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Experiments

Quality solutions in
short time
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Problem Definition

Legend

° Bi-criteria objective:
o Maximize minimum split (MS) between clusters
o Minimize maximum diameter (MD) within clusters
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Problem Definition

Legend
W must-links
o Bi-criteria objective: < = = P cannot-links

o Maximize minimum split (MS) between clusters clusters

o Minimize maximum diameter (MD) within clusters

o Pairwise Constraints:
o Must-links: pairs that should be in the same cluster
o Cannot-links: pairs that should be in different clusters




Problem Definition

Legend
= must-links
> Decision tree clustering: < = = P cannot-links
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Encoding

Legend

same cluster
o All distances of pairs sorted into distanceclasses [ seeseeeeean diff. clusters
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Smart Pairs

o Linear number of clauses enough to enforce quadratic number of must-links




Smart Pairs

o Linear number of clauses enough to enforce quadratic number of must-links

Force to be in the same cluster Must-link MS obj.

Constraints  Conditional Detect redundant edges
Smart Pai>

Detect infeasible edges

Force to be in different clusters Cannot-link  MD obj.




Better Score + Better Interpretability

> High quality solutions in a short time
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