includes a

suitable prior distribution for model parameters. If the model/prior are chosen

without regard for the actual situation, there is no justification for believing the

results of Bayesian inference.

The model and prior are chosen based on our knowledge of the problem. These

choices are not, in theory, affected by the amount of data collected, or by the

question we are interested in answering. We do not, for example, restrict the

complexity of the model just because we have only a small amount of data.

Pragmatic compromises are inevitable in practice — eg, no model and prior

perfectly express to our knowledge of the situation. The Bayesian approach relies

on reducing such flaws to a level where we think they won’t seriously affect the

results. If this isn’t possible, it may be better to use some other approach.



Contrast With the “Learning Machine” Approach

One view of machine learning pictures a “learning machine”, which takes in

inputs for a training/test case at one end, and outputs a prediction at the other:

Inputs for
a case Predictionν

ω

α

The machine has various “knobs”, whose settings change how a prediction is

made from the inputs. Learning is seen as a procedure for twiddling the knobs in

the hopes of making better predictions on test cases — for instance, we might

use the knob settings that minimize prediction error on training cases.

This approach differs profoundly from the Bayesian view:

– The choice of learning machine is essentially arbitrary — unlike a model, the

machine has no meaningful semantics, that we could compare with our beliefs.

– The “knobs” on the machine do not correspond to the parameters of a

Bayesian model — Bayesian predictions, found by averaging, usually cannot

be reproduced using any single value of the model parameters.



Contrast With “Learning Theory”

An aim of “learning theory” is to prove that certain learning machines

“generalize” well. One can sometimes prove that if you adjust the knobs on the

learning machine to minimize training error, then apply it to test cases, the

training error rates and test error rates are unlikely to be far apart:

P (|test error rate − training error rate| > ε) < δ

where δ and ε have certain small values, which depend on the training set size.

Such a result would be of little interest, if it weren’t usually interpreted as

guaranteeing that, for instance:

P (|test error rate − 0.02| > ε | training error rate = 0.02) < δ

This is a fallacy, however — no valid probabilistic statement about test error

rates conditional on the observed error rate on training cases is possible without

assuming some prior distribution over possible situations. This fallacy is

analogous to the common misinterpretation of a frequentist p-value as the

probability that the null hypothesis is true, or of a frequentist confidence interval

as an interval that likely contains the true value.



What About “Bias” and “Variance”?

Another approach to analysing learning methods (especially for predicting

real-valued quantities) looks at the following two indicators of how well a method

predicts some quantity:

Bias: how much predictions depart from the truth on average.

Variance: the average squared difference of predictions from their average.

The average squared error for the method can be decomposed as the sum of the

squared bias and the variance. This leads to a strategy: choose a method that

minimizes this sum, possibly trading off increased bias for reduced variance, or

vice versa, by adjusting complexity, or introducing some form of “regularization”.

There are two problems with this strategy:

– The bias and variance depend on the true situation, which is unknown.

– There is no reason to think that trying nevertheless to minimize squared bias

plus variance produces a unique answer.

Assessments of bias and variance play no role in the Bayesian approach.



Some Issues Applying Bayesian Methods



The Challenge of Specifying Models and Priors

The first challenge in making the Bayesian approach work is to choose a suitable

model and prior. This can be especially difficult for the complex,

high-dimensional problems that are traditional in machine learning.

A suitable model should encompass all the possibilities that are

thought to be at all likely. Unrealistically limited forms of functions

(eg, linear) or distributions (eg, normal) should be avoided.

A suitable prior should avoid giving zero or tiny probability to real

possibilities, but should also avoid spreading out the probability over all

possibilities, however unrealistic. To avoid a prior that is too spread out,

dependencies between parameters may need to be modeled.

Unfortunately, the effort in doing a good job can easily get out of hand. One

strategy is to introduce latent variables into the model, and hyperparameters into

the prior. Both of these are devices for modeling dependencies in a tractable way.

In practice, an iterative approach may be needed — we formulate our model

and prior, try it out on data, and see by examining diagnostics that we’ve made

a mistake. We go back and revise our model or prior, trying to avoid having our

choice be unduly influenced by the data (since the data would then count twice).



Infinite Models

Many real phenomena are of essentially unlimited complexity:

Suppose we model consumer behaviour by categorizing consumers into various

“types” (mixture components). There is no reason to think that there are only

(say) five types of consumer. Surely there are an unlimited number of types,

though some may be rare.

Suppose we model the growth rate of trees as a function of climate, soil type,

genetic characteristics, disease suppression measures taken, etc. There is no

reason to think any simple functional form (eg, linear, low-order polynomial)

will capture the many ways these factors interact to determine tree growth.

How can we build a model that accommodates such complexity? One approach:

– Define models that can have any finite amount of complexity (eg, a finite

number of mixture components, or of hidden units).

– Define priors for these models that make sense.

– See if the limit as the complexity goes to infinity is sensible.

If the limit makes sense, we can use a model that is as large as we can handle

computationally. And sometimes, we can figure out how to actually implement

the infinite model on a finite computer!



The Computational Challenge

The other big challenge in making Bayesian modeling work is computing the

posterior distribution. There are four main approaches:

Analytical integration: Works when “conjugate” prior distributions can be

used, which combine nicely with the likelihood — usually too much to hope for.

Gaussian approximation: Works well when there’s a lot of data, compared to

the model complexity — the posterior distribution in then close to Gaussian, and

can be handled by finding its mode, and the second derivatives at the mode.

Monte Carlo integration: Once we have a sample of parameter values from

the posterior distribution, most things are possible. But how to get a sample?

– Simple Monte Carlo — sample directly from the posterior. Seldom possible.

– Importance sampling — sample from an approximation to the posterior, then

reweight to compensate for the difference. Maybe OK in moderate dimensions.

– Markov chain Monte Carlo (MCMC) — simulate a Markov chain that

eventually converges to the posterior distribution. Can be applied to a

remarkable variety of problems. Currently the dominant approach.

Variational approximation: A cleverer way to approximate the posterior.

May sometimes be faster than MCMC, but it’s not as general, and not exact.



Analytically-Tractable Bayesian Models



Conjugate Prior Distributions

For most Bayesian inference problems, the integrals needed to do inference and

prediction are not analytically tractable — hence the need for numerical

quadrature, Monte Carlo methods, or various approximations.

Most of the exceptions involve conjugate priors, which combine nicely with the

likelihood to give a posterior distribution of the same form. Examples:

1) Independent observations from a finite set, with Beta / Dirichlet priors.

2) Independent observations of Gaussian variables with Gaussian prior for the

mean, and either known variance or inverse-Gamma prior for the variance.

3) Linear regression with Gaussian prior for the regression coefficients, and

Gaussian noise, with known variance or inverse-Gamma prior for the

variance.

It’s nice when a tractable model and prior are appropriate for the problem.

Unfortunatley, people are tempted to use such models and priors even when they

aren’t appropriate.



Independent Binary Observations with Beta Prior

We observe binary (0/1) variables Y1, Y2, . . . , Yn.

We model these as being independent, and identically distributed, with

P (Yi = y | θ) =







θ if y = 1

1 − θ if y = 0







= θy (1−θ)1−y

Let’s suppose that our prior distribution for θ is Beta(a,b), with a and b being

known postive reals. With this prior, the probability density over (0, 1) of θ is:

P (θ) =
Γ(a + b)

Γ(a)Γ(b)
θa−1(1−θ)b−1

Here, the Gamma function, Γ(c), is defined to be
∫

∞

0 xc−1 exp(−x) dx. For

integer c, Γ(c) = (c − 1)!.

Note that when a = b = 1 the prior is uniform over (0, 1).

The prior mean of θ is a/(a + b). Big a and b give smaller prior variance.



Posterior Distribution with Beta Prior

With this Beta prior, the posterior distribution is also Beta:

P (θ |Y1 = y1, Y2 = y2, . . . , Yn = yn)

∝ P (θ)
n

∏

i=1

P (Yi = yi | θ)

∝ θa−1 (1−θ)b−1
n

∏

i=1

θyi (1−θ)1−yi

∝ θΣyi+a−1 (1−θ)n−Σyi+b−1

So the posterior distribution is Beta (
∑

yi + a, n −
∑

yi + b).

One way this is sometimes visualized is as the prior being equivalent to

a fictitious observations with Y = 1 and b fictitious observations with Y = 0.

Note that all that is used from the data is
∑

yi, which is a minimal sufficient

statistic, whose values are in one-to-one correspondence with possible likelihood

functions (ignoring constant factors).



Examples of Beta Priors and Posteriors
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Predictive Distribution from Beta Posterior

From the Beta (
∑

yi + a, n −
∑

yi + b) posterior distribution, we can make a

probabilitistic prediction for the next observation:

P (Yn+1 = 1 |Y1 = y1, Y2 = y2, . . . , Yn = yn)

=

∫ 1

0
P (Yn+1 = 1 | θ) P (θ |Y1 = y1, Y2 = y2, . . . , Yn = yn) dθ

=

∫ 1

0
θ P (θ |Y1 = y1, Y2 = y2, . . . , Yn = yn) dθ

=

∫ 1

0
θ

Γ(n + a + b)

Γ(Σyi + a)Γ(n − Σyi + b)
θΣyi+a−1 (1−θ)n−Σyi+b−1 dθ

=
Γ(n + a + b)

Γ(Σyi + a)Γ(n − Σyi + b)

Γ(1 + Σyi + a)Γ(n − Σyi + b)

Γ(1 + n + a + b)

=

∑

yi + a

n + a + b

This uses the fact that cΓ(c) = Γ(1 + c).



Generalizing to More Than Two Values

For i.i.d. observations with a finite number, K, of possible values, with K > 2,

the conjugate prior for the probabilities ρ1, . . . , ρK is the Dirichlet distribution,

with the following density on the simplex where all ρk > 0 and
∑

ρk = 1:

P (ρ1, . . . , ρK) =
Γ(Σkak)

Πk Γ(ak)

K
∏

k=1

ρak−1
k

The parameters a1, . . . , aK can be any positive reals.

The posterior distribution after observing n items, with n1 having value 1, n2

having value 2, etc. is Dirichlet with parameters a1 + n1, . . . , aK + nK .

The predictive distribution for item n + 1 is

P (Yn+1 = k |Y1 = y1, . . . , YK = yk) =
nk + ak

n + Σak



Independent Observations from a Gaussian Distribution

We observe real variables Y1, Y2, . . . , Yn.

We model these as being independent, all from some Gaussian distribution with

unknown mean, µ, and known variance, σ2.

The conjugate prior for µ is Gaussian with some mean µ0 and variance σ2
0.

Rather than talk about the variance, it is more convenient to talk about the

precision, equal to the reciprocal of the variance. A data point has precision

τ = 1/σ2 and the prior has precision τ0 = 1/σ2
0.

The posterior distribution for µ is also Gaussian, with precision τn = τ0 + nτ ,

and with mean

µn =
τ0µ0 + nτy

τ0 + nτ

where y is the sample mean of the observatons y1, . . . , yn.

The predictive distribution for Yn+1 is Gaussian with mean µn and variance

(1/τn) + σ2.



Gaussian with Unknown Variance

What if both the mean and the variance (precision) of the Gaussian distribution

for Y1, . . . , Yn are unknown?

There is still a conjugate prior, but in it, µ and τ are dependent:

τ ∼ Gamma(a, b)

µ | τ ∼ N(µ0, c/τ)

for some constants a, b, and c.

It’s hard to imagine circumstances where our prior information about µ and τ

would have a dependence of this sort. But unfortunately, people use this

conjugate prior anyway, because it’s convenient.


