Optimal Decision Trees for Interpretable Clustering with Constraints

POUYA SHATI, ELDAN COHEN, SHEILA MCILRAITH
UNIVERSITY OF TORONTO
VECTOR INSTITUTE FOR ARTIFICIAL INTELLIGENCE
CP’23 DOCTORAL PROGRAM
ORIGINALLY APPEARED AT IJCAI-23
Overview

Constrained Clustering
- Semi-supervised

Decision Trees
- Interpretable Classifiers

Decision Tree Clustering
- No constraint support
- No optimality guarantee
Overview

Constrained Clustering
- Semi-supervised

Decision Trees
- Interpretable Classifiers

Decision Tree Clustering
- No constraint support
- No optimality guarantee

MaxSAT Encoding
- Supports pairwise constraints
- Approximates well-known bi-criteria obj.
Overview

Constrained Clustering
- Semi-supervised

Decision Trees
- Interpretable Classifiers

Decision Tree Clustering
- No constraint support
- No optimality guarantee

MaxSAT Encoding
- Supports pairwise constraints
- Approximates well-known bi-criteria obj.

Experiments
- Quality solutions in short time
- Tree > non-tree
- Bi-criteria > single obj.
- Better constraint utilization
Problem Definition

- **Bi-criteria objective:**
 - Maximize minimum split (MS) between clusters
 - Minimize maximum diameter (MD) within clusters
Problem Definition

- **Bi-criteria objective:**
 - Maximize minimum split (MS) between clusters
 - Minimize maximum diameter (MD) within clusters

- **Pairwise Constraints:**
 - **Must-links:** pairs that should be in the same cluster
 - **Cannot-links:** pairs that should be in different clusters
Problem Definition

- **Decision tree** clustering:

 \[y \leq 0.3 \]

 \[x \leq 0.5 \]

 Cluster 1

 Cluster 2

 Cluster 3
Encoding

- All distances of pairs sorted into distance classes

Legend:
- Same cluster
- Diff. clusters
Encoding

- All distances of pairs sorted into **distance classes**

Legend:
- \(\epsilon\) Maximize MS
- \(\epsilon\) Minimize MD

Legend:
- same cluster
- diff. clusters
Smart Pairs

- **Linear** number of clauses enough to enforce **quadratic** number of must-links
Smart Pairs

- **Linear** number of clauses enough to enforce **quadratic** number of must-links

<table>
<thead>
<tr>
<th>Constraints</th>
<th>Conditional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force to be in the same cluster</td>
<td>Must-link</td>
</tr>
<tr>
<td>Force to be in different clusters</td>
<td>Cannot-link</td>
</tr>
</tbody>
</table>

- Detect **redundant** edges
- Detect **infeasible** edges
Better Score + Better Interpretability

- High quality solutions in a short time
- Improve the solution individually
- Complement each other
- Trade-off between quality and feasibility

![Chart showing ARI and Feasibility %]

- ○ Tree
- □ CC
- --- Pareto
- —— Diameter
Optimal Decision Trees for Interpretable Clustering with Constraints

Thank you for your time!

POUYA SHATI, ELDAN COHEN, SHEILA MCILRAITH
UNIVERSITY OF TORONTO
VECTOR INSTITUTE FOR ARTIFICIAL INTELLIGENCE

CP’23 DOCTORAL PROGRAM
ORIGINALLY APPEARED AT IJCAI-23