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Overview
◦ Decision trees as interpretable clustering solutions

◦ usually found via local search heuristics

◦ no exact optimization nor support for constraints

◦ Our contribution: the first exact optimization approach

◦ MaxSAT-based encoding allows optimality and constraint support

◦ finds 𝝐-approximation of a well-studied bi-criteria objective

◦ Our experiments show

◦ tree clustering outperforms state-of-the-art non-tree clustering in ARI scores

◦ the bi-criteria objective complements tree clustering

◦ tree solutions are well-suited to benefit from constraints
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Background

Encoding

Experiments

◦ Constrained clustering

◦Decision trees

◦ Tree clustering

◦MaxSAT



Constrained Clustering

◦ A semi-supervised machine learning task

◦ Bi-criteria objective:

◦ maximize minimum split (MS) between clusters

◦ minimize maximum diameter (MD) within clusters
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Constrained Clustering

◦ A semi-supervised machine learning task

◦ Bi-criteria objective:

◦ maximize minimum split (MS) between clusters

◦ minimize maximum diameter (MD) within clusters

◦ Domain-Independent Constraints:

◦ must-links: pairs that should be in the same cluster

◦ cannot-links: pairs that should be in different clusters
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Decision Trees

◦ Decision trees:

◦ feature selection

◦ threshold selection

◦ leaf labelling
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Decision Trees

◦ Decision trees:

◦ feature selection

◦ threshold selection

◦ leaf labelling

◦ They are interpretable:

◦ yet competitive in accuracy

◦ Traditionally used for classification
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Tree Clustering
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Tree Clustering
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Tree Clustering
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MaxSAT

◦ A set of binary variables 𝒳 = 𝑥0, 𝑥1, … , 𝑥𝑛
◦ A clause 𝐶𝑖 is a subset of literals 𝒳 ∪¬𝒳

◦ Satisfy all hard clauses 𝒞ℎ
◦ Maximize the number of satisfied soft clauses 𝒞𝑠

◦ Find an assignment ℳ:𝒳 → {𝑓𝑎𝑙𝑠𝑒, 𝑡𝑟𝑢𝑒}
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Background

Encoding

Experiments

◦Basis

◦Approximating objective

◦ Smart pairs



Encoding Basis
◦ Based on our previous work on decision tree classifiers

[Shati, Cohen, McIlraith, CP2021]

◦ How to extend the encoding for constrained clustering:

◦ model 𝜖-approximation of the two objectives

◦ support for pairwise constraints
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Encoding Objectives
◦ Our objectives involve sorting distances of pairs
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Encoding Objectives
◦ Given a clustering, each pair belongs to same/different clusters
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Encoding Objectives
◦ Minimum split and maximum diameter are points along the axis
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Encoding Objectives
◦ Minimum split and maximum diameter are points along the axis
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Encoding Objectives
◦ Minimum split and maximum diameter are points along the axis
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Encoding Objectives
◦ Minimum split and maximum diameter are points along the axis
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Encoding Objectives
◦ Optimize the two objectives simultaneously to get Pareto optimality
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Encoding Objectives
◦ Use distance classes instead of individual pairs
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Encoding Objectives
◦ Use distance classes instead of individual pairs
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Encoding Objectives
◦ Use distance classes instead of individual pairs
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Smart Pairs

◦ Quadratic number of clauses for naively enforcing must-links
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Smart Pairs
◦ Quadratic number of clauses for naively enforcing must-links

◦ But only a linear number of edges is needed for connecting all points
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Smart Pairs

◦ Must-links, cannot-links, the minimum split, and the maximum diameter interact

◦ When adding a clause for a pair to be clustered together or separately

◦ Redundancy or infeasibility is detected
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Smart Pairs

◦ Must-links, cannot-links, the minimum split, and the maximum diameter interact

◦ When adding a clause for a pair to be clustered together or separately

◦ Redundancy or infeasibility is detected
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Smart Pairs

◦ Must-links, cannot-links, the minimum split, and the maximum diameter interact

◦ When adding a clause for a pair to be clustered together or separately

◦ Redundancy or infeasibility is detected
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Setup

◦ Baselines:

◦ Constrained Clustering: not restricted to conform to a tree, max diameter only

◦ Mixed Integer Optimization:

[Dimitris Bertsimas, Agni Orfanoudaki, Holly Wiberg, Machine Learning, 2021]

◦ Datasets: seven real datasets from the UCI repository and four synthetic datasets from FCPS

◦ Solver: Loandra with 30 minutes time limit
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Better Score + Better Interpretability

◦ Our approach manages to produce high quality 
solutions in a short time

◦ The 3 aspects fit well together:

◦ Tree clustering outperforms non-tree

◦ Pareto objective outperforms only MD

◦ Both utilize constraints more

◦ There is a trade-off between quality and feasibility
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Better Performance

◦ Smart pairs and approximation help 
with performance and memory

◦ Approximation does not hurt the 
quality significantly
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Better Performance

◦ Smart pairs and approximation help 
with performance and memory

◦ Approximation does not hurt the 
quality significantly
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Summary

◦ First exact optimization approach to decision tree clustering

◦ finds 𝜖-approximation of max diameter and min split

◦ supports pairwise constraints

◦ Smart pairs algorithm to detect redundancy and infeasibility

◦ Results show:

◦ higher scores than non-tree clustering

◦ decision trees, bi-criteria objective, and constraints complement each other

◦ Future work: see our paper
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